
Can Social Screencasting Help
Developers Learn New Tools?

Kevin Lubick∗, Titus Barik†, Emerson Murphy-Hill∗
∗North Carolina State University, Raleigh, North Carolina USA

†ABB Corporate Research, Raleigh, North Carolina, USA

kjlubick@ncsu.edu, titus.barik@us.abb.com, emerson@csc.ncsu.edu

Abstract—An effective way to learn about software develop-
ment tools is by directly observing peers’ workflows. However,
these tool knowledge transfer events happen infrequently because
developers must be both colocated and available. We explore an
online social screencasting system that removes the dependencies
of colocation and availability while maintaining the beneficial
tool knowledge transfer of peer observation. Our results from a
formative study indicate these online observations happen more
frequently than in-person observations, but their effects are only
temporary. We conclude that while peer observation facilitates
online knowledge transfer, it is not the only component — other
social factors may be involved.

I. INTRODUCTION

Software developers obtain knowledge about their trade in a

variety of ways. These include reading books, browsing sites

like StackOverflow, and socially, by directly observing peers’

workflows. This last way, known as peer observation, has been

shown to be particularly effective at transferring knowledge of

functionality within development applications, such as Eclipse

or NetBeans [1], [2]. These functionalities, or more generally,

tools, can be as mundane as PASTE or as sophisticated as

INTRODUCE PARAMETER OBJECT. For example, while pair

programming, developer Jim sees his partner quickly jump

to an unopened file using a keybinding. Astonished, Jim asks

“How did you do that?” and learns the tool OPEN RESOURCE.

Despite peer observation being effective at this tool knowl-
edge transfer, such events might only happen once per month

for a typical software developer [2]. Peer observation is typ-

ically impeded because it requires developers to be available

in the same place at the same time to work together.

We hypothesized that it would be possible to overcome these

availability and colocation requirements with an online, asyn-

chronous environment that facilitates tool knowledge transfer

like in-person peer observation. Our approach, Continuous
Social Screencasting [3], extends traditional software develop-

ment by continuously and automatically recording video clips,

called screencasts, of interesting situations [4]. In our system,

these screencasts are recorded anytime a developer uses a tool.

The developers can share these screencasts with their peers to

show them how they use the tool. Further, to take advantage

of social connections, our system is intended to be used by

groups of people who work with each other.

To evaluate our approach, we conducted a formative, seven-

person study of a prototype social screencasting system. This

paper describes a preliminary analysis of this study which

explores the effect of social screencasts on tool knowledge

transfer. The participants had tool usage habits where even

experts could learn from their peers. We observed that five

participants were able to learn about a new tool from their

peer’s screencasts. However, we were unable to identify sig-

nificant changes in their tool usage behavior at the end of the

study. We conclude that while social influences may facilitate

tool knowledge transfer in an in-person setting, they do not

guarantee transfer in an online environment.

II. FIELD STUDY METHODOLOGY

The seven participants in our field study were members

of the authors’ software engineering research lab which

included the authors of this paper. Participants have been

given pseudonyms in the following discussion. We installed a

prototype social screencasting system on their work computers

and told participants to work normally as we collected data for

the following four-week period. Our system supported auto-

matically generating screencasts for Gmail, Eclipse, and Excel,

three applications the participants used frequently. Gmail is

a particularly interesting case as it is a general purpose

application, yet e-mail is used extensively by developers as

a hub for software-related activities such as code reviews, bug

reports, and feature discussions [5].

To identify any changes in tool-related behavior introduced

by social screencasting, we disabled screencast sharing for the

first week. After enabling sharing, we sent out an email to

the participants along with a video demonstrating how to use

the web interface to request and share screencasts with their

peers. At the end of the study, we conducted a semi-structured

interview with each participant to allow them to share their

own experiences with the system.

III. RESULTS

Unlike in-person peer observation, which occurs about once

per month [2], we observed 149 actions, spread across three

weeks, associated with requesting and viewing screencasts.

This averages to about one interaction per participant per day,

a considerable increase.

Five participants reported learning about one or more tools

while using the social screencasting system. For example,

Keith discovered the keyboard shortcut for GO TO INBOX from

Phil, and Phil learned the tool ARCHIVE EMAIL AND GO TO

NEXT from Bryant.

2015 IEEE/ACM 8th International Workshop on Cooperative and Human Aspects of Software Engineering

978-1-4673-7031-8/15 $31.00 © 2015 IEEE

DOI 10.1109/CHASE.2015.18

113

48 3 14

08

26 0 12

00

8 0
1

Bryant

DerrickMona

Vernon

Fig. 1: Four-way Venn diagram showing the observed usages

of Eclipse tools for four users. A majority of the tools are not

uesd by more than one person. For example, Mona uses 43

total tools; she is the sole user of 26 of them. Only one tool

is used by all four participants.

Because the participants were from the same lab, and had

similar responsibilities, we expected them to use mostly the

same tools. Surprisingly, this was not the case, even across

applications. For example, consider the Venn diagram of the

four participants who used Eclipse over the course of the study,

shown in Figure 1. Each circle represents the set of tools used

by an individual; intersections represent tools used by more

than one person.1 Only a handful of common tools (e.g. SAVE,

PASTE) were used by more than one person, the rest seem

to be more complicated or potentially obscure — indicating

there are potentially many opportunities for tool transfer, even

among experts.

The data we captured showed five participants tried out

new tools at least once. However, the new tools were used

only a few times before returning to the old habits. After

Phil investigated ARCHIVE EMAIL AND GO TO NEXT by

requesting Bryant’s screencast, he used it once on the fifteenth

day of the study and then never again. Keith and Joey

showed similar behaviors, when they used their newly learned

keyboard shortcuts a few times, but then returning to the

mouse-based invocation after a few days.

IV. CHALLENGES

We just saw that participants did not radically change their

behavior as a result of using our social screencasting system.

For details into why, let’s go back to Phil. In our post-study

interview, he said, “It’s not that I don’t want to be brought to

the next email, I just don’t use [ARCHIVE EMAIL AND GO

TO NEXT]. I have pretty good muscle memory for [my old

pattern], which is hard to change.” Mona and Joey had similar

remarks. These three experiences are consistent with the active
user paradox, which states that even expert computer users are

1A constraint in this visual representation is that it elides two intersections:
between Mona and Vernon (0), and Bryant and Derrick (1). Excel (n = 2)
and Gmail (n = 7) had similar usage characteristics to Eclipse (not shown).

likely to continue with their familiar, inefficient tool habits,

even if there is a demonstrably more efficient way to do the

same job [6].

We know developers learn tools from their coworkers and

eventually incorporate them into their work habits [1], [7], but

why did we not observe this to be the case when participants

used social screencasting? It appears our implemented social

influences are not enough to overcome the active user paradox,

and other factors may be at play.

Perhaps the participants simply forgot the keyboard short-

cuts they learned. Indeed, Krisler and Alterman found some

success by constantly reminding users of new keyboard short-

cuts with HotKeyCoach [8]. However, our evidence suggests

only two participants would have benefited from this approach.

For the other three participants, the tools they learned were

more complex than keyboard shortcuts.

Another explanation is that there is some social pressure

that comes with peer observation that positively influences the

tool knowledge transfer, which is not present in our system.

For example, Deutsch and Gerard showed that tasks can be

influenced by merely having another person in the room [9].

If this is the case, it is not obvious how to translate these

social influences to a workplace software setting in order to

more effectively facilitate tool knowledge transfer.

V. CONCLUSION

We hypothesized that social screencasting would facilitate

the transfer of tool usages in a way that was as effective as in-

person peer observation, without the need for colocation and

availability. Though we saw a lot of potential for learning new

tools and observed several cases of tool knowledge transfer,

the effects ended up being temporary. We suspect this to be

due to social nuances of the tool knowledge transfer process.

We are optimistic that these nuances can be identified and

emulated to fully realize the potential of social screencasting.

REFERENCES

[1] M. B. Twidale, “Over the shoulder learning: Supporting brief informal
learning,” CSCW 2005, vol. 14, no. 6, pp. 505–547, 2005.

[2] E. Murphy-Hill and G. C. Murphy, “Peer interaction effectively, yet
infrequently, enables programmers to discover new tools,” in CSCW 2011.
ACM, 2011, pp. 405–414.

[3] E. Murphy-Hill, “Continuous social screencasting to facilitate software
tool discovery,” in ICSE 2012. IEEE, 2012, pp. 1317–1320.

[4] M. Blum, A. Pentland, and G. Troster, “Insense: Interest-based life
logging,” IEEE MultiMedia, vol. 13, no. 4, pp. 40–48, 2006.

[5] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. v. Deursen,
“Communication in open source software development mailing lists,” in
MSR 2013. IEEE, 2013, pp. 277–286.

[6] W.-T. Fu and W. D. Gray, “Resolving the paradox of the active user:
Stable suboptimal performance in interactive tasks,” Cognitive Science,
vol. 28, no. 6, pp. 901–935, 2004.

[7] D. L. Jones and S. D. Fleming, “What use is a backseat driver? A
qualitative investigation of pair programming,” in VL/HCC 2013. IEEE,
2013, pp. 103–110.

[8] B. Krisler and R. Alterman, “Training towards mastery: overcoming the
active user paradox,” in NordiCHI 2008. ACM, 2008, pp. 239–248.

[9] M. Deutsch and H. B. Gerard, “A study of normative and informational
social influences upon individual judgment.” The Journal of Abnormal

and Social Psychology, vol. 51, no. 3, p. 629, 1955.

114

