SGD 125-60, F12 Final Exam Open Book

Name:

The final exam must be completed in class and within the allotted class time. All answers
are to be submitted electronically. You will submit your answers on Moodle within a single
zip archive, named lastname.zip. You may not communicate with other students
during the exam.

Introduction to Python

1. For this question, submit your answers to intro.py.

(a)

Write a function named fizzbuzz(low, high). This function will iterate over
all numbers between low and high (as a half-open interval including low but not
including high). If the number is divisible by 3, print Fizz, if the number is divisible
by 5, print Buzz, and if the number is divisible by both 3 and 5, print FizzBuzz.
Otherwise, just print the number itself.

Exploring Python

2. For this question, submit your answers to tank.py.

(a)
(b)

(c)

Create a class called Tank. It should have an initialization method (__init__) that
takes in a name, health, attack, position, and rng (range).

Create three tanks: t1, t2, and t3. You can name these tanks “T'1”, “T2”, and
“T3”. Each tank will have a health of 100, an attack of 10, and a range of 12. The
position of T1 is (0, 0). The position of T2 is (1, 5). The position of T3 is (20, 2).

Within this class, write a method called fire(self, targets), that takes in a
list of tanks and fires upon the closest (using Euclidean distance) Tank. It should
subtract attack units from the target, but only if it’s own health is greater than
20 (otherwise, the unit is too damaged to fire). If all of the units are out of range,
then the attack will not be successful (i.e, do nothing). The health of a unit can
never fall below zero, and a unit can never attack itself.

Movement

3. For this question, you will add your changes to wander.py in the wander directory. The
wander algorithm is often used to implement zombie movement in games.

(a)

(b)

The current implementation of the wander function is pass, which means that it
does not do anything. Modify the wander function so that the AI implements
the wander algorithm using section 3.3.2 (p. 53) of the Al text. To support this
functionality, the following must be performed:

The Avatar class has already been modified for you so that it now contains the
property rotation, which is measured in units of radians (angle). That is, a rota-
tion of 0 means that the avatar will go to the right, a rotation of 7/2 means that

Page 1 of 3 v1.0

SGD 125-60, F12 Final Exam Open Book

()

the avatar will go up, a rotation of = (or —7) means that the avatar will go left,
and a rotation of 37/2 (or —7/2) means that the avatar will go down. Any other
radian angle is also possible.

As a starting point, you will first implement the function randomBinomial (), which
performs the calculation in p. 54 of the text. In Python, you can generate a random
number between 0 and 1 using random.random().

Within wander, you will create a variable called maxRotation. Set maxRotation =
0.5.

The enemy’s new heading (enemy.rotation) is then the current rotation plus a ran-
domly generated amount that is the random binomial multiplied by the maxRotation

(r). That is:

enemy.rotation = (enemy.rotation + randomBinomial() * maxRotation)

To rotate this vector to the desired rotation, perform:
¢ o [cgs r]
sinr
This is your new target (¢), which you can pass into enemy.update. You should

use the numpy versions of the cos and sin operations. (If you don’t know how to
call these, find them in the numpy documentation).

You can verify your solution by manually running python wander_test.pyc, which
should behave similarly (but not exactly, due to the use of random numbers) as your
implementation.

Learning

4. For this question, you will modify game.py in the learning directory.

(a)

(b)

()

The current implementation of hide and seek has the Al randomly select a location.
This means that regardless of how the player plays, the Al will only find the player
with probability 1/n, where n is the number of locations.

Since human players are known to be biased, it is useful for the Al to instead keep
track of the player’s history, and then visit that location based on how often the
player has hidden in that location in the past.

We will do so using a probability distribution function. Consider three locations
A=0,B=0,and C = 0. Since we have no evidence at this point, we will randomly
visit any of the locations until we find the player.

Now consider three locations A =2, B = 3, C' = 1. This means that the player has
been seen at location A twice, location B three times, and location C' once.

To decide where to visit first, we will decide the percentage of time the player visits
each of these locations. Ignoring rounding errors and converting these to integers,
for A, this is 2/6 (33%), for B this is 3/6 (50%), and for C this is 1/6 (16%).

Page 2 of 3 v1.0

SGD 125-60, F12 Final Exam

Open Book

(f) Now roll a random number between 0 and 100. If this number is less than 33, try
location A. Otherwise, if this number is less than 83 (33 + 50), try location B.

Otherwise, try location C'.

(g) Let us say that we search location A first and that the player is not found in that
location. We now repeat the full calculation, except using only locations B and C'.

Question | Points | Score
1 40
2 30
3 20
4 10
Total: 100

Page 3 of 3

v1.0

