
SGD 125-60, F12 Decision Making In-Class Exercises

Answer the questions in the spaces provided on the question sheets. If you
run out of room for an answer, continue on the back of the page.

Name:

Python Concepts

1. We will now review some basic dictionary operations.1 Dictionaries are a useful data
structure for implementing blackboard architectures. The blackboard is an area of mem-
ory that any expert (or agent) may use to read from and write to.

(a) Create an empty dictionary called blackboard.

(b) Add the key players and set the value to 4 to indicate that there are four players.

(c) Print the number of players as known to the blackboard.

(d) Increment the number of players in the game and store it back to the blackboard.

2. Write a function avatarPositionToTile(avatar). This function will perform what is
essentially the inverse of tilePositionToPixel(tile) in that it will return a column
and row tuple of the tile when given a pixel position of an avatar.

Blackboard Architecture
1http://docs.python.org/tutorial/datastructures.html

Page 1 of 6 v1.0



SGD 125-60, F12 Decision Making In-Class Exercises

3. In this question, you will create two blackboards for the boy and girl avatars. Since
the boy will be the player, his blackboard will be called player bb. The other blackboard
will be called enemy bb.

(a) Initialize the player bb with the properties health => 100 and ammo => 20.

(b) Initialize the enemy bb with the properties health => 100, ammo => 10, time passed

=> 0, delay => 0, action => ’Idle’, panic => None. It may not be obvious at
this point what all these different properties do, but we will get to them as the need
arises.

(c) Near the beginning of the game loop, store time passed seconds in enemy bb (for
this, use the key value of time passed). The blackboard location enemy bb[’delay’]

will similarly keep track of the accumulated time so far. The purpose of these prop-
erties are to intentionally slow down the AI to have more human-like performance.

Pygame Concepts

4. Add a KEYDOWN event for K r so that it makes a call to randomEvent(level). This is a
provided function which randomly places a health item and an ammo item on the screen.
There can be at most one health item and one ammo item on the board at any given
time.

5. Unfortunately, nothing actually appears on the screen when calling this function, since
it must be blit inside of the game loop. If items[’health’] (and items[’ammo’])

are not None, then blit the corresponding surface to the screen. Note that the cor-
responding surfaces are called health image and ammo image. Since the value of the
items dictionary contains the center position of the object, use this as the position of
the item. Don’t forget to re-position the item, since blit occurs from the top left of the
surface, not the center.

Page 2 of 6 v1.0



SGD 125-60, F12 Decision Making In-Class Exercises

Decision Trees

6. In this section, we will implement a hard-coded (conditional-based) decision tree. Such
a decision tree implementation can be generalized, and we will do so in a future lecture.
For now, assume the game has a boy and a girl avatar where the girl avatar is an AI.

(a) Uncomment the call to the statusline in the game loop. This will display the
status line containing the health and ammo information of the avatars.

(b) Similarly, uncomment the grabItem function calls. This code allows the avatar to
pick up items.

(c) Add a KEYDOWN event for K SPACE. When the player presses this key, and if the player
has enough ammo, and if the AI is in the same tile as the player, then subtract
one unit of ammo from yourself and five units of health from the AI. Test that this
functions correctly before continuing.

7. You will now draw a decision tree for the enemy AI. Assume that the decision tree has
available to it the following actions: fire, seek, ammo, health, and panic. Your decision
tree should represent the following criteria, from highest (root) to lowest (leaf) priority:

(a) If the health is less than 20, and if there is a health item on the screen, then perform
the health action. The health action seeks the health item.

Page 3 of 6 v1.0



SGD 125-60, F12 Decision Making In-Class Exercises

(b) Otherwise, if the ammo is greater than 0, and the player is in the same tile as
the AI, then perform the fire action. The fire action will fire upon the player.
Internally, the fire action throttles so that it does not rapid-fire, but this detail is
not present in the decision tree.

(c) If the AI is out of ammo, and if an ammo item is available, perform the ammo action.
This action seeks to pick up the ammo item.

(d) The AI will perform panic when health is less than 20, it is out ammo, and no
items are available for pickup. When the AI panics, it will always flee at most two
tiles away from the player. It can choose the direction to flee arbitrarily.

Page 4 of 6 v1.0



SGD 125-60, F12 Decision Making In-Class Exercises

(e) If none of the above conditions are true, then the AI will seek the player.

8. Use Python to program the decision tree from the previous question Your logic should
be implemented within the aiDecisionTree function.

9. Finally, you can update the status bar state within aiDecisionTree with code such as
enemy bb[’action’] = ’Fire’. This will update the status line to indicate that the
AI is firing.

Page 5 of 6 v1.0



SGD 125-60, F12 Decision Making In-Class Exercises

Page 6 of 6 v1.0


