
Wrex: A Unifed Programming-by-Example Interaction for 
Synthesizing Readable Code for Data Scientists 

Ian Drosos1, Titus Barik2, Philip J. Guo1, Robert DeLine2, Sumit Gulwani2 

UC San Diego1, Microsoft2 

{idrosos, pg}@ucsd.edu, {titus.barik, rob.deline, sumitg}@microsoft.com 

ABSTRACT 
Data wrangling is a diffcult and time-consuming activity in 
computational notebooks, and existing wrangling tools do not 
ft the exploratory workfow for data scientists in these en-
vironments. We propose a unifed interaction model based 
on programming-by-example that generates readable code for 
a variety of useful data transformations, implemented as a 
Jupyter notebook extension called WREX. User study results 
demonstrate that data scientists are signifcantly more effec-
tive and effcient at data wrangling with WREX over manual 
programming. Qualitative participant feedback indicates that 
WREX was useful and reduced barriers in having to recall 
or look up the usage of various data transform functions. The 
synthesized code allowed data scientists to verify the intended 
data transformation, increased their trust and confdence in 
WREX, and ft seamlessly within their cell-based notebook 
workfows. This work suggests that presenting readable code 
to professional data scientists is an indispensable component 
of offering data wrangling tools in notebooks. 

Author Keywords 
computational notebooks; program synthesis; data science 

CCS Concepts 
•Human-centered computing → Interactive systems and 
tools; •Software and its engineering → Development frame-
works and environments; 

INTRODUCTION 
Data wrangling—the process of transforming, munging, shap-
ing, and cleaning data to make it suitable for downstream 
analysis—is a diffcult and time-consuming activity [4, 14]. 
Consequently, data scientists spend a substantial portion of 
their time preparing data rather than performing data analysis Figure 1: WREX is a programming-by-example environment within a 
tasks such as modeling and prediction. computational notebook, which supports a variety of program transfor-

mations to accelerate common data wrangling activities. A Users create 
Increasingly, data scientists orchestrate all of their data- a data frame with their dataset and sample it. B WREX’s interactive grid 
oriented activities—including wrangling—within a single where users can derive a new column and give data transformation exam-
context: the computational notebook [25, 1, 2, 5, 20, 30, ples. C WREX’s code window containing synthesized code generated 
31]. The notebook user interface, essentially, is an interactive from grid interactions. D Synthesized code inserted into a new input cell. 
session that contains a collection of input and output “cells.” E Applying synthesized code to full data frame and plotting results. 
Data scientists use input code cells, for example, to write 

Python. The result of running an input cell renders an out-Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed put cell, which can display rich media, such as audio, images, 
for proft or commercial advantage and that copies bear this notice and the full citation and plots. This interaction paradigm has made notebooks a 
on the frst page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, popular choice for exploratory data analysis. 
to post on servers or to redistribute to lists, requires prior specifc permission and/or a 
fee. Request permissions from permissions@acm.org. Through formative interviews with professional data scien-
CHI ’20, April 25–30, 2020, Honolulu, HI, USA. tists at a large, data-driven company, we identifed an unad-
Copyright is held by the owner/author(s). Publication rights licensed to ACM. dressed gap between existing data wrangling tools and how ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00. 
http://dx.doi.org/10.1145/3313831.3376442 

http://dx.doi.org/10.1145/3313831.3376442
mailto:permissions@acm.org
mailto:sumitg}@microsoft.com
mailto:pg}@ucsd.edu


data scientists prefer to work within their notebooks. First, 
although data scientists were aware of and appreciated the 
productivity benefts of existing data wrangling tools, having 
to leave their native notebook environment to perform wran-
gling limited the usefulness of these tools. Second, although 
we expected that data scientists would only want to complete 
their data wrangling tasks, our participants were reluctant to 
use data wrangling tools that transformed their data through 
“black boxes.” Instead, they wanted to inspect the code that 
transformed their data. Crucially, data scientists preferred 
these scripts to be written in their familiar data science lan-
guages, like Python or R. This allows them to insert and ex-
ecute this code directly into their notebooks, modify and ex-
tend the code if necessary, and keep the data transformation 
code alongside their other notebook code for reproducibility. 

To address this gap, we introduce a hybrid interaction model 
that reconciles the productivity benefts of interactivity with 
the versatility of programmability. We implemented this in-
teraction model as WREX, a Jupyter notebook extension for 
Python. WREX automatically displays an interactive grid 
when a code cell returns a tabular data structure, such as a 
data frame. Using programming-by-example, data scientists 
can provide examples to the system on the data transform they 
intend to perform. From these examples, WREX generates 
readable code in Python, a popular data science language. 

Existing programming-by-example systems for data wran-
gling address some, but not all, of these requirements. Flash-
Fill [15] does not display the transformed code to the data sci-
entist. Although Wrangler [14, 23] can produce Python code, 
these scripts are not designed to be read or modifed directly 
by data scientists. Trifacta [36] produces readable code, but 
in a domain-specifc language and not a general-purpose one. 

The contributions of this paper are as follows: 

• We propose a hybrid interaction model that combines 
programming-by-example with readable code synthesis 
within the cell-based workfow of computational note-
books. We implement this interaction model as a Jupyter 
notebook extension for Python, using an interactive grid 
and provisional code cell. 
• We apply program synthesis to the domain of data science 

in a scalable way. Up until now, program synthesis has 
been restricted to Excel-like settings where the user wants 
to transform a small amount of data. Our approach allows 
data scientists to synthesize code on subsets of their data 
and to apply this code to other, larger datasets. The synthe-
sized code can be incorporated into existing data pipelines. 
• Through a user study, we fnd that data scientists are sig-

nifcantly more effective and effcient at performing data 
wrangling tasks than manual programming. Through quali-
tative feedback, participants report that WREX reduced bar-
riers in having to recall or look up the usage of various data 
transform functions. Data scientists indicated that the avail-
ability of readable code allowed them to verify that the data 
transform would do what they intended and increased their 
trust and confdence in the wrangling tool. Moreover, in-
serting synthesized code as cells is useful and fts naturally 
with the way data scientists already work in notebooks. 

EXAMPLE USAGE SCENARIO FOR WREX 
Dan is a professional data scientist who uses computational 
notebooks in Python. He has recently installed WREX as an 
extension within his notebook environment. Dan has an open-
ended task that requires him to explore an unfamiliar dataset 
relating to emergency calls (911) for Montgomery County, 
PA. The dataset contains several columns, including the emer-
gency call’s location as a latitude and longitude pair, the time 
of the incident, the title of the emergency, and an assortment 
of other columns. 

First Steps: As with most of his data explorations, Dan 
starts with a blank Python notebook. He loads the 
montcoalert.zip dataset into a data frame using pandas—a 
common library for working with this rectangular data. He 
previews a slice of the data frame, the latlng and title 
columns for the frst ten rows A 1 . WREX displays an 
interactive grid representing the returned data frame 
Through the interactive grid, Dan can view, flter, or search 
his data. He can also perform data wrangling using “Derive 
Column by Example.” 

B 2 . 

From Examples to Code: Dan notices that cells in the title 
column seem to start with EMS, Fire, and Traffic. As a 
sanity check, he wants to confrm that these are the only types 
of incidents in his data, and also get a sense of how frequently 
these types of incidents are happening. 

Dan selects the title column by clicking its header 3 , then 
clicks the “Derive column by example” button to activate this 
feature 4 . The result is a new empty column 5 through 
which Dan can provide an example (or more, if necessary) 
of the transform he needs. 

He arbitrarily types in his intention, EMS, into the second row 
of the newly created column in the grid 6 . When Dan presses 
Enter or leaves the cell, WREX detects a cell change in the 
derived column. WREX uses the example provided by Dan 
(EMS) with the input example taken from the derived from col-
umn title (EMS: DIABETIC EMERGENCY) to automatically 
fll in the remaining rows 7 . 

In addition, WREX presents the actual data transformation to 
Dan as Python code through a provisional code cell 
This allows Dan to inspect the code Python code before com-
mitting to the code. In this case, the code seems like what he 
probably would have written had he done this transformation 

C 8 . 



manually: split the string on a colon, and then return the frst 
split. Dan decides to insert this code into a cell below this 
one, but defers executing it 9 . If Dan had actually intended 
to uppercase all of the types, he could have provided WREX 
with a second example: Fire to FIRE. If desired, Dan could 
have also changed the target from Python to R for comparison 
(or even PySpark), since Dan is a bit more familiar with R. 

Since the new input cell is just Python code D , Dan is free 
to use it however he wants: he can use it as is, modify the 
function, or even copy the snippet elsewhere. Dan decides to 
apply the synthesized function to the larger data frame—this 
results in adding a type column to the data frame (df). He 
plots a bar chart of the count of the categories and confrms 
that there are only three types of incidents in the data E . 

From Code to Insights: Having wrangled the title column 
to type, and given the latlng column already present, Dan 
thinks it might be interesting to plot the locations on a map. 
To do so, the latlng column is a string and needs to be sep-
arated into lat and lng columns. Once again, he repeats the 
data wrangling steps as before: Dan returns a subset of the 
data, and uses the interactive grid in WREX to wrangle the 
latitude and longitude transforms out of the latlng column. 
He applies these functions to his data frame. Having done the 
tricky part of data wrangling the three columns—lat, lng, 
and type—he cobbles together some code to add this infor-
mation onto folium 10 , a map visualization tool. 

Like the data scientists in our study, Dan fnds that data wran-
gling is a roadblock to doing more impactful data analysis. 
With WREX, Dan can accelerate the tedious process of data 
wrangling to focus on more interesting data explorations—all 
in Python, and without having to leave his notebook. 

RELATED WORK 
WREX extends and coalesces two lines of prior work: data 
wrangling tools and program synthesis for structured data. 

Data Wrangling Tools 
One well-known class of tools tackles the need to make data 
wrangling (e.g., preprocessing, cleaning, transformation [24]) 
more effcient. OpenRefne provides an interactive grid that 
allows the data scientist to perform simple text transforma-
tions, such as trimming a string, to clean up data columns, 
and to discover needed transformations through flters [8]. Jet-
Brains’ DataLore provides a data science IDE that provides 
code suggestions given user intentions [18]. Wrangler low-
ered the time and effort that data scientists spent on data 
wrangling by suggesting contextually relevant transforms to 
users, showing a preview window with the transform’s effects, 
and providing an export to JavaScript function [23] (but this 
feature has since been removed in the commercial version 
[36]). Proactive Wrangler extended it with mixed-initiative 
suggested steps to transform data into relational formats [14]. 

Tempe provides interactive and continuous visualization sup-
port for live streaming data [6], where not only did the visual-
ization change with new incoming data, but also changed with 
new user input through live programming support. Trend-
Query is a “human-in-the-loop” interactive system that al-
lowed users to iteratively and directly manipulate their data 
visualizations for the curation and discovery of trends [21]. 
Northstar describes an interactive system for data analysis 
aimed at allowing non-data-scientist domain experts and data 
scientists to collaborate, making data science more accessible 
[27]. DS.js leverages existing web pages, and the tables and 
visualizations on them, to create programming environments 
that help novices learn data science [39]. 

While these tools all provide increased effciency for data sci-
entists performing data wrangling tasks, they are missing sev-
eral key features that WREX provides. Most notably, they 
do not aim to generate readable code or to integrate with 
data scientists’ existing workfows. WREX uses program syn-
thesis to achieve these goals and integrates with Jupyter, a 
popular computational notebook used by data scientists [26]. 
Through both our formative and controlled lab studies, we 
found these features to be critical for data scientists. Partici-
pants required saving source code as an artifact of their data 
wrangling so they could perform similar transformations on 
future datasets. Further, they wanted to take their wrangling 
scripts they created with their sample dataset and apply them 
to the full dataset in cluster or cloud environments. 

As for notebook integration, Kandel et al. described a com-
mon data science workfow of context switching between raw 
data, wrangling tools, and visualization tools; Kandel noted 
that the “ideal” tool would combine these workfows into one 
tool [22]. We also found that data scientists desired tools such 
as WREX that integrated with their current workfow. Using 
separate applications to perform data wrangling and analysis 
requires extra time and effort to import data into independent 
tools to wrangle their data, after which they will need to ex-
port their transformed data back into their preferred tool for 
data exploration, the computational notebook. 



Program Synthesis for Structured Data 
Gulwani et al. developed a new language and program synthe-
sis algorithm implemented in Microsoft Excel that can per-
form several tasks that users have diffculty with in spread-
sheet environments [9, 11, 12]. This feature, which became 
to be known as FlashFill, leveraged input-output examples de-
fned by the user. FlashFill took these examples and created 
programs to perform string manipulations quickly, and with 
very few output examples from the user. Harris and Gulwani 
then applied this research direction to table transformations 
in spreadsheets [15]. Yessenov et al. used programming-by-
example to do text processing [38]. Le and Gulwani then 
developed FlashExtract, a framework that uses examples to 
extract data from documents and tabular data [28]. Others 
have also leveraged synthesis to perform data transformations 
involving tabular data [19, 7, 17, 37]. 

This procession of research allows end-users to perform the 
above tasks without knowing how to write wrangling scripts. 
Further, even when users have the knowledge to create these 
scripts, these methods can produce results in a fraction of the 
time it takes to code these scripts by hand. This increases 
both the accessibility and effciency of users dealing with 
data. WREX leverages these benefts to allow data scientists 
to forgo writing data wrangling scripts and focus on providing 
example output of desired data transformations. 

These projects found examples to be “the most natural” way 
to provide a program synthesizer with a specifcation, but 
challenges remained in designing programming-by-example 
interaction models, particularly in user intent [10]. They 
noted that user examples may be ambiguous, so users need a 
way to address this ambiguity. WREX uses the “User Driven 
Interaction” model described in this line of work, which al-
lows the user to examine the artifact, through reading the syn-
thesized source code, and the behavior of the artifact, through 
the resultant output in the derived column. If any discrepan-
cies exist with either, the user can provide further input by in-
teracting with their data frame or by directly editing the code. 
Chasins et al. found that some participants perceived PBE 
tools to have less fexibility than traditional programming [3]. 
In WREX, users have both the speed and ease-of-use bene-
fts of PBE with the freedom to always switch to traditional 
text-based coding if the user perceives it to be necessary. 

FORMATIVE INTERVIEWS AND DESIGN GOALS 
We conducted interviews with seven data scientists who fre-
quently use computational notebooks at a large, data-driven 
software company. In our interviews, we focused on how 
they perform data wrangling, how data wrangling fts within 
their notebook workfow, what tools they use or have used for 
data wrangling, and what diffculties they face as they wran-
gle data. These data scientists (F1–F7) provided several in-
sights that guided the design goals for WREX. 

Data scientists reported that using standalone tools designed 
for data wrangling required “excessive roundtrips” (F2, F4) 
or “shuffing data back and forth” (F1, F6) between their note-
books and the data wrangling tool. As a result, they preferred 
to write their wrangling code by hand in their notebooks. 
F2 explained that although these tools have nice capabilities, 

“[they] shouldn’t have to go somewhere else just to transform 
data.” F6 wondered if was “possible to put some of these ca-
pabilities [that are available in standalone tools] within their 
notebooks.” This feedback led to our frst design goal: 

D1. Data wrangling tools should be available where the 
data scientist works—within their notebooks. 

All of our participants wanted tools that produced code as an 
inspectable artifact, because, “as a black box; you don’t have 
a good intuition about what is happening to your data” (F7) 
and because “black boxes aren’t transparent, the data trans-
forms aren’t customizable. If the tool doesn’t have your trans-
formation, you have to write it yourself anyway” (F6). 

Although some tools allowed data scientists to view their data 
transformations as scripts, we found that data scientists pre-
ferred that these scripts be written in languages they already 
were comfortable with (F1, F6). For example, F1 “preferred 
general-purpose languages for doing data science.” F6 ex-
plained, “there’s a learning curve to having to learn new li-
braries”. F7 added that the scripts from these tools were often 
quite limited: “I’m an expert in Python; these [languages for 
data wrangling] seem to cater only to novice programmers. 
They don’t compose well with our existing notebook code or 
the ‘crazy formats’ we have to deal with.” 

Data scientists’ desire for inspectable code as output of the 
data transformation tool, their preference for using familiar 
programming languages, and the desire to customize or ex-
tend data wrangling transforms led to our second design goal: 

D2. Data wrangling tools should produce code as an 
inspectable and modifable artifact, using programming 
languages already familiar to the data scientist. 

WREX SYSTEM DESIGN AND IMPLEMENTATION 
WREX is implemented as a Jupyter notebook extension. The 
front-end display component is based on Qgrid [33], an inter-
active grid view for editing data frames. Several changes were 
made to this component to support code generation. First, we 
modifed Qgrid to render views of the underlying data frame, 
rather than the data frame itself. Second, we added the abil-
ity to add new columns to the grid. By implementing both 
of these changes, users are able to give examples through vir-
tual columns without affecting the underlying data. Third, we 
added a view component to Qgrid to render the code block. 
Finally, we bound to appropriate event handlers to invoke our 
program synthesis engine on cell changes. To automatically 
display the interactive grid for data frames, the back-end com-
ponent injects confguration options to the Python pandas li-
brary [32] and overrides its HTML display mechanism. 

Readable Synthesis Algorithm 
The program synthesis engine that powers WREX substan-
tially extends the FlashFill toolkit [29], which provide several 
domain specifc languages (DSLs) with operators that support 
string transformations [9], number transformations [35], date 
transformations [35], and table lookup transformations [34]. 
A technical report by Gulwani et al. [13] formally describes 
the semantics of extensions; WREX uses these extensions, 
which we summarize in this section. 



Transform Input(s) / Example(s) Synthesized Code 
String 
EXTRACTING a = s.index(";") + len(";") 

b = s.rindex(";") 
return s[a:b] 

CASE MANIPULATION return s.title() 

CONCATENATION return "{}-{}-{}".format(s, t, u) 

GENERATING INITIALS t = regex.search(r"\p{Lu}+", s).group(0) 
u = list(regex.finditer( 

r"\p{Lu}+", s))[-1].group(0) 
return "{}.{}.".format(t, u) 

MAPPING CONST VALUES { "Male": 0, "Female": 1 }.get(s) 

Number 
ROUND TO TWO return Decimal(s).quantize( 
DECIMALS WITH TIES 
GOING AWAY FROM ZERO 

Decimal(".01"), 
rounding = ROUND_HALF_UP) 

ROUND UP TO NEAREST return 100 * math.ceil(x / 100) 
100 

SCALING return x * 1000 

PADDING return str(n).zfill(5) 

Date and Time 
EXTRACTING PARTS dt= strptime(s, "%d-%b-%Y %H:%M:%S") 

return dt.strftime("%a") 

FORMATTING dt = strptime(s, "%Y-%m-%d %H:%M:%S") 
return dt.strftime("%d %b %Y") 

BINNING dt = datetime.strptime(s, "%m/%d/%Y %H:%M") 
base_value = timedelta(hours = dt.hour, ...) 
delta_value = timedelta(hours = 2) 
dt_str = (dt - base_value % delta_value) \ 

.strftime("%H:%M") 
rounded_up_next = (dt - base_value % delta_value) \ 

+ delta_value 
return dt_str + "-" + rounded_up_next.strftime("%H:%M") 

Composite 
POINT COMPOSE d1 = Decimal(s).quantize( 

Decimal(".01"), rounding = ROUND_HALF_UP) 
d2 = Decimal(t).quantize( 

Decimal(".01"), rounding = ROUND_HALF_UP) 
return "({}, {})".format(d1, d2) 

FIXED-WIDTH COMPOSE s = str(n).zfill(2)) 
t = str(n).zfill(3)) 
return s + t 

12;L MERION;CITY AVE 

L MERION 

NEW HANOVER 
New Hanover 

Claudio A Chew 
Claudio-A-Chew 

Doug Funnie 

D.F. 

Male 0 
Female 1 

-15.319 -15.32 
17.315 17.32 

6512 6600 
23 100 

-12.5 
-12500 

828 
00828 

31-Jan-2031 05:54:18 
Fri 

2015-12-10 17:10:52 
10 Dec 2015 

2:02 
02:00-04:00 

40.865324 -73.935237 
(40.87, -73.94) 

3 71 
03071 

Table 1: WREX synthesizes readable code for transformations commonly used by data scientists during data wrangling activities. After selecting 
one or more columns (text in blue), the data scientists can specify examples in an output column to provide their intent (text in red). As the data scientist 
provides examples, WREX generates a synthesized code block and presents this code block to them. 



With WREX, we surfaced this PBE algorithm through an in-
teraction that is accessible to data scientists. The algorithm 
supports a variety of transformations, and even compositions 
of those transformations, without requiring the user to explic-
itly specify any input or output data types. Table 1 lists exam-
ples of the resulting synthesized Python code for typical data 
science use cases; the synthesized code for EXTRACTING is 
only three lines of code. In the classic FlashFill algorithm, 
this same program is over 30 lines of code. 

The extended FlashFill algorithm (RCS) has four phases: 

Phase 1: Standard Program. RCS calls SYNTHESIZE with 
the user-provided examples, using the standard FlashFill 
ranker. Since the FlashFill ranker is optimized to minimize 
the number of required examples, data scientists can in many 
cases obtain a useful program (P1) by giving only a single ex-
ample. Here, the program is represented as an internal DSL. 

Phase 2: Readable Program. We use the size of the program 
as a proxy for readability, and design a ranker that prefers 
small programs, which are likely easier to understand. This 
ranker is also designed to prefer programs that use DSL op-
erators that have direct translation into the target language 
(e.g., Python). Since the readability ranker is optimized to 
prefer small programs, the ranker requires more examples 
than the FlashFill ranker. The insight is to apply the pro-
gram P1 to all required input columns in the data frame 
to obtain these additional examples (examples_all). RCS 
again calls SYNTHESIS to obtain the program P2, this time 
using examples_all and the readability ranker. Concretely, 
consider the transform of “21-07-2012” to “21”. FlashFill 
(intent-based) takes the sub-string that matches \d+ on the 
left and “-” on the right—because it handles dates like “4-12-
2018” (input.match('^\d+')). However, tuning towards 
generality makes it less succinct. The objective-based ranker 
chooses input[0:2], but if and only if the behavior matches 
on a much larger sample of inputs (maintaining behavioral 
equivalence to the intent-based ranker). Hence, we pick 
input[0:2] if there are no inputs of the form “4-12-2018”. 
If there are inputs in such a form, the user would have to pro-
vide a second example. 

Phase 3: Rewriting. The goal of the rewriting phase is 
to transform the synthesized program into another program 
that is simpler to understand. As before, we apply the in-
sight that we can use rewrite rules such that the synthe-
sized program preserves the behavior of examples_all, but 
allows for changing the semantics of any potential inputs 
that have not been passed to RCS. One such rule rewrites 
“[0-9]+(\,[0-9]{3})*(\.[0-9]+)?” to “\d+”. This re-
places a complex pattern that matches numbers with commas 
and decimal point with a pattern that matches a sequence of 
digits. Clearly, replacing the frst regular expression by sec-
ond one will change the semantics of a program. But if all 
numbers in all the inputs are of the form “\d+”, then the re-
placement will preserve behavioral equivalence. 

Phase 4: Translation to the Target Language. The fnal trans-
lation step goes down the abstract syntax tree (AST) of the 
DSL-program, and translates each node (DSL operator) into 

Algorithm 1 Program synthesis phases for readable code. 

function READABLECODESYNTHESIS(df, examples) 
P1 ← SYNTHESIZE(examples, fashfll_ranker) 
examples_all ←{(row, P1(row)) | row ∈ df}
P2 ← SYNTHESIZE(examples_all, readability_ranker) 
P3 ← REWRITE(P2, rules, df) 
code ← TRANSLATE_TO_TARGET(P3) 
return FORMATTER(code) 

the equivalent operator in the target language—which today 
can be Python, R, and PySpark. For example, the CONCAT 
operator in the DSL is just mapped to + or a format method 
on a string, depending on the number of elements concate-
nated. If the DSL operator does not have a semantically-
equivalent Python operator, then the translator generates mul-
tiple lines of code in the target language to emulate its behav-
ior. Finally, the target code is passed through an off-the-shell 
code formatter: for Python, this is autopep8 [16]. 

Limitations 
A limitation of WREX is that user-friendly error handling is 
not implemented yet. Errors can arise in two ways: when 
the user specifes a conficting set of constraints (for exam-
ple, transforming “Traffic to T” alongside “Traffic to TR”), 
or when the synthesis engine fails to learn a program. Pro-
gram synthesis will also unrelentingly generate incomprehen-
sible programs due to diffcult-to-spot typos in user-entered 
examples (such as having a trailing space in an example). In 
such cases, we asked participants to invoke the grid again and 
redo the task, although we did not restart their task time. In 
practice, it is unrealistic to expect that data scientists can per-
fectly provide examples to the system, so these issues will 
need to be addressed in future work. When the user intro-
duces these internally conficting examples or when rows in 
a dataset have ambiguous values (e.g., null), it is useful to 
suggest additional rows to investigate; this signifcant inputs 
feature is available but not evaluated in this paper. 

Some tasks are not amenable to programming and thus are 
not performed by WREX, like certain natural language trans-
formations (e.g., “S.F.” to “San Francisco”), and other tasks 
that require aggregation like the sum or average of the entire 
column. Another limitation comes from how a user samples 
their data (for example, df.head(n), which may lack suff-
cient diversity in range of exposed values). This issue may 
lead to synthesized code that works perfectly for the sample 
but runs into issues on the full dataset. 

Users may not know when to stop providing examples (where 
further examples have little effect on synthesis). Here users 
must inspect the data frame and code to determine if WREX 
narrows in on an acceptable solution. It outputs only the 
top-ranked one, and it is possible that the user may prefer a 
lower-ranked program (e.g., uses non-regex instead of regex). 
Finally, WREX is aimed for professional data scientists who 
work mostly within notebooks; users of Excel, Tableau, and 
other GUI tools may be more accustomed to switching be-
tween multiple tools, so an integrated single-app workfow 
may not be as necessary for them. 



EVALUATION: IN-LAB COMPARATIVE USER STUDY 
Participants: We recruited 12 data scientists (10 male), ran-
domly selected from a directory of computational notebook 
users with Python familiarity within a large, data-driven soft-
ware company. They self-reported an average of 4 years of 
data science experience within the company. They self-rated 
familiarity with Jupyter notebooks with a median of “Ex-
tremely familiar (5),” using a 5-point Likert scale from “Not 
familiar at all (1)” to “Extremely familiar (5),” and their famil-
iarity with Python at a median of “Moderately familiar (4).” 

Tasks: Participants completed six tasks using two different 
datasets. These tasks involved transformations commonly 
done by data scientists during data wrangling, such as extract-
ing part of a string and changing its case, formatting dates, 
time-binning, and rounding foating-point numbers. 

The frst dataset, called A, contains emergency call data con-
taining columns with dates, times, latitude, longitude, physi-
cal location with zip code and cross streets, and an incident 
description.1 We designed three tasks using this dataset: 

A1 Using the Location (19044;HORSHAM;CEDAR AVE & 
COTTAGE AVE) column, extract the city name and title 
case it (Horsham). 

A2 Using the Date (12/11/2015) and Time (13:34:52) 
columns, format the date to the day of the week, time 
to 12-hour clock format, and combine these values 
with an “@” symbol (Friday @ 1pm). 

A3 Using the Latitude (40.185840) and Longitude 
(-75.125512) columns, round half up the values to the 
nearest hundredths place and combine them in a new 
format ([40.19, -75.13]). 

The second dataset, called B, contains New York City noise 
complaint data which includes columns containing the date-
timestamp of the call, the date-timestamp of when the inci-
dent was closed, type of location, zip code of incident, city of 
incident location, borough of incident location, latitude, and 
longitude.2 We designed three tasks using this dataset: 

B1 Using the Created Date (12/31/2015 0:01) col-
umn, extract the time and place it in a 2-hour time bin 
(00:00-02:00). 

B2 Using the Location Type (Store/Commercial), 
City (NEW YORK), and Borough (MANHATTAN) columns, 
title case the values and combine them in a new format 
(Store/Commercial in New York, Manhattan). 

B3 Using the Latitude (40.865324) and Longitude 
(-73.938237) columns, round half down the values to 
the nearest hundredths place and combine them in a 
new format ((40.86, -73.94)). 

Protocol: Participants were assigned A and B datasets 
through a counterbalanced design, such that half the partic-
ipants received the A dataset frst (A-dataset group), and the 
other half received the B dataset frst (B-dataset group). We 
randomized task order within each dataset to mitigate learn-
ing effects. They frst completed three tasks with a Jupyter 
1https://www.kaggle.com/mchirico/montcoalert 
2https://www.kaggle.com/somesnm/partynyc 

notebook (manual condition). They had 5 minutes per task 
to read the requirements of the task and write code to com-
plete the task. Participants were provided a verifcation code 
snippet within their notebooks that participants ran to deter-
mine if they had completed the task successfully. If partici-
pants failed to complete the task within the allotted time, we 
marked the task as incorrect. Participants had access to the 
internet to assist them in completing the task if needed. At 
the end of the manual condition, we interviewed the partic-
ipants about their experience and asked them to complete a 
questionnaire to rate aspects of their experience. Next, par-
ticipants completed a short tutorial that introduced them to 
WREX. After participants completed the tutorial, they moved 
on to the second set of tasks, this time using WREX with con-
ditions similar to the frst set of tasks. After the three tasks are 
completed, we again interviewed them about their experience 
and asked them to complete the questionnaire. 

Questionnaires: After the frst set of tasks, participants rated 
how often the tasks showed up in their day-to-day work us-
ing a 5-point Likert scale from “Never (1)” to “A great deal 
(5)”, and discussed what aspects of the notebook made it diff-
cult to complete the tasks and what affordances could address 
these diffculties. After the second set of tasks, this time with 
WREX, the participants took a second questionnaire that also 
had them rate task representativeness, and asked free-form 
questions on diffculties they had and tool improvements. Fur-
ther, the second questionnaire asked the participant to rate 
grid and code acceptability using a 5-point Likert-type item 
scale ranging from “Unacceptable (1)” to “Acceptable (5)”, 
and rate the likeliness they would use a productionized ver-
sion of WREX using a 5-point Likert-type item scale rang-
ing from “Extremely unlikely (1)” to “Extremely likely (5)”. 
Finally, participants were interviewed after each set of tasks 
about their experience with Jupyter notebooks and WREX. 

Follow-up: We directly addressed participant feedback to im-
prove the synthesized code: We removed the use of classes 
entirely and replaced these instances with lightweight func-
tions. We replaced the register-based variable naming scheme 
(_0 and _1) with a variable-name generation scheme that uses 
simpler mnemonic names, such as s and t for string argu-
ments. We removed exception handling logic because these 
constructs made it harder for the data scientists to identify 
the core part of the transformation. Finally, we returned to 
the participants after implementing these changes and asked 
them to reassess the synthesized code for the study tasks. 

QUANTITATIVE RESULTS 
Table 2 shows completion rates by task and condition. 
Fisher’s exact test identifed a signifcant difference between 
the WREX and manual conditions, both in the A-dataset frst 
(p < .0001) and in B-dataset frst (p < .0001) subgroups. 
Participants in the manual condition completed 12/36 tasks, 
while those in the WREX condition completed all 36/36 tasks. 
The signifcant differences between the two conditions can 
be explained mostly by tasks A2 and B1, which require non-
trivial date and time transformations. 

Participant Effciency: Table 3 shows the distribution of 
completion times by task and condition, and the participants’ 

https://www.kaggle.com/mchirico/montcoalert
https://www.kaggle.com/somesnm/partynyc


Manual WREX Frequency 
Task n % n % n Dist. 

A1 3 50% 6 100% 12 3 
A2 0 0% 6 100% 12 2 
A3 2 33% 6 100% 12 2 
B1 0 0% 6 100% 12 3 
B2 3 50% 6 100% 12 2 
B3 4 67% 6 100% 12 2 

Table 2: Participant task completion under WREX and manual data 
wrangling conditions. Participant reported frequency of tasks in day-
to-day work. Participants were given fve minutes to complete each task. 
Rating scale for task frequency from left-to-right: Never (1), Rarely 
(2), Occasionally (3), Moderately (4), A great deal (5). Median 
values precede each distribution. 

Manual WREX 

Task Timeline n Time (min) n Time (min) 

A1 
0 5 

3 2.5 6 2.4 

A2 
0 5 

0 5.0 6 2.9 

A3 
0 5 

2 3.6 6 1.8 

B1 
0 5 

0 5.0 6 3.1 

B2 
0 5 

3 4.4 6 3.2 

B3 
0 5 

4 4.2 6 1.7 

Table 3: Participant effciency under WREX and manual data 
wrangling conditions. 

self-reported frequency of how often they do that type of task. 
A t-test failed to identify a signifcant difference in the A-
dataset (t(5.93) = 1.13, p = 0.30), but did identify a signif-
cant difference for the B-dataset (t(22.32) = 5.17, p < 0.001). 
Using WREX, the average time to completion was u = 2.4, 
sd = 1.0 (A) and u = 2.7, sd = 1.0 (B). Participants using 
WREX, on average, were about 40 seconds faster (u = 0.60, 
sd = 0.53) in A, and about 1.6 minutes faster (u = 1.61, 
sd = 0.31) in B. This means if one has a good understanding 
of the code required to perform their transformation—and if 
the code is simple to write—then it may be faster to write 
code directly than to give an example to WREX. 

Grid and Code Acceptability: Table 4 shows distribution of 
acceptability for the grid, the code acceptability during the 
study (Code1), and the code acceptability after post-study im-
provements (Code2). Participants reported the median accept-
ability of the grid experience as Acceptable (5). The code 
acceptability during the study (Code1) had substantial varia-
tion in responses, with a median of Neutral (3). After im-
proving the program synthesis engine based on the participant 
feedback (Code2), the median score improved to Acceptable 
(5). A Wilcoxon signed-rank test identifed these differences 
as signifcant (S = 319, p < .0001), with a median rating in-
crease of 2. As a measure of user satisfaction, we asked par-
ticipants if they would use WREX for data wrangling tasks if 
a production version of the tool was made available: fve par-

Acceptability 
Task n Grid Code1 Code2 

A1 6 5 3 5 

A2 6 5 2 5 

A3 6 5 2 5 

B1 6 4 2 4 

B2 6 4 3 5 

B3 6 5 3 5 
Table 4: How acceptable was the grid experience and the corre-
sponding synthesized code snippet? Rating scale from left-to-right: 

Unacceptable (1), Slightly unacceptable (2), Neutral (3), Slightly 
acceptable (4), and Acceptable (5). Code1 are the ratings from the code 
synthesized in the in-lab study. Code2 are the ratings after incorporating 
the participants’ feedback. Median values precede each distribution. 

ticipants reported that they would probably use the tool (4), 
and seven reported that they would defnitely use the tool (5). 

QUALITATIVE FEEDBACK FROM STUDY PARTICIPANTS 

Reducing Barriers to Data Wrangling 
After completing the three tasks in the manual Jupyter condi-
tion, participants noted these sets of barriers to wrangling that 
they experienced both during the tasks and also in their daily 
work, some of which WREX helped overcome. 

Recall of Functions and Syntax 
The most common barrier reported by participants, both 
within our lab study and in their daily work, is remembering 
what functions and syntax are required to perform the nec-
essary data transformations. One reason for failed recall is 
due to lack of recency, “my biggest diffculty was recalling 
the specifc command names and syntax, just because I didn’t 
use them today” (P2). The complexity of modern languages 
and the number of libraries available is too vast for data sci-
entists to rely on their memory faculties as “it is just tough to 
memorize all the nuances of a language” (P5). Participants 
noted that although computational notebooks have features 
like inline documentation and autocompletion, these features 
don’t directly help them in understanding which operations 
they need to use and how they should use them. 

WREX reduces this barrier with the synthesis of readable code 
via programming-by-example. This removes the need for 
data scientists to remember the specifc functions or syntax 
needed for a transformation. Instead, they need only know 
what they want to do with the data in order to produce code. 

Searching for Solutions 
To alleviate recall issues, data scientists rely on web searches 
for solutions on websites like Stack Overfow. These searches 
occur because “most of the tasks are pretty standard, I ex-
pect there to be one function that solves the piece, gener-
ally in Stack Overfow, if you are able to break the prob-
lem down small enough you can fnd a teeny code snippet 
to test.” (P3). Participants believed searching for these code 



snippets is quicker than producing the solutions themselves. 
This helps them reach their goal of “achieving the fnal result 
as fast as possible”, so they prefer “to save time and use some-
thing existing” (P8). Unfortunately, searching for solutions 
can fail or increase data wrangling time depending on the do-
main of the task since “there are so many [web pages] and 
you need to pick the right one. So, it takes time to fnd some-
one who has the exact same problem that you had. Usually in 
70-80% of the cases I’ve found that someone else has had the 
same problem, sometimes not, depends on the domain. [...] 
In audio [data] it’s more complicated to fnd someone who 
did something similar to what you were looking for” (P8). 

WREX reduced participants’ reliance on web searches. In-
stead of hunting online for the right syntax or API calls, they 
could remain in the context of their wrangling activities and 
only had to provide the expected output for data transforma-
tions. Participants immediately noticed the time it took to 
complete the three tasks with WREX compared to doing so 
with a default Jupyter notebook and web search: “I super 
liked it, it was amazing, really quick, I didn’t have to look 
up or browse anything else” (P9); WREX also “avoided my 
back and forth from Stack Overfow.” (P12). By removing 
the need to search websites and code repositories, WREX al-
lows data scientists to remain in the context of their analysis. 

Fitting into Data Scientists’ Workfows 
WREX helps address the above barriers by providing familiar 
interactions that reduce the need for syntax recall and code-
related web searches. First, WREX’s grid felt familiar, less-
ening the learning curve required to perform data wrangling 
tasks with the system. This form of interaction was likened 
to “the pattern recognition that Excel has when you drag and 
drop it” and that WREX had a “nice free text fow” (P5). Feed-
back for the grid interaction was overwhelmingly positive (Ta-
ble 4), with only minor enhancements suggested such as a 
right-click context menu and better horizontal scrolling. 

Participants agreed that this tool ft into their workfow. They 
were enthusiastic about not having to leave the notebook 
when performing their day-to-day data wrangling tasks. By 
having a tool that generates wrangling code directly in their 
notebook, participants felt that they could easily iterate be-
tween data wrangling and analysis. Some participants re-
ported running subsets of their data on local notebooks for 
exploratory analysis, but then eventually needing to export 
their code into production Python scripts to run in the cloud. 
With existing data wrangling tools, participants indicated that 
they would have to re-write these transformations in Python. 
Because WREX already produces code, these data wrangling 
transformations are easy to incorporate into such scripts. 

Data Scientists’ Expectations of Synthesized Code 
Readability of Synthesized Code 
Participants described readability as being a critical feature of 
usable synthesized code. P6 wanted “to read what the code 
was doing and make sure it was doing what I expect it to 
do, in case there was an ambiguity I didn’t pick up on”. It 
is also important for collaboration “because the whole pur-
pose for me to use Jupyter notebook is to be able to interpret 

things. [So], if I leave and pass on my work to someone else, 
they would be able to use it if they know how it is written” 
(P12). Participants also cited readability as an enabler for de-
bugging and maintenance, where readable code would allow 
them to make small changes to the code themselves rather 
than provide more examples to the interactive grid. Amongst 
our participants, some example standards for readability were: 
“I would want it to be very similar to what I would expect 
searching Stack Overfow” (P10). Interestingly, our partici-
pants found short variable names like “String s” or “Float f” 
to be acceptable, as they could just rename these themselves. 

Trust in Synthesized Code 
The most salient method to increase trust was reading the syn-
thesized code. Inspecting the resulting wrangled data frame is 
not enough, and that without readable code they “don’t know 
what is going on there, so I don’t know if I can trust it if I want 
to extend it to other tasks. I saw my examples were correctly 
transformed, but because the code is hard to read, I would not 
be able to trust what it is doing” (P10). Several participants 
noted that the best way to gain the confdence of a user in 
these types of tools is to “have the code be readable” (P3). 

Several participants proposed alternative methods beyond in-
specting the data frame and the data wrangling code to im-
prove their trust of the system. These proposals ranged from 
simple summations of the resulting output, code comments, 
and data visualizations. Some participants desired informa-
tion on any assumptions made for edge cases, or to request 
examples for these edge cases. These alternative affordances 
are important, as they could provide “a way of validating, 
maybe not the mechanics, the internals of it, but the output 
of it, would help me be confdent that it did what I thought it 
did” (P2). That said, if WREX did not produce readable code, 
some participants “would be less trustful of it” (P10). 

DISCUSSION 

Data Scientists Need In-Situ Tools Within Their Workfow 
Computational notebooks are not just for wrangling, but for 
the entire data analysis workfow. Thus, programming-by-
example (PBE) tools that enhance the user experience at each 
stage of data analysis need to reside where data scientists per-
form these tasks: within the notebook. These in-situ work-
fows are an effciency boost for data scientists in two ways: 
First, providing PBE within the notebook removes the need 
for users to leave their notebook and spend valuable time web 
searching for code solutions, as the solutions are generated 
based on user examples. Second, users no longer need to ex-
port their data, open an external tool, load the data into that 
tool, perform any data wrangling required, export the wran-
gled data, and reload that data back into their notebook. 

Though our investigation focused on data wrangling, tools 
like WREX can play a critical role at each step of a data anal-
ysis by providing unifed PBE interactions. For example, fu-
ture PBE tools can frst ingest data to synthesize code that 
creates a data frame, which can then be wrangled using PBE, 
and fnally again be used to produce code to create visualiza-
tions like histograms or other useful graphs. This provides an 
accessible, effcient, and powerful interface to data scientists 



performing data analysis, allowing them to never leave their 
notebooks and thus avoid context-switching costs. 

In our user studies we found that data scientists were unlikely 
to adopt tools that required them to leave their notebook. We 
also witnessed participants struggle to fnd code online that 
was suitable to the task at hand. Without WREX, they had 
to frequently move back and forth between web searches and 
their notebook as they copied and modifed various code snip-
pets. With WREX, this frustration was removed. When PBE 
interactions are within the notebook, a streamlined and eff-
cient workfow for data analysis can be realized. In sum, as 
long as interactions are in-notebook, familiar, and can pro-
duce readable code, data scientists are enthusiastic to adopt 
PBE tools; they are hesitant to do so without these features. 

Also, notebooks are the ideal environment for PBE tools since 
program synthesis is good at generating small code snippets 
which is a similar granularity to existing notebook cell usage. 
Program synthesis also relies on user interactions to provide 
examples that remove ambiguity so that PBE tools can pro-
duce correct code. Notebooks already provide a platform that 
enables the interaction between a user and their code that is a 
good match for the user interaction requirements of PBE. 

Data Scientists’ Priorities for Readable Synthesized Code 
Data scientists need to be able to read and comprehend the 
code so they can verify it is accomplishing their task. Thus, 
if a system synthesizes unreadable code, users have much 
more trouble performing verifcation of the output. Verifa-
bility increases trust in the system, and gives data scientists 
confdence that the synthesized code handles edge cases and 
performs the task without errors. Readability also improves 
maintainability. If a data scientist wants to reuse the synthe-
sized code elsewhere but make edits based on the context of 
their data, they need to be able to frst understand that code. 

Data scientists prioritize certain readability features over oth-
ers when thinking about acceptable synthesized code. Partic-
ipants did signal a need for features that increased readability 
like better indentation, line breaks, naming conventions, and 
meaningful comments in the synthesized code. Some partici-
pants desired synthesized code that followed language idioms 
or that “would pass a [GitHub] pull request”, but other par-
ticipants saw their notebooks as exploratory code that would 
need to be rewritten and productionized later anyway, and in-
stead, desired synthesized code that is brief and easy to follow. 
This means that the goal of synthesized code should not be to 
appear as if a human had written it, but to focus on having 
these high priority features that data scientists require. 

Alternative Interactions with Code and Data 
Data scientists frequently use applications like Excel to view 
their data and Python IDEs to manipulate it, which make them 
choose between the ease of use afforded by GUIs, and the ex-
pressive fexibility afforded by programming. WREX merges 
usability and fexibility by generating code through grid inter-
actions. We found that our grid was familiar to data scientists 
who had used various grid-like structures before in spread-
sheets. By implementing our grid in a programming envi-
ronment such as Jupyter Notebooks, our system fts into data 

scientists’ existing code-oriented workfow. Though our orig-
inal aim was to help data scientists accomplish diffcult data 
wrangling tasks, our participants found that WREX was also 
useful for performing simpler PBE tasks like adding or drop-
ping a column. While we implemented our interaction with 
program synthesis as an interactive grid, we believe that other 
interactions can also synthesize readable code. For example, 
our study participants mentioned data summaries and visu-
alizations as potential sources for verifcation of the output 
of data science tools. One requested feature was histograms 
of the initial and the updated data frame so users can take a 
quick glance and make sure the shape of the data makes sense. 
Data summaries provide ranges of values that provide poten-
tial edge cases for their code to handle, either by feeding them 
as examples to WREX or by modifying synthesized code to 
handle these cases. The insight we gleaned from this feed-
back is that data scientists want the freedom that comes with 
multiple workfows so they can choose the best interaction for 
each task. In future work, it is interesting to explore different 
surfaces for exposing PBE tools, like the visually-richer in-
terfaces described above, while discovering and minimizing 
potential trade-offs in user experience. 

Synthesized Code Makes Data Science More Accessible 
Synthesizing code with PBE has the potential to make data 
science more accessible to people with varying levels of 
programming profciency. For instance, without a tool like 
WREX, a data scientist in a neuroscience lab must not only 
become an expert on brain-related data but also in the me-
chanics of programming. With WREX they can not only see 
the fnal wrangled data, which speeds up their workfow, they 
can also study the code that performed those transformations. 

Our study participants noted that WREX was useful in learn-
ing how to perform the transforms they were interested in, 
or even assist them in discovering different programming pat-
terns for regular expressions. WREX also alleviates the te-
dium felt by data scientists having to learn new APIs and 
even lessens the burden of having to keep up with API up-
dates. This also benefts polyglot programmers who might be 
weaker in a new language, as they can quickly get up to speed 
by leveraging WREX to produce code that they can use and 
learn from. In the future we see potential for interactive pro-
gram synthesis tools as learning instruments if they are able 
to synthesize readable and pedagogically-suitable code. 

CONCLUSION 
Our formative study found that professional data scientists are 
reluctant to use existing wrangling tools that did not ft within 
their notebook-based workfows. To address this gap, we de-
veloped WREX, a notebook-based programming-by-example 
system that generates readable code for common data trans-
formations. Our user study found that data scientists are 
signifcantly more effective and effcient at data wrangling 
with WREX over manual programming. In particular, users 
reported that the synthesis of readable code—and the trans-
parency that code offers—was an essential requirement for 
supporting their data wrangling workfows. 



Acknowledgments 
We thank Arjun Radhakrishna, Ashish Tiwari, and Andrew 
Head for helpful discussions about tool and study design, and 
the data scientists at Microsoft who participated in the inter-
views and studies. 

REFERENCES 
[1] Apache. 2019. Zeppelin. (2019). 

https://zeppelin.apache.org/ 

[2] Carbide. 2019. Carbide Alpha. (2019). 
https://alpha.trycarbide.com/ 

[3] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 
2018. Rousillon: Scraping Distributed Hierarchical 
Web Data. In Proceedings of the 31st Annual ACM 
Symposium on User Interface Software and Technology 
(UIST ’18). 963–975. DOI: 
http://dx.doi.org/10.1145/3242587.3242661 

[4] Tamraparni Dasu and Theodore Johnson. 2003. 
Exploratory Data Mining and Data Cleaning (1 ed.). 
DOI:http://dx.doi.org/10.1002/0471448354 

[5] Databricks. 2019. databricks. (2019). 
https://databricks.com/ 

[6] Robert DeLine, Danyel Fisher, Badrish Chandramouli, 
Jonathan Goldstein, Michael Barnett, James F 
Terwilliger, and John Wernsing. 2015. Tempe: Live 
scripting for live data. In 2015 IEEE Symposium on 
Visual Languages and Human-Centric Computing 
(VL/HCC ’15). 137–141. DOI: 
http://dx.doi.org/10.1109/VLHCC.2015.7357208 

[7] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, 
and Swarat Chaudhuri. 2017. Component-based 
Synthesis of Table Consolidation and Transformation 
Tasks from Examples. In Proceedings of the 38th ACM 
SIGPLAN Conference on Programming Language 
Design and Implementation (PLDI ’17). 422–436. DOI: 
http://dx.doi.org/10.1145/3062341.3062351 

[8] Google. 2019. OpenRefne. (2019). 
https://openrefine.org/ 

[9] Sumit Gulwani. 2011. Automating String Processing in 
Spreadsheets Using Input-output Examples. In 
Proceedings of the 38th Annual ACM 
SIGPLAN-SIGACT Symposium on Principles of 
Programming Languages (POPL ’11). 317–330. DOI: 
http://dx.doi.org/10.1145/1926385.1926423 

[10] Sumit Gulwani. 2012. Synthesis from Examples: 
Interaction Models and Algorithms. In Proceedings of 
the 2012 14th International Symposium on Symbolic 
and Numeric Algorithms for Scientifc Computing 
(SYNASC ’12). 8–14. DOI: 
http://dx.doi.org/10.1109/SYNASC.2012.69 

[11] Sumit Gulwani, William R. Harris, and Rishabh Singh. 
2012. Spreadsheet Data Manipulation Using Examples. 
Commun. ACM 55, 8 (Aug. 2012), 97–105. DOI: 
http://dx.doi.org/10.1145/2240236.2240260 

[12] Sumit Gulwani and Mark Marron. 2014. NLyze: 
Interactive Programming by Natural Language for 
Spreadsheet Data Analysis and Manipulation. In 
Proceedings of the 2014 ACM SIGMOD International 
Conference on Management of Data (SIGMOD ’14). 
803–814. DOI: 
http://dx.doi.org/10.1145/2588555.2612177 

[13] Sumit Gulwani, Kunal Pathak, Arjun Radhakrishna, 
Ashish Tiwari, and Abhishek Udupa. 2019. 
Quantitative Programming by Examples. arXiv e-prints 
(Sep. 2019), arXiv:1909.05964. 

[14] Philip J. Guo, Sean Kandel, Joseph M. Hellerstein, and 
Jeffrey Heer. 2011. Proactive Wrangling: 
Mixed-initiative End-user Programming of Data 
Transformation Scripts. In Proceedings of the 24th 
Annual ACM Symposium on User Interface Software 
and Technology (UIST ’11). 65–74. DOI: 
http://dx.doi.org/10.1145/2047196.2047205 

[15] William R. Harris and Sumit Gulwani. 2011. 
Spreadsheet Table Transformations from Examples. In 
Proceedings of the 32nd ACM SIGPLAN Conference on 
Programming Language Design and Implementation 
(PLDI ’11). 317–328. DOI: 
http://dx.doi.org/10.1145/1993498.1993536 

[16] Hideo Hattori. 2019. autopep8. (2019). 
https://github.com/hhatto/autopep8/ 

[17] Yeye He, Kris Ganjam, Kukjin Lee, Yue Wang, Vivek 
Narasayya, Surajit Chaudhuri, Xu Chu, and Yudian 
Zheng. 2018. Transform-Data-by-Example (TDE): 
Extensible Data Transformation in Excel. In 
Proceedings of the 2018 International Conference on 
Management of Data (SIGMOD ’18). 1785–1788. DOI: 
http://dx.doi.org/10.1145/3183713.3193539 

[18] Jetbrains. 2019. Datalore. (2019). https://datalore.io/ 

[19] Zhongjun Jin, Michael R. Anderson, Michael Cafarella, 
and H. V. Jagadish. 2017. Foofah: Transforming Data 
By Example. In Proceedings of the 2017 ACM 
International Conference on Management of Data 
(SIGMOD ’17). 683–698. DOI: 
http://dx.doi.org/10.1145/3035918.3064034 

[20] Jupyter. 2019. Jupyter Notebook. (2019). 
https://jupyter.org/ 

[21] Niranjan Kamat, Eugene Wu, and Arnab Nandi. 2016. 
TrendQuery: A System for Interactive Exploration of 
Trends. In Proceedings of the Workshop on 
Human-In-the-Loop Data Analytics (HILDA ’16). 
Article 12, 4 pages. DOI: 
http://dx.doi.org/10.1145/2939502.2939514 

[22] Sean Kandel, Jeffrey Heer, Catherine Plaisant, Jessie 
Kennedy, Frank van Ham, Nathalie Henry Riche, Chris 
Weaver, Bongshin Lee, Dominique Brodbeck, and 
Paolo Buono. 2011a. Research Directions in Data 
Wrangling: Visualizations and Transformations for 
Usable and Credible Data. Information Visualization 

https://zeppelin.apache.org/
https://alpha.trycarbide.com/
http://dx.doi.org/10.1145/3242587.3242661
http://dx.doi.org/10.1002/0471448354
https://databricks.com/
http://dx.doi.org/10.1109/VLHCC.2015.7357208
http://dx.doi.org/10.1145/3062341.3062351
https://openrefine.org/
http://dx.doi.org/10.1145/1926385.1926423
http://dx.doi.org/10.1109/SYNASC.2012.69
http://dx.doi.org/10.1145/2240236.2240260
http://dx.doi.org/10.1145/2588555.2612177
http://dx.doi.org/10.1145/2047196.2047205
http://dx.doi.org/10.1145/1993498.1993536
https://github.com/hhatto/autopep8/
http://dx.doi.org/10.1145/3183713.3193539
https://datalore.io/
http://dx.doi.org/10.1145/3035918.3064034
https://jupyter.org/
http://dx.doi.org/10.1145/2939502.2939514


10, 4 (Oct. 2011), 271–288. DOI: 
http://dx.doi.org/10.1177/1473871611415994 

[23] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and 
Jeffrey Heer. 2011b. Wrangler: Interactive Visual 
Specifcation of Data Transformation Scripts. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI ’11). 3363–3372. 
DOI:http://dx.doi.org/10.1145/1978942.1979444 

[24] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, 
and Jeffrey Heer. 2012. Enterprise Data Analysis and 
Visualization: An Interview Study. IEEE Transactions 
on Visualization and Computer Graphics 18, 12 (Dec. 
2012), 2917–2926. DOI: 
http://dx.doi.org/10.1109/TVCG.2012.219 

[25] Mary Beth Kery, Marissa Radensky, Mahima Arya, 
Bonnie E. John, and Brad A. Myers. 2018. The Story in 
the Notebook: Exploratory Data Science Using a 
Literate Programming Tool. In Proceedings of the 2018 
CHI Conference on Human Factors in Computing 
Systems (CHI ’18). Article 174, 11 pages. DOI: 
http://dx.doi.org/10.1145/3173574.3173748 

[26] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando 
Pérez, Brian E. Granger, Matthias Bussonnier, 
Jonathan Frederic, Kyle Kelley, Jessica B. Hamrick, 
Jason Grout, Sylvain Corlay, Paul Ivanov, Damián 
Avila, Safa Abdalla, Carol Willing, and et al. 2016. 
Jupyter Notebooks - a publishing format for 
reproducible computational workfows. In Proceedings 
of the 20th International Conference on Electronic 
Publishing (ELPUB ’16). DOI: 
http://dx.doi.org/10.3233/978-1-61499-649-1-87 

[27] Tim Kraska. 2018. Northstar: An Interactive Data 
Science System. Proceedings of the VLDB Endowment 
11, 12 (Aug. 2018), 2150–2164. DOI: 
http://dx.doi.org/10.14778/3229863.3240493 

[28] Vu Le and Sumit Gulwani. 2014. FlashExtract: A 
Framework for Data Extraction by Examples. In 
Proceedings of the 35th ACM SIGPLAN Conference on 
Programming Language Design and Implementation 
(PLDI ’14). 542–553. DOI: 
http://dx.doi.org/10.1145/2594291.2594333 

[29] Microsoft. 2019. PROSE SDK. (2019). 
https://microsoft.github.io/prose/ 

[30] Mozilla. 2019. Iodide. (2019). https://alpha.iodide.io/ 

[31] Observable. 2019. Observable. (2019). 
https://observablehq.com/ 

[32] pandas-dev. 2019. The pandas project. (2019). 
https://pandas.pydata.org/ 

[33] Quantopian. 2019. Qgrid. (2019). 
https://github.com/quantopian/qgrid/ 

[34] Rishabh Singh and Sumit Gulwani. 2012a. Learning 
Semantic String Transformations from Examples. 
Proceedings of the VLDB Endowment 5, 8 (April 2012), 
740–751. DOI: 
http://dx.doi.org/10.14778/2212351.2212356 

[35] Rishabh Singh and Sumit Gulwani. 2012b. 
Synthesizing Number Transformations from 
Input-Output Examples. In Computer Aided 
Verifcation. 634–651. DOI: 
http://dx.doi.org/10.1007/978-3-642-31424-7_44 

[36] Trifacta. 2019. Wrangler. (2019). 
https://www.trifacta.com/products/wrangler-editions/ 

[37] Navid Yaghmazadeh, Xinyu Wang, and Isil Dillig. 
2018. Automated Migration of Hierarchical Data to 
Relational Tables Using Programming-by-example. 
Proceedings of the VLDB Endowment 11, 5 (Jan. 2018), 
580–593. DOI: 
http://dx.doi.org/10.1145/3187009.3177735 

[38] Kuat Yessenov, Shubham Tulsiani, Aditya Menon, 
Robert C. Miller, Sumit Gulwani, Butler Lampson, and 
Adam Kalai. 2013. A Colorful Approach to Text 
Processing by Example. In Proceedings of the 26th 
Annual ACM Symposium on User Interface Software 
and Technology (UIST ’13). 495–504. DOI: 
http://dx.doi.org/10.1145/2501988.2502040 

[39] Xiong Zhang and Philip J. Guo. 2017. DS.Js: Turn Any 
Webpage into an Example-Centric Live Programming 
Environment for Learning Data Science. In 
Proceedings of the 30th Annual ACM Symposium on 
User Interface Software and Technology (UIST ’17). 
691–702. DOI: 
http://dx.doi.org/10.1145/3126594.3126663 

http://dx.doi.org/10.1177/1473871611415994
http://dx.doi.org/10.1145/1978942.1979444
http://dx.doi.org/10.1109/TVCG.2012.219
http://dx.doi.org/10.1145/3173574.3173748
http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://dx.doi.org/10.14778/3229863.3240493
http://dx.doi.org/10.1145/2594291.2594333
https://microsoft.github.io/prose/
https://alpha.iodide.io/
https://observablehq.com/
https://pandas.pydata.org/
https://github.com/quantopian/qgrid/
http://dx.doi.org/10.14778/2212351.2212356
http://dx.doi.org/10.1007/978-3-642-31424-7_44
https://www.trifacta.com/products/wrangler-editions/
http://dx.doi.org/10.1145/3187009.3177735
http://dx.doi.org/10.1145/2501988.2502040
http://dx.doi.org/10.1145/3126594.3126663

	Introduction
	Example Usage Scenario for Wrex
	Related Work
	Data Wrangling Tools
	Program Synthesis for Structured Data

	Formative Interviews and Design Goals
	Wrex System Design and Implementation
	Readable Synthesis Algorithm
	Limitations

	Evaluation: In-Lab Comparative User Study
	Quantitative Results
	Qualitative Feedback from Study Participants
	Reducing Barriers to Data Wrangling
	Recall of Functions and Syntax
	Searching for Solutions

	Fitting into Data Scientists' Workflows
	Data Scientists' Expectations of Synthesized Code
	Readability of Synthesized Code
	Trust in Synthesized Code


	Discussion
	Data Scientists Need In-Situ Tools Within Their Workflow
	Data Scientists' Priorities for Readable Synthesized Code
	Alternative Interactions with Code and Data
	Synthesized Code Makes Data Science More Accessible

	Conclusion
	References 



