
Should We Argue for
Better Compiler Error Messages?

Abstract—Compilers primarily give feedback about problems
to the developer through the use of error messages. Unfortunately,
developers routinely find these messages to be confusing and
unhelpful. In this paper, we postulate that because error messages
are intended to convince developers of problems in their code,
these messages can be framed as arguments. To understand how
error messages should present arguments to developers, and to
investigate the applicability of argumentation theory to compiler
error messages, we conducted an empirical study of 210 question-
answer pairs, tagged as compiler errors, from Stack Overflow.

Our findings indicate that the argument layout of compiler
error messages is significantly different from the argument
layout of Stack Overflow accepted answers, suggesting that
error message arguments are misaligned with the way in which
developers expect arguments to be presented. For example, in
contrast to human-authored answers, compiler error messages
typically do not provide a rationale for why the problem
is a problem. Our long-term goal is to enable compilers to
automatically present error messages as arguments. The results
of our study provide empirical justification and support towards
an underlying argumentation theory to achieve this goal.

I. INTRODUCTION

Compilers primarily give feedback about problems to deve-
lopers through the use of error messages. Despite the intended
utility of error messages, the difficulty of comprehending and
resolving compiler error message is pervasive. Researchers and
practitioners alike have described their output as “cryptic” [1],
“difficult to resolve” [1], “not very helpful” [2], “appal-
ling” [3], “unnatural” [4], and “basically impenetrable” [5].

In this paper, we postulate that because error messages are
intended to convince the developer that a problem exists in
their code, these error messages can be framed as arguments
and understood in terms of argumentation theory. Through this
perspective, the difficulties developers encounter with existing
error messages can be explained by the fact that error messages
present poor arguments.

To understand how error messages should present arguments
to developers, and to investigate the applicability of argumen-
tation theory to compiler error messages, we conducted an
empirical study through a popular question-and-answer site,
Stack Overflow.1 From Stack Overflow, we extracted 210
question-answer pairs posted by developers about compiler
error messages, across seven different programming languages.
For every question-answer pair, we qualitatively coded the
compiler error message found within the question, and the
human-authored answer, using components from argumenta-
tion theory (Section III).

1https://www.stackoverflow.com

The results of our study provide empirical support for pre-
senting compiler error messages to developers as arguments.
Specifically, we find that:

• The argument layout, or macrostructure, for compiler er-
ror messages is significantly different from the argument
layout of Stack Overflow accepted answers, suggesting
that error message arguments are misaligned with the way
in which developers expect arguments to be presented
(Section VI-A). An additional qualitative analysis of
microstructure identifies how accepted answers support
the macrostructure layout, for the domain of compiler
error messages (Section VI-C).

• Human-authored answers for compiler error messages
use complementary argument layout structures to argue
different types of errors (Section VI-B). For issues that
have relatively simple resolutions, arguments are presen-
ted primarily in terms of the actionable fixes that resolve
the defects—without rationale for the underlying cause
of the problem. For more difficult problems, human-
authors employ argument layouts that model conventional
argumentation theory layouts.

Our long-term goal is to enable compilers to automatically
present error messages as arguments that are comparable to
the human-authored answers found on Stack Overflow. To-
wards this goal, our study provides the empirical justification
and the underlying argumentation theory needed to provide
argumentation-based diagnostics in compilers.

II. MOTIVATING EXAMPLE

To illustrate how confusion with error messages can arise,
consider the hypothetical developer, James, who hammers out
the following short code snippet into his IDE:2

enum Color { RED, GREEN, BLUE }
String colorString(Color c) {

switch(c) {
case RED: return "red";
case GREEN: return "green";
case BLUE: return "blue";

}
}

Essentially, James has created an enumeration consisting of
three constants, RED, GREEN, and BLUE—and has handled each

2This example is found in “Ensuring completeness of switch statements”
from IBM [6]. For brevity, we’ve also removed the surrounding Java boiler-
plate.

https://www.stackoverflow.com

of the cases exhaustively within a switch statement in his
colorString method.

James is surprised, however, to discover that Eclipse emits
an error message:

1. ERROR in Example.java (at line 5)
String colorString(Color c) {

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
This method must return a result of type String

This message claims that the code is missing a return sta-
tement, and James reasons that there must be some other case
which he has not considered—causing the switch statement to
fall through. He briefly considers that null is the missing
case, and therefore adds a return null statement to the
line just before the indication error location. Unfortunately,
James determines that this would never be reached if c were
in fact null, because the switch statement would throw a
NullPointerException before ever reaching the return.

James is perplexed since he can think of no obvious missing
return condition that could ever execute other than those
he has already enumerated. Consequently, James finds it
difficult to accept this explanation—particularly since this is a
degenerate case of pattern matching over a bounded range (that
is, the enumeration), a problem known to be computationally
decidable [7]. Perhaps, James concludes, Eclipse simply does
not implement this capability in its compilation analysis.

Lacking any additional assistance from the compiler other
than the error message, James constructed two possible expla-
nations for why the compiler emitted the error message. In the
first explanation, James concluded that the error message was
a result of an error on his part—that he had in fact missed
some edge case, such as null, or perhaps some other case
that can occur with enumerations that he must not be aware
of. In the second explanation, James concluded that he had in
fact exhaustively matched all cases, but that the compiler was
simply not sophisticated enough in its compilation analysis
to know this. Unfortunately, though both arguments seem
plausible, neither are actually correct.

It turns out that the actual reason for the compiler error
is that the Java language specification requires each enum
statement without a default case to be considered as incom-
plete, even when it exhaustively covers all of the enumeration
constants. Not only did James not miss any cases in his switch
statement, his conclusion about the Eclipse compiler was also
incorrect: Eclipse has the machinery to perform enumeration
checking. Thus, using a different compiler would not have
helped James to avoid hitting the error.

Imagine how much time, effort, and confusion might have
been alleviated if James had been able to ask the compiler
to elaborate on its error message, perhaps through a compiler
flag:

1. ERROR in Example.java (at line 6)
switch(c) {

ˆ
The switch over the enum type Eclipse.Color

Grounds Claim

Resolution

Warrant
(a) Simple argument layout

Grounds ClaimQualifier

Rebuttal

Resolution

Warrant

Backing

(b) Extended argument layout

Fig. 1. A prototypical Toulmin’s model of argumentation for (a) simple
argumentation layout, and (b) extended argument layout. The possible need
for auxiliary steps to convince the other party yields the extended argument
layout.

exhaustively covers all cases.

However, the Java specification requires that
enum statements without a default case statement
be considered incomplete, even when all cases
are covered.

Thus, the switch statement should provide a
default case, or the method should return a
result of type String for all execution paths.

Had the compiler present a better-supported argument,
James would likely have more easily understood why the
problem was a problem in the first place. Additionally, James
would have had the necessary justification, provided by his
compiler, for why he needs to address the problem.

III. BACKGROUND ON ARGUMENTATION THEORY

Argumentation theory provides a lens through which we
can evaluate the effectiveness of arguments—a communicative
means to convince one party to accept a position from another
party [8], [9]. If, as early work by Dean suggests—-that
researchers could better understand how computers should
“talk” to people by investigating how ordinary people talk to
each other—then the same proposition should hold true when
these “talks” are presented in the form of an argument [10].

Within argumentation theory, the Toulmin model of ar-
gument posits one such model precisely for this style of
argument: an informal reasoning model which characterizes
everyday arguments, or how arguments occur in practice [11].
Specifically, the Toulmin model of argument is a macrostruc-
ture model. Macrostructure models examine how components

Error:(31, 58) java: incompatible types(C):

bad return type in lambda expression(bc W, G)

java.lang.String cannot be converted to void(B)

Fig. 2. A compiler error message from Java, annotated with argumentation
theory constructs. This particular message contains all of the basic argumenta-
tion constructs to satisfy Toulmin’s argument: (C) = Claim, (bc W) = implied
“because” Warrant, (G) = Grounds. It also includes an extended construct,
(B) = Backing.

combine to support the larger argument rather; in contrast,
microstructure examines the phrasing and composition of the
“sentence-level” statements.

In the simple argument layout (Figure 1a), the components
consist first of a claim—the assertion, view or judgment to
be justified. The second component is ground, or data that
provides evidence for this claim. The third component is the
justification or warrant, which acts as a bridge between the
grounds and the claim (for example, “[claim] because [data]”).
Together, the claim, the grounds, and the warrant provide a
simple argument layout.

Toulmin also devised an extended model of argument, to
acknowledge the possibility of needing auxiliary steps to the
simple argument layout (Figure 1b). In addition to the simple
argument layout components, the extended argument layout
offers a rebuttal when an exception has to be inserted into
the argument. The claim may also not be absolute: in this
case, a qualifier component can temper the claim. Finally, the
warrant may also not be immediately accepted by the other
party, in which case additional backing is needed to support
the warrant.

For both models, we made one tweak that is peculiar to
programming tasks. We observed in our own Stack Overflow
dataset that some accepted answers provided resolutions in
their answer. Strictly speaking, a resolution is not an argument,
but suggested resolutions appear frequently enough in both
compiler error messages and Stack Overflow answers that
we felt it important to capture this component within our
analysis—they are clearly important to supporting developers,
whether they are formally an argument or otherwise.

IV. METHODOLOGY

A. Research Questions

In this study, we investigate the following research questions
and offer the motivation for each:

RQ1: Are unsatisfactory compiler error messages and
satisfactory Stack Overflow answers explainable in terms
of argument layout? If compiler error messages and Stack
Overflow accepted answers use significantly different argu-
ment layout components, this would suggest that macrostruc-
ture differences in argumentation play an important role in
confusion developers face with compiler errors. While some
approaches to improving compiler error messages focus on
microstructure (for example, “confusing wording” in the mes-
sage [12], [13]), macrostructure differences emphasize how

TABLE I
COMPILER ERRORS AND WARNINGS COUNT BY TAG

Question Count2

Tag1 Errors3 Warnings4 Total % Accepted5

C++ 3508 421 3929 63%
Java 2078 170 2248 55%
C 1179 286 1465 61%
C# 783 122 905 69%
Objective-C 270 109 379 65%
Swift 246 17 263 56%
Python 211 4 215 53%

Extracted Data6 11736 1553 13289 58%
1 Programming languages are indicated in bold.
2 Questions may be counted more than once if they have multiple tags, for

example, Java and Eclipse.
3 Questions tagged as compiler-errors.
4 Questions tagged with compiler-warnings, but not compiler-errors.
5 Percentage of questions tagged as compiler-errors and
compiler-warnings that have accepted answers.

6 Description of extracted data set.

components combine to support the larger argument rather
than the statements themselves. Microstructure improvements
may be ineffectual without supporting macrostructure layout.
Unfortunately, determining whether the argument layout of the
two groups is significant turns out to be more complicated than
expected.

RQ2: What argument layouts are used in compiler
error messages and Stack Overflow accepted answers? The
answer to this question helps us to understand the types of
argument layouts that are used in accepted answers. In other
words, toolsmiths can use the design space of argument layout
to model and structure automated compiler error messages for
developers. Importantly, the argument layout space can also
be used as a means to evaluate existing error messages, and
to identify potential gaps in argument components for these
messages.

RQ3: How are the components of argument layout
instantiated for presenting compiler error messages? Once
the macrostructure argument layouts are identified, learning
how the components within these layouts are instantiated
provide microstructure details for what information developers
find useful within each component. For example, one way
to instantiate backing for a warrant might be to provide a
link to external documentation—and if we find that accepted
answers do so, toolsmiths may also consider incorporating
such information in the presentation of their compiler error
messages.

B. Study Design

Research context. Previous research by Treude and colle-
agues identified questions regarding error messages as being
one of the top categories. [14], and other research supports that
Stack Overflow today is a primary resource for software engi-
neering problems [15]. Additionally, Stack Overflow provides
an open-access API, through Stack Exchange Data Explorer,3

3http://data.stackexchange.com/

http://data.stackexchange.com/

that allows researchers to mine their database. An initial query
against this dataset confirmed that questions about compiler
error messages exist in Stack Overflow across a diversity of
programming languages and platforms.

Data collection. Using the Stack Exchange Data Explorer4,
we extracted all posts of type question or answer, tagged as
“compiler-errors” or “compiler-warnings.” We added compiler
warnings because some systems allow the developer to flags
warnings as errors, and thus we included these in our set.

A subset of these questions link to an associated accepted
answer, which in this paper we term question-answer pairs.
An accepted answer is an answer marked by the original
questioner as being satisfactory in resolving or addressing
their original question. Although a question may have multiple
answers, only one may be marked as accepted. We used
accepted answers as a proxy to identify helpful answers.

For each question, we extracted the compiler error message
from the compiler used in the question. If the question did
not contain a compiler error message, the question-answer pair
was dropped from analysis.

Sampling strategy. To obtain diversity across program-
ming languages, we used stratified sampling across the top
languages on Stack Overflow for compiler errors, until the
rank covered over 95% of all of the messages. This threshold
was exceeded at Python (Table I). Within each strata, we used
simple random sampling for selecting question-answer pairs
to analyze, in which each question-answer pair has an equal
probability of being selected. As we sampled, we discarded
questions that did not refer to or display a specific error
message, were incorrectly tagged (for example, not relating
to an error message), were related to issues in not being able
to invoke the compiler in the first place (for example, “g++
not found”), or question-answer pairs that are unambiguously
“trolling,” [16] such as through deliberately bogus questions.5

We continued this process until we obtained 30 question-
answer pairs for each of the top seven languages, for a total
of 210 question-answer pairs.

Qualitative closed coding. The first and second authors
performed closed coding, that is, coding over pre-defined
labels, for compiler error messages extracted from the Stack
Overflow question and over the complete Stack Overflow
accepted answer for that question. We tagged each using labels
from the Toulmin model of argument: claim, grounds, warrant,
qualifier, rebuttal, and backing. Our preliminary coding also
identified a form of evidence necessary to support error
messages: resolutions, or fix suggestions. Thus, we had a
total of seven labels, and a compiler error message or Stack
Overflow accepted answer may be assigned more than one
label.

During the coding process, we employed the technique of
negotiated agreement as a means to address the reliability

4https://data.stackexchange.com/
5For example, the post “Why is this program erroneously rejected by three

C++ compilers?” attempts to compile a hand-written C++ program scanned as
an image, through three different compilers. The offered answers are equally
sardonic. (http://stackoverflow.com/questions/5508110/)

of coding [17]. Using this technique, the first and second
authors collaboratively code to achieve agreement and to
clarify the definitions of the codes. We coded the first 20%
of messages using the negotiated agreement technique, and
then independently coded the remaining messages.

Supporting verifiability. To support verifiability, we
provide supporting online materials containing verbatim
transcripts of the Stack Overflow question-answer pairs, as
well as the intermediate analysis which led to our findings,
which other researchers may audit.6 If using a supported PDF
reader, quotations from Stack Overflow are hyperlinked and
can be clicked to take the reader to the corresponding Stack
Overflow page.7.

V. ANALYSIS

A. RQ1: Are unsatisfactory compiler error messages and
satisfactory Stack Overflow answers explainable in terms of
argument layout?

For this research question, we want to quantify whether the
components used in argument layout between compiler error
messages and Stack Overflow answers can explain difficulties
developers have with compiler error messages. That is, do er-
ror messages and Stack Overflow answers employ significantly
different argument layouts. To quantify these differences, we
apply a statistical, permutation testing approach by Simpson
and colleagues that allows comparison across two groups when
each observation in the group is an ordered set [18].

To leverage this analysis framework, an error message,
whether it is a compiler error message extracted from a
Stack Overflow question (EQ) or a Stack Overflow accepted
answer (EA), is represented as an ordered set in terms of
argumentation components:

E = 〈a1, a2, . . . , an, r〉 (1)

where a1, a2, . . . , an are the labels for the argument com-
ponents, such as grounds, warrants, and backing, and r is
an extended resolution component. For each component, a
binary true or false indicates the presence or absence of
the component within the argument.

Given any two error messages, E1 and E2, represented as
an argumentation set, we can now calculate the Jaccard index,
a metric that represents the similarity between two sets:

J =
|E1 ∩ E2|
|E1 ∪ E2|

(2)

The Jaccard index ranges from 0, indicating no overlap, to 1,
indicating perfect overlap between the sets. Intuitively, it is
simply the intersection over the union of the sets.

Next, we need to calculate a way to quantity difference
between groups, rather than individual error messages. To do
so, we calculate two intermediate measures, Mj(Within) and
Mj(Between). Mj(Within) is the arithmetic mean of the

6URL to be provided after blind review.
7These references are indicated as Q:id or A:id, and can be directly

accessed through https://www.stackoverflow.com/questions/:id

https://data.stackexchange.com/
http://stackoverflow.com/questions/5508110/
https://www.stackoverflow.com/questions/:id

Claim
(a) Claim-only (191)

Claim

Resolution

(b) Claim-resolution (128)

Grounds Claim

Resolution

Warrant
(c) Simple argument layout (8)

Grounds Claim

Resolution

Warrant

Backing

(d) With backing (1)

Fig. 3. Identified argument layouts for compiler error messages (as found in Stack Overflow questions). Counts are indicated in parentheses.

Grounds Claim

Resolution

Warrant

Backing

(a) With backing (102)

Claim

Resolution

(b) Claim-resolution (59)

Grounds Claim

Resolution

Warrant
(c) Simple argument layout (49)

Fig. 4. Identified argument layouts for Stack Overflow accepted answers. Counts are indicated in parentheses.

Jaccard indices, for all possible pairings of sets, that occur
within a group. In our case, this would be all of the pairings
that occur within compiler error messages, and all of the
pairings that occur within Stack Overflow accepted answers.
Mj(Between) is the arithmetic mean of Jaccard indices,
for all possible pairings that occur between the two groups.
Together, Mj(Within) and Mj(Between) are combined to
form a Jaccard ratio:

RJ =
Mj(Within)

Mj(Between)
(3)

Having the Jaccard ratio, RJ , we now want to determine
if the ratio is significant. However, since we do not know
what the true distribution is under the null hypothesis—no
significant group difference—we use permutation testing to
empirically generate this distribution. To do so, we randomly
flip the labels within pairs at random, and then calculate
RJ

perm, Nperm times. The larger the number of permutation
calculations, the more precise the empirically p-value beco-
mes. Although Simpson and colleagues provide theoretical
bounds for Nperm, in practical terms, setting the number
of permutations to an arbitrarily large numbers—such as
10,000—is sufficient to obtain a reasonable p-value.

Having a list of RJ
perm (of length Nperm), we can now

calculate the p-value directly by counting the number of
instances where Rj

perm > RJ over the number of permuted
instances:

p =
#(Rj

perm > RJ)

Nperm
(4)

If the p-value is less than α (we use α < 0.05), the null
hypothesis is rejected and we can conclude that compiler error
messages and Stack Overflow accepted answers are signifi-
cantly different in terms of argumentation macrostructure.

B. RQ2: What argument layouts are used in compiler error
messages and Stack Overflow accepted answers?

To understand what types of arguments layouts are effective
in obtaining the status of accepted answer, we used quasi-
statistics—essentially, transforming qualitative data to sim-
ple counts—to aid the interpretations of the Stack Overflow
data [19]. In this analysis, we merged identical sets, that is,
sets with the same ordered values for presence or absence,
to form argumentation templates. Then, we treated negligible
components—those components with few counts—as wild-
cards to further reduce the argument layout space. In theory,
given an ordered set of size n, 2n permutations of sets are
possible to obtain. In practice, if error messages and Stack
Overflow answers can be framed in terms of argumentation
theory, the set of observed set arrangements should be signifi-
cantly fewer—in fact, if they are reasonable argument layouts
then they should more or less resemble variations of the simple
argument layout or the extended argument layout (Section III).

C. RQ3: How are the components of argument layout instan-
tiated for presenting compiler error messages?

To identify the microstructure of argument, that is, the
techniques developers use within the argumentation compo-
nents, we performed a second qualitative coding exercise
over the first closed coding. For this analysis, we performed
descriptive coding to label the types of evidence provided
within the accepted answers [20]. As a concrete example,
the argumentation component of backing can be provided by
through pointing to a local or program element in the code
(blame), through a code example that provides evidence for
the problem, or through external resources, such as language-
specification documentation.

In addition to random sampling, we performed purposive
sampling, or non-probabilistic sampling, on question-answer
pairs to compose memos [21]. These memos captured interes-
ting exchanges or properties of the question-answer pairs to
promote depth and credibility, and to frame the information
needs and responses posters’ through their reported experien-
ces. That is, they provide a thick description to contextualize
the findings [22].

VI. RESULTS

A. RQ1: Are unsatisfactory compiler error messages and
satisfactory Stack Overflow answers explainable in terms of
argument layout?

The Jaccard ratio of the two groups are Rj = 1.6441, with
permutation testing yielding a significant difference between
the two groups (for repeated iterations, p = 0.008 ± 0.001).
Because we have computed a pair-wise statistic, the implica-
tion is that the compiler error message and Stack Overflow
accepted answers are significantly different in terms of argu-
mentation layout than the compiler error message provided to
the question.

Because the questioner asked a question about the compiler
error message, this indicates some confusion with the error
messages they were presented with. Because the same questi-
oner also marked the Stack Overflow answer as accepted, we
can assume that the answer has resolved whatever confusion
they had in the original question. Since the argument structure
between the compiler error message and the accepted answer
are significantly different in terms of argument layout, we can
conclude that differences in macrostructure argument layout
can be attributed to the acceptance of the Stack Overflow
answer.

B. RQ2: What argument layouts are used in compiler error
messages and Stack Overflow accepted answers?

After performing the argumentation set merge operations
for identical argumentation sets, we further treated the com-
ponents of qualifiers and rebuttal as wildcards because we
found negligible instances of these components compared to
the other argument structure categories.

The results of this merge as found in Figure 3 and Figure 4,
for compiler error messages and for Stack Overflow accepted
answers, respectively. For each the group, the argument layouts

TABLE II
ARGUMENT LAYOUT COMPONENTS FOR ERROR MESSAGES

Attribute Description

Simple Argument Components

CLAIM

(Section VI-C1)
The claim is the concluding assertion or judg-
ment about a problem in the code.

GROUND

(Section VI-C2)
Facts, rules, and evidence to support the claim.

WARRANT

(Section VI-C3)
Bridging statements that connect the grounds to
the claim. Provides justification for using the
grounds to support the claim.

Extended Argument Components

BACKING

(Section VI-C4)
Additional evidence to support the warrant, if
the warrant is not accepted.

QUALIFIER

(Section VI-C5)
This is the degree of belief for a claim, used to
weaken the claim.

REBUTTAL

(Section VI-C6)
Exceptions to the claim or other components of
the argument.

Resolution

RESOLUTION

(Section VI-C7)
Resolutions suggest concrete actions to the
source code to remediate the problem. Strictly
speaking, not an argumentation component, but
can be used to short-circuit an argument.

are ordered from most frequently observed to least frequently
observed. In this quasi-statistical reporting, it is clear to
see why the argument layout for compiler errors and Stack
Overflow accepted answers were found to be significantly
different in RQ1: compiler error messages predominantly pre-
sent a claim with no additional information, and occasionally
present a resolution (that is, a fix) to resolve the claim. In
contrast, Stack Overflow accepted answers are inverted in
argumentation layout frequency; the most frequent argument
layout extends simple argument layout with backing, and least
frequently provides solely a resolution for the claim. In our
investigation, we did not find any instances in which Stack
Overflow accepted answers solely rephrased the compiler error
message (that is, the claim-only layout).

Thus, not only do Stack Overflow accepted answers more
closely align with Toulmin model’s of argumentation, these
answers satisfactory resolved the confusion of the developer
when the original compiler error message did not.

C. RQ3: How are the components of argument layout instan-
tiated for presenting compiler error messages?

In this section, we describe the layout argument compo-
nents, grounding its attributes in the contextual details we
obtained from our qualitative analysis. An overview of the
argument structure is presented in Table II.

1) Claim: Because of the layout of Stack Overflow, accep-
ted answers assume that the developer has read the error
message in the question, and will refer to the claim wit-
hout explicit antecedent. For instance, the answer may say,
“This problem” (A1225726) or “This issue” (A32831677) or

http://stackoverflow.com/questions/1225726
http://stackoverflow.com/questions/32831677

immediately chain from the question to the connect their
ground and warrant (A28880386). We did however, encounter
instances where developers explained error messages through
first rephrasing, such as “it means that” (A16686282) and “is
saying” (A20858493)—usually for the purpose of simplifying
the jargon in the message or making an obtuse message
more conversational. For example, the compiler error message
foreach statement cannot operate on variables of
type because does not contain a public definition
for ’GetEnumerator’ is rephrased by the accepted answer
as “It means that you cannot do foreach on your desired
object, since it does not expose a GetEnumerator method.”
Compiler authors like Czaplicki (of the Elm programming
language) have also noted that error messages should be more
conversational and human-like [23].

2) Ground: Grounds are an essential building block for
convincing arguments; they are the substrate of declarative
facts—which bridged by the warrant—support the claim, that
is, the compiler error message. For example, “the variable
is non-static private field” (A4114006), “clone() returns an
Object” (A3941850), “foo<T> is a base class of bar<T>”
(A27412912), “[t]he only supertype of Int and Point is Any”
(A2871344), “local variables cannot have external linkage”
(A5185833) all refer to grounds about the state of the program
or rules about what the compiler will accept.

Consider the use of gets() in a C program, which in the
gcc compiler generates the message:

test.c:27:2: warning: gets is deprecated
(declared at /usr/include/stdio.h:638)
[-Wdeprecated-declarations]

gets(temp);
ˆ

The poster of the compiler error wants to suppress this warning
(Q26192934), but the accepted answer explains the grounds
for this warning (A26192934): “gets is deprecated because
it’s dangerous, it may cause buffer overflow.”

3) Warrant: In argumentation theory, warrants are bridge
terms, such as “since” or “because” that connect the ground
to the claim. Often, the warrant is not explicitly expressed,
and the connection between the ground and the claim must be
implicity identified [9]. During our analysis, we would insert
implicit “since” or “because” phrases during reading of the
error message or Stack Overflow answer to identify implicit
warrants.

In some compilers, messages can bridge grounds with war-
rants through explicit concenations, such as with the ”reason:”
error template in Java:

Test.java:6: error: method b in class Test cannot
be applied to given types;

b(newList(type));
ˆ

required: List<T>
found: CAP#1

reason:
inference variable L has incompatible bounds
equality constraints: CAP#2
upper bounds: List<CAP#3>,List<?>

where T,L are type-variables:
T extends Object declared in method <T>b(List<T>)
...

Unfortunately, the grounds for this warrant are particularly
dense in itself. However, warrants needs not always be this
obtuse, as the following C++ message from OpenCV indicates:

OpenCV Error: Image step is wrong
(The matrix is not continuous,
thus its number of rows can not be changed).

Here, the warrant is bridged through the use of the parent-
hetical statement.

4) Backing: A backing may be required in an argument
if the warrant is not accepted; in this case, the backing
is additional evidence needed to support the warrant. In
practice, one should selectively support warrants; otherwise,
the argument structure grows recursively and quickly be-
comes intractable [9]. For presenting error messages, we
found that while warrants were typically additional statements,
backing was provided through the use of resources. These
resources include code examples or code snippets (A2640738,
A1811168), references to the programming language specifica-
tions (A5005384), and occasionally, bug reports (A37830382)
as well as tutorials (A2640738).

5) Qualifiers: Despite the usefulness of static analysis
techniques for reporting compiler error messages to developer,
many classes of analysis feedback are undecidable or com-
putationally hard, which necessitate the use of unsound sim-
plifications [24]. Qualifiers include statements like “should”
(A29189727), “likely” (A17980236), “try” (A7316513), and
“probably” (A2841647, A7328052. A7942837). Although we
found such usages throughout Stack Overflow, it was dif-
ficult for us to determine if these usages are simply used
as casual linguistic constructs (essentially, fillers) or if the
answer actually intended to convey a judgment about belief.
We did, however, find several examples when developers were
confused because the wording of the compiler error made the
developer believe that their own judgment was in error—for
example, from the story of our hypothetical developer James
in Section II), whose experiences in based on questions such
as Q5013194 and Q36476599.

6) Rebuttal: We found few instances of rebuttals within
Stack Overflow accepted answers, and one of the reasons
we believe rebuttals to be relatively infrequency is that an
author must have an expectation of what to rebut in order
to provide a rebuttal in the first place. Thus, we interpreted
rebuttals liberally as statements in which an answer would
retract a particular ground or resolution due to a particu-
lar constraint—for example, due to a bug in the compiler
(A2858799, A1167204). Another means of rebuttal occurs
when the accepted answer provides reasons for ignoring a

http://stackoverflow.com/questions/28880386
http://stackoverflow.com/questions/16686282
http://stackoverflow.com/questions/20858493
http://stackoverflow.com/questions/4114006
http://stackoverflow.com/questions/3941850
http://stackoverflow.com/questions/27412912
http://stackoverflow.com/questions/2871344
http://stackoverflow.com/questions/5185833
http://stackoverflow.com/questions/26192934
http://stackoverflow.com/questions/26192934
http://stackoverflow.com/questions/2640738
http://stackoverflow.com/questions/1811168
http://stackoverflow.com/questions/5005384
http://stackoverflow.com/questions/37830382
http://stackoverflow.com/questions/2640738
http://stackoverflow.com/questions/29189727
http://stackoverflow.com/questions/17980236
http://stackoverflow.com/questions/7316513
http://stackoverflow.com/questions/2841647
http://stackoverflow.com/questions/7328052
http://stackoverflow.com/questions/7942837
http://stackoverflow.com/questions/5013194
http://stackoverflow.com/questions/36476599
http://stackoverflow.com/questions/2858799
http://stackoverflow.com/questions/1167204

claim, as in A11180068. Here, the accepted answer suggests
downgrading a ReSharper warning from a warning to a hint
in order to not get “desensitized to their warnings, which are
usually useful.”

7) Resolution: Although not present in Toulmin’s model
of argument, one way in which error messages can convince
developers of an argument is to offer the solution to that
argument that resolves their issue. Typically, Stack Overflow
accepted answers provide these resolution in a style similar
to “Quick Fixes” in IDEs—they briefly describe what will be
changed, show the resulting code after applying the change,
and demonstrate that the compiler defect will be removed as
a result of applying the change. A prototypical example of
how answers provide resolutions is found in A8783019. Here,
the answer notes, “You’re missing an & in the definition.” The
answer then proceeds to show the original code:

float computeDotProduct3(Vector3f& vec_a,
Vector3f vec_b) {

against the suggested fix:

float computeDotProduct3(Vector3f& vec_a,
ector3f& vec_b) {

VII. LIMITATIONS

The sole use of Stack Overflow, combined with qualitative
research methodologies, introduces trade-offs in the design and
reporting of our study.

Survivorship bias. The question-answer pairs on Stack
Overflow exhibit survivorship bias, in that they only reflect
questions that were not easily answered through means; thus
these questions are posted only after exhausting other pos-
sibilities. The consequence of survivorship bias is that the
compiler error messages within our data set may in some ways
be pathological: they represent the extreme cases in which
developers must resort to external help, which may not occur
routinely during normal software development.

Likewise, there is also known bias in when and why develo-
pers choose to answer questions. To illustrate, Mamykina and
colleagues identified situations in which some questions never
receive a response, for example, when they are about relatively
obscure technologies, when there are few users for a particular
topic, and when questions are tedious to answer [15].

The effect of this bias is that our results likely underestimate
the effectiveness of existing compiler error messages, because
only those that are pathological have questions posted about
them. Thus, our results should be interpreted as being condi-
tioned on messages already-known to be problematic, rather
than generalized to all compiler error messages.

Self-selection bias. A second type of bias manifests through
self-selection bias, since participants in Stack Overflow vo-
luntarily choose to post to Stack Overflow. Consequently, the
types of participants that post to Stack Overflow may have
an affect on both the barriers that developers face as well
as the way in which accepted answers are presented. As one
example, Ford and colleagues identified a variety of factors,

such as “fear of negative feedback” and “intimidating com-
munity size”, as inhibiting potential posters from asking their
questions on Stack Overflow [25]. Yet other users are “one-
day flies,” posting once and only Stack Overflow, who have
been found to post lower-quality questions than other types
of users [26]. Consequently, our analysis may fail to identify
pre-cursor barriers that exist even before a developer chooses
to post to Stack Overflow, unless a developer explicitly reports
within the question.

Identifying argument microstructure. The design space
of argument microstructure is constrained to available affor-
dances in Stack Overflow. For example, answers in Stack
Overflow must use mostly text notation, although past rese-
arch has found that developers sometimes place diagrammatic
annotations on their code to help with comprehension [27].
Similarly, Flanagan and colleagues uses a diagrammatic re-
presentation on the source code to help developers understand
code flow for an error [28]. Other tools like Path Project [29]
and Theseus use visual overlays on the source code, which
are not expressible within Stack Overflow except through
rudimentary methods like adding comments to the source.
Thus, the design space of attributes is biased towards linear,
text-based representations of compiler error messages.

Generalizability. As a qualitative approach, our findings do
not offer external validity in the traditional sense of nomot-
hetic, sample-to-population, or statistical generalization. For
example, we cannot claim that the differences in design space
usage between error messages and Stack Overflow accepted
answers generalize to those outside the ones we observed
within our study. That is, our findings are embedded within
Stack Overflow and contextualized to understand a particular
aspect of developer experiences as they comprehend and
resolve compiler error messages within these question-answer
pairs. As one example, the argument layout for compiler
error messages is likely to significantly underrepresent claim-
resolution layouts, as resolutions in integrated development
environments appear in a different location—such as Quick
Fixes in the editor margin—than the compiler error message.

In place of statistical generalization, our qualitative findings
support an idiographic means of satisfying external validity:
analytic generalization [30]. In analytic generalization, we
generalize from individual statements within question-answer
pairs to broader concepts or higher-order abstractions through
the application of argumentation theory.

VIII. RELATED WORK

We examine related work from for three research areas: re-
search that has identified comprehension barriers for compiler
error messages, research proposing principles or guidelines for
the design of compiler error messages, and other qualitative
research using Stack Overflow as a means to inform software
development.

A. Barriers to Error Message Comprehension

Johnson and colleagues conducted an interview study with
developers to identify barriers to using static analysis tools.

http://stackoverflow.com/questions/11180068
http://stackoverflow.com/questions/8783019

Their interviewers reported barriers such as “poorly presented”
tool output and “false positives” as contributing to compre-
hension difficulties [13]. One interviewer suggested that that
error messages be presented in some “distinct structure” to
facilitate comprehension [13]. A follow-up study by Johnson
and colleagues identified that mismatches between developers’
programming knowledge against information provided by the
error message contribute to this confusion [31]. A large-scale
multi-method study at Microsoft identified several presentation
“pain points,” such as “bad warnings messages” and “bad
visualization of warnings” [32].

Ko and Myers found that many comprehension difficulties
are due to programmers’ false assumptions formed while
trying to resolve errors [33]. Similarly, Lieber and colleagues
postulated that difficulties in resolving errors were due to
faulty mental models, or misconceptions, that remained un-
corrected until the developer manually requested information
explicitly from their programming environment; they develo-
ped an always-on visualization in the integrated development
to proactively address misconceptions [34].

Still other work has focused on barriers novice developers
face. For example, Marceau and colleagues found that stu-
dents struggle with the “carefully-designed vocabulary of the
error message” and often misinterpret the highlighted source
code [35]. And a large-scale study of novice compilations
found that minor syntax issues and typos are attributable to
why compiler error messages are emitted [36].

B. Design Criteria for Compiler Error Messages

The history of design criteria for improving compiler error
messages is both long and sometimes sordid; many of these
guidelines are today are considered to be pedestrian [37], [3].
Early work by Horner suggested guidelines for the display of
error messages, such as the use of headings that identify the
version of the compiler being used, a “coordinate system” for
relating the error message back to the source code listing, and
the “memory addresses” relating to the error message [38].
Shneiderman focused less on the structural design of the error
message and more on the holistic presentation, recommending
that errors should have a positive tone, be specific using
the developer’s language, provide actionable information, and
have a consistent, comprehensible format [39].

More recently, Traver adapted criteria for Nielson’s heuristic
evaluation [40] to compiler error messages, suggesting princi-
ples such as clarity, specificity, context-insensitivity, as well as
previously-seen guidelines such as positive tone and matching
the developers’ language [1]. Notably, Dean suggested that
perhaps one could understand the design of compiler error
messages through the psychology of how people communicate
to other people, an inspiration for this research [10].

C. Using Stack Overflow for Software Engineering Research

Stack Overflow has been used effectively in both quanti-
tative and qualitative contexts to support software engineer-
ing research. Treude and colleagues categorized the kinds
of questions that are asked on Stack Overflow, finding that

questions about errors are ranked in the top five [41]. Rosen
and Shihab used topic modeling to identify questions mobile
developers ask. Yang and colleagues also used topic modeling
to identify security-related questions [42]. To understand why
Java developers struggle with cryptographic APIs, Nadi and
colleagues empirically investigated, as a component of their
study, Stack Overflow posts to find that APIs are perceived
to be too low-level [43]. Particularly influential to our own
work is that of Nasehi and colleagues, who used qualitative
coding to identify the attributes of good code examples [44].
The results suggested to us that a comparable methodological
approach could inform the design of compiler error messages.

Studies on the Stack Overflow community itself provides
support of its sufficiency for use as a research domain. For ex-
ample, Mamykina and colleagues identified both the technical
design of the site as well as the visibility and involvement
of the design team as contributing to the high quality of
answers found within the community [15]. Anderson and
colleagues identify a temporal relationship between posts and
accepted answers: the first correct answer is usually the one
that is accepted, motivating both quick and correct responses
to Stack Overflow questions [45]. Consequently, Bacchelli and
colleagues, recognizing the benefits of Stack Overflow answers
for developers, introduced an Eclipse plugin to integrate Stack
Overflow knowledge directly within the IDE [46].

IX. DISCUSSION

In this section, we discuss two directions from our findings.
First, we discuss the design space of argumentation layout in
terms and its implications for macrostructure and microstruc-
ture presentation. Second, we discuss recent trends in compiler
architecture that error message diagnostics can potentially
leverage to provide better argumentation to developers.

Design space of argumentation layout. As we have shown
in our results, error messages can be examined in terms of
argumentation theory in terms of both macrostructure and mi-
crostructure. Importantly, our results show that compile error
messages in questions from Stack Overflow frequently do not
even minimally meet the simple argument structure—instead,
only providing the claim itself, with no supporting evidence
(Figure 3). Although microstructure plays an important role in
supporting argumentation, we could consider how likely mi-
crostructure improvements are in benefiting developers when
the underlying macrostructure is inadequately supported.

Consequently, argumentation theory allows toolsmiths to be
intentional about the presentation of error messages. Rather
than relying on intuition or other ad-hoc approaches for how
to best improve an error message, toolsmiths can first ask
which argumentation layout is most appropriate for the type
of diagnostic they wish to convey to a developer. For example,
for simple syntax errors, automatic resolutions such as Quick
Fixes may be entirely sufficient to aid the developer. In
contrast, resolutions for which there is not a single obvious
resolution, or for which the resolution is not immediately
self-evident, toolsmiths may opt to progressively disclose
argumentation structure. That is, they might first choose to

present only the claim: then, should the developer remain
confused, they can first request from the compiler a simple
argument layout. If the simple argument is insufficient, the
developer may be request an extended argument layout from
the compiler. Research prototypes like FIXBUGS recognize the
need to support a spectrum of resolution types, from simple
one-shot resolutions to those that require evaluating multiple
potential resolutions [47].

Roadmap for automation. Compilers are increasingly shif-
ting from the traditional, opaque, black box architecture—one
in which source codes comes in and machine code comes
out the other—to an introspective architecture that allows
editors and tools to surface the sophisticated analysis per-
formed within these compilers. For example, recent versions
of Visual Studio provide developer tooling, such as support
for “smart” refactoring and code navigation, by having the
integrated development environment closely coordinate with
the compiler [48]. This type of compiler introspection might
also be retrofitted to support error message diagnostics. For
example, when additional warrants are needed to support an
argument, the IDE might introspectively query the compiler
to obtain additional evidence (or tools) that could help the
developer understand the compiler error message.

A second route for automation in compiler technology is
error message interactivity. Although error messages present
information to the developer, the developer has no means
to communicate their own understanding of the diagnostic
back to the compiler. Essentially, the developer has no way
to provide or request a rebuttal from the compiler in the
event of disagreement. Given that rebuttal is a component of
argumentation theory, toolsmiths may want to consider ways
in which developers can negotiate with the compilers. For
example, if the compiler indicates that a variable may be
null, one way to interact with the compiler could be to allow
the developer to insert an assert(x != null) statement in
the code to indicate disagreement with the claim. Then, the
compiler, having information on the source of disagreement,
can present further information to support its claim.

X. CONCLUSIONS

In this study, we applied argumentation theory to the domain
of compiler error messages, by framing error messages as
arguments intended to convince the developer of a particular
problem within their source code. To understand how such
arguments should be structured, we examined question-answer
pairs from Stack Overflow—in which a question from a
questioner contains the compiler error message—coupled with
an answer accepted by that questioner as the alternative,
human-authored error message.

Our findings suggest that arguments as presented by com-
piler error messages are significantly different than the argu-
ments that developers accept as satisfactory. Specifically, we
found that, in contrast with human-authored accepted answers,
compiler error messages do not provide adequate argumenta-
tion layout in terms of macrostructure (Section VI-A). Indeed,
many compiler error messages present only the claim, without

any supporting argument components, to the developer. Furt-
hermore, a detailed qualitative analysis identified orthogonal,
yet effective, argument layouts. For certain compiler error
messages, a claim-with-resolution layout is sufficient to help
the developer. In other situations, more elaborate argument
layouts are used by authors to convince developers for why
the compiler error is actually an error (Section VI-B).

Finally, we investigated the microstructure of arguments
to identify how accepted answers support their arguments at
the statement level, when adequate macrostructure support
is available. We found that arguments use code examples,
language specifications, and even bug reports as backing to
support their arguments (Section VI-C).

The results of our work provide empirical evidence for the
utility of argument layout when presenting compiler error mes-
sages to developers. Although argument may seem adversarial,
it is precisely through argument that we come to agreement—
and through agreement, resolution.

REFERENCES

[1] V. J. Traver, “On compiler error messages: What they say and what they
mean,” Advances in Human-Computer Interaction, vol. 2010, pp. 1–26,
2010.

[2] M. Wand, “Finding the source of type errors,” in POPL, Jan. 1986, pp.
38–43.

[3] P. J. Brown, “Error messages: the neglected area of the man/machine
interface,” Communications of the ACM, vol. 26, no. 4, pp. 246–249,
Apr. 1983.

[4] J. C. Campbell, A. Hindle, and J. N. Amaral, “Syntax errors just aren’t
natural: improving error reporting with language models,” in Procee-
dings of the 11th Working Conference on Mining Software Repositories
- MSR 2014, May 2014, pp. 252–261.

[5] J. Siek and A. Lumsdaine, “Concept checking: Binding parametric poly-
morphism in C++,” in First Workshop on C++ Template Programming.
Germany, 2000.

[6] “Ensuring completeness of switch statements.” [Online]. Availa-
ble: https://www.ibm.com/support/knowledgecenter/SSRTLW 9.1.0/org.
eclipse.jdt.doc.user/tasks/task-ensuring switch completeness.htm

[7] L. Augustsson, “Compiling pattern matching.” Springer, Berlin, Hei-
delberg, 1985, pp. 368–381.

[8] N. Pinkwart, K. Ashley, C. Lynch, and V. Aleven, “Evaluating an intel-
ligent tutoring system for making legal arguments with hypotheticals,”
Int. J. Artif. Intell. Ed., vol. 19, no. 4, pp. 401–424, Dec. 2009.

[9] F. H. van Eemeren, B. Garssen, E. C. W. Krabbe, A. F. Snoeck Henke-
mans, B. Verheij, and J. H. M. Wagemans, Handbook of Argumentation
Theory. Dordrecht: Springer Netherlands, 2014.

[10] M. Dean, “How a computer should talk to people,” IBM Systems Journal,
vol. 21, no. 4, pp. 424–453, 1982.

[11] S. Toulmin, The Uses of Argument. Cambridge University Press, 2003.
[12] M.-H. Nienaltowski, M. Pedroni, and B. Meyer, “Compiler error mes-

sages: What can help novices?” in ACM SIGCSE Bulletin, Feb. 2008,
pp. 168–172.

[13] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in ICSE,
May 2013, pp. 672–681.

[14] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web?” in ICSE, 2011, pp. 804–807.

[15] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest Q&A site in the west,” in CHI, May
2011, pp. 2857–2866.

[16] C. Hardaker, “Trolling in asynchronous computer-mediated commu-
nication: From user discussions to academic definitions,” Journal of
Politeness Research. Language, Behaviour, Culture, vol. 6, no. 2, pp.
215–242, Jan. 2010.

[17] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding
In-depth Semistructured Interviews,” Sociological Methods & Research,
vol. 42, no. 3, pp. 294–320, aug 2013.

https://www.ibm.com/support/knowledgecenter/SSRTLW_9.1.0/org.eclipse.jdt.doc.user/tasks/task-ensuring_switch_completeness.htm
https://www.ibm.com/support/knowledgecenter/SSRTLW_9.1.0/org.eclipse.jdt.doc.user/tasks/task-ensuring_switch_completeness.htm

[18] S. L. Simpson, R. G. Lyday, S. Hayasaka, A. P. Marsh, and P. J.
Laurienti, “A permutation testing framework to compare groups of brain
networks,” Frontiers in Computational Neuroscience, vol. 7, p. 171,
2013.

[19] J. A. Maxwell, “Using numbers in qualitative research,” Qualitative
Inquiry, vol. 16, no. 6, pp. 475–482, Jul. 2010.

[20] J. Saldaña, The Coding Manual for Qualitative Researchers. SAGE
Publications, 2009.

[21] M. Birks, Y. Chapman, and K. Francis, “Memoing in qualitative re-
search: Probing data and processes,” Journal of Research in Nursing,
vol. 13, no. 1, pp. 68–75, jan 2008.

[22] J. Ponterotto, “Brief note on the origins, evolution, and meaning of the
qualitative research concept thick description,” The Qualitative Report,
vol. 11, no. 3, 2006.

[23] “Compiler errors for humans.” [Online]. Available: http://elm-lang.org/
blog/compiler-errors-for-humans

[24] W. Landi and William, “Undecidability of static analysis,” ACM Letters
on Programming Languages and Systems, vol. 1, no. 4, pp. 323–337,
Dec. 1992.

[25] D. Ford, J. Smith, P. J. Guo, and C. Parnin, “Paradise unplugged:
Identifying barriers for female participation on Stack Overflow,” in FSE,
2016, pp. 846–857.

[26] R. Slag, M. de Waard, and A. Bacchelli, “One-day flies on
stackoverflow-why the vast majority of stackoverflow users only posts
once,” in Mining Software Repositories (MSR), 2015 IEEE/ACM 12th
Working Conference on. IEEE, 2015, pp. 458–461.

[27] T. Barik, K. Lubick, S. Christie, and E. Murphy-Hill, “How developers
visualize compiler messages: A foundational approach to notification
construction,” in VISSOFT, 2014.

[28] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and M. Felleisen,
“Catching bugs in the web of program invariants,” in PLDI, vol. 31,
no. 5, May 1996, pp. 23–32.

[29] Y. P. Khoo, J. S. Foster, M. Hicks, and V. Sazawal, “Path projection for
user-centered static analysis tools,” in PASTE, nov 2008, p. 57.

[30] D. F. Polit and C. T. Beck, “Generalization in quantitative and quali-
tative research: Myths and strategies,” International Journal of Nursing
Studies, vol. 47, no. 11, pp. 1451–1458, 2010.

[31] B. Johnson, R. Pandita, J. Smith, D. Ford, S. Elder, E. Murphy-Hill,
S. Heckman, and C. Sadowski, “A cross-tool communication study on
program analysis tool notifications,” in FSE, 2016, pp. 73–84.

[32] M. Christakis and C. Bird, “What developers want and need from
program analysis: an empirical study,” in ASE, 2016, pp. 332–343.

[33] A. Ko and B. Myers, “Development and evaluation of a model of
programming errors,” in IEEE Symposium on Human Centric Computing
Languages and Environments. IEEE, 2003, pp. 7–14.

[34] T. Lieber, J. R. Brandt, and R. C. Miller, “Addressing misconceptions
about code with always-on programming visualizations,” in CHI, Apr.
2014, pp. 2481–2490.

[35] G. Marceau, K. Fisler, and S. Krishnamurthi, “Mind your language: On
novices’ interactions with error messages,” in ONWARD, Oct. 2011, pp.
3–17.

[36] A. Altadmri and N. C. Brown, “37 million compilations: Investigating
novice programming mistakes in large-scale student data,” in SIGCSE,
Feb. 2015, pp. 522–527.

[37] P. G. Moulton and M. E. Muller, “DITRAN—a compiler emphasizing
diagnostics,” Communications of the ACM, vol. 10, no. 1, pp. 45–52,
Jan. 1967.

[38] J. J. Horning, “What the compiler should tell the user,” in Compiler
Construction: An Advanced Course, ser. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 1974, vol. 21, pp. 525–548.

[39] B. Shneiderman, “Designing computer system messages,” Communica-
tions of the ACM, vol. 25, no. 9, pp. 610–611, Sep. 1982.

[40] J. Nielsen, “Heuristic evaluation,” Usability inspection methods, vol. 17,
no. 1, pp. 25–62, 1994.

[41] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web?” in ICSE, 2011, p. 804.

[42] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What Security
Questions Do Developers Ask? A Large-Scale Study of Stack Overflow
Posts,” Journal of Computer Science and Technology, vol. 31, no. 5, pp.
910–924, Sep. 2016.

[43] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through hoops:
Why do Java developers struggle with cryptography APIs?” in ICSE,
2016, pp. 935–946.

[44] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming Q&A in StackOverflow,” in
2012 28th IEEE International Conference on Software Maintenance
(ICSM), Sep. 2012, pp. 25–34.

[45] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, “Disco-
vering value from community activity on focused question answering
sites,” in KDD, 2012, pp. 850–858.

[46] A. Bacchelli, L. Ponzanelli, and M. Lanza, “Harnessing Stack Overflow
for the IDE,” in International Workshop on Recommendation Systems
for Software Engineering (RSSE). IEEE, Jun. 2012, pp. 26–30.

[47] T. Barik, Y. Song, B. Johnson, and E. Murphy-Hill, “From Quick
Fixes to Slow Fixes: Reimagining Static Analysis Resolutions to Enable
Design Space Exploration,” in International Conference on Software
Maintenance and Evolution (ICSME 2016), 2016.

[48] S. Mukherjee, Source Code Analytics With Roslyn and JavaScript Data
Visualization. Berkeley, CA: Apress, 2016.

http://elm-lang.org/blog/compiler-errors-for-humans
http://elm-lang.org/blog/compiler-errors-for-humans

	Introduction
	Motivating Example
	Background on Argumentation Theory
	Methodology
	Research Questions
	Study Design

	Analysis
	RQ1: Are unsatisfactory compiler error messages and satisfactory Stack Overflow answers explainable in terms of argument layout?
	RQ2: What argument layouts are used in compiler error messages and Stack Overflow accepted answers?
	RQ3: How are the components of argument layout instantiated for presenting compiler error messages?

	Results
	RQ1: Are unsatisfactory compiler error messages and satisfactory Stack Overflow answers explainable in terms of argument layout?
	RQ2: What argument layouts are used in compiler error messages and Stack Overflow accepted answers?
	RQ3: How are the components of argument layout instantiated for presenting compiler error messages?
	Claim
	Ground
	Warrant
	Backing
	Qualifiers
	Rebuttal
	Resolution

	Limitations
	Related Work
	Barriers to Error Message Comprehension
	Design Criteria for Compiler Error Messages
	Using Stack Overflow for Software Engineering Research

	Discussion
	Conclusions
	References

