
I ♥ Hacker News

Expanding Qualitative Research Findings by Analyzing Social News Websites

Titus Barik
ABB Corporate Research

Raleigh, North Carolina, USA
titus.barik@us.abb.com

Brittany Johnson
NC State University

Raleigh, North Carolina, USA
bijohnso@ncsu.edu

Emerson Murphy-Hill
NC State University

Raleigh, North Carolina, USA
emerson@csc.ncsu.edu

ABSTRACT
Grounded theory is an important research method in empiri-
cal software engineering, but it is also time consuming, te-
dious, and complex. This makes it difficult for researchers to
assess if threats, such as missing themes or sample bias, have
inadvertently materialized. To better assess such threats, our
new idea is that we can automatically extract knowledge from
social news websites, such as Hacker News, to easily replicate
existing grounded theory research — and then compare the
results. We conduct a replication study on static analysis
tool adoption using Hacker News. We confirm that even a
basic replication and analysis using social news websites can
offer additional insights to existing themes in studies, while
also identifying new themes. For example, we identified that
security was not a theme discovered in the original study
on tool adoption. As a long-term vision, we consider tech-
niques from the discipline of knowledge discovery to make
this replication process more automatic.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design; I.1.m [Computing
Methodologies]: Miscellaneous

Keywords
grounded theory, computer-mediated discourse, Hacker News,
representativeness, theoretical saturation

1. THE PROBLEM
Because human activities play a central role in software

development, many research methods borrow from traditional
empirical disciplines that study human behavior, such as
sociology or anthropology [4]. Motivated by the desire to
understand the experiences of actual software practitioners,
grounded theory is one such empirical research method that
has been applied to the study of software development [2].

While researchers disagree on the “correct” execution of
grounded theory practices [12], the basic tenet of grounded

theory is that insights are generated from collected data,
which are then coded, or categorized, in a bottom-up fashion
to form a theory. In essence, grounded theory is “a method
for discovering the real problem that exists for the partic-
ipants in a substantive area rather than what professional
researchers may believe is their problem” [1]. As Brown notes,
“the mandate of grounded theory is to develop theories based
on people’s lived experiences rather than on proving or dis-
proving existing theories” [3]. Put another way, grounded
theory provides a systematic and formal approach to ask
software practitioners: “What’s going on here?”

Unfortunately, grounded theory is also time consuming,
tedious, and complex [10] — and like all research methods,
has its own requirements, affordances, and limitations. For
technical communities who engage largely in quantitative
research, three of these requirements cause much angst. First,
grounded theory requires that we use theoretical sampling,
that is, sampling to maximize the diversity of the individuals
rather than the size of the sample. Second, the method
requires us to reach theoretical saturation, or sampling to the
point in which no new data appear — that is, a “stop-rule”.
Third, replication, or other forms of data triangulation, is
the recommendation for transferability of the theory.

A significant threat is that the grounded theory guidelines
for these requirements are presented under some ideal model
of unbounded time and infinite constraints — in practice,
however, this model is unsatisfiable [8]. For example, sam-
pling may be constrained by physical and geographic factors,
which in turn in reduce diversity and trigger theoretical sat-
uration prematurely. And despite its importance, the time
consuming nature of grounded theory studies, as well as finite
budgets, means that the likelihood that one will actually a
conduct a replication is rare [11].

The confluence of these threats makes it difficult for re-
searchers to assess the quality of the theory in grounded
theory. To address this challenge, this paper investigates the
suitability of using posted comments in social news websites
as a source of knowledge to mitigate these threats. In the
longer term, we propose techniques from knowledge discovery
and databases (KDD) and adapt them to grounded theory
processes to allow for automatic replication.

2. WHAT IS THE NEW IDEA?
Our new idea is that we can automatically extract knowl-

edge from comments on social news websites, such as Reddit1,

1https://www.reddit.com/

1

2

Coding

Coding Theory

Theory

Search
Probe

Revise /
Assess

Figure 1: A comparison of the method for (1) a clas-
sical empirical studies and (2) a social news website
study. In this scenario, a replication study (2) is
conducted using Hacker News. Filtering and topic
analysis can be automatically or semi-automatically
performed. The output of this replication can then
be compared with the original empirical study. The
double-arrows reflect that grounded theory is not
a step-by-step procedure, but an iterative way of
thinking about data.

Slashdot2, and Hacker News3, to obtain software developer
experiences and beliefs for the types of topics that would typ-
ically be encountered or asked in grounded theory research.
Importantly, unlike surveys or interviews, which require ac-
tive recruitment to obtain such information, our approach
exploits latent knowledge from historical conversations about
such topics.

For example, in a technical community, a software engi-
neering researcher might ask the research questions, “Why
don’t developers use static analysis tools?” [6], “What makes
a great software engineer?” [7], or “What are the practices of
agile teams?” [5]. We postulate that when such questions are
applied against an appropriate social news website, the qual-
ity of the results are comparable to the results obtained from
empirical research approaches with similar output artifacts

— such as transcripts obtained in interviews.
The implementation of our idea can be used to enhance

software engineering research in several ways. For example,
consider Fig. 1-1, in which an empirical researcher has al-
ready conducted a grounded theory study in which he has
interviewed participants, coded the responses, and generated
a theory. However, the researcher is concerned about the use
of student subjects in the study. In our approach (Fig 1-2),
the researcher can simply submit a search probe to a social
news website using the research question. Because these web-
sites catalog a diverse set of stories, comments relevant to the
researcher’s probe are likely to exist in the dataset. Using
analysis software that implements our technique, the soft-
ware will extract relevant comments, use machine learning to
automatically or semi-automatically code and categorize the
responses, and allow the researcher to evaluate the generated
theory against the theory derived from the empirical study.

Prior to conducting an in-person empirical study, a re-
searcher may use our technique as a pilot to quickly identify
interesting responses to their proposed software-related re-
search question. The researcher can use these results as a
tool to guide their coding strategies, by having a set of seed
responses. Finally, given a diverse enough dataset, we may
also be able to treat this technique as a first-class, stand-alone
method for conducting grounded theory research.

2http://www.slashdot.org/
3https://news.ycombinator.com/

3. WHY IS IT NEW?
Grounded theory practices have been successfully applied

to online software engineering communities to extract useful
knowledge. For example, in addition to quantitative analysis,
Vendome and colleagues conducted grounded theory on com-
mit notes and issue tracker discussions in GitHub to identify
why developers change software licenses [15]. Tsay and col-
leagues used grounded theory in GitHub to understand how
project members evaluate and discuss contributions to the
project [14]. Through StackOverflow4, Nasehi and colleagues
used grounded theory on user posts to identify characteristics
of effective code examples [9].

However, we are unaware of any research in software engi-
neering that has explicitly attempted to use social news web-
sites to answer multiple grounded theory questions through
a generalized technique. Nor are we aware of any efforts to
replicate grounded theory studies using online communities.

Our own grounded theory work in understanding why
developers use or do not use static analysis tools5 is the
catalyst for the new idea described in this paper [6]. Our
interest in this topic is motivated by the experiences in our
research lab regarding the cost of conducting grounded theory
studies, as well as our desire to increase our own confidence
in these types of studies. Thus, our static analysis adoption
work is the basis for this paper.

4. A PROOF-OF-CONCEPT REPLICATION
OF TOOL ADOPTION

In this section, we conduct a proof-of-concept replication
study using our proposed idea. We perform replication to our
previous work on why developers don’t use static analysis
tools [6]. In the original study, we used 20 participants with
industry experience. The study session consisted of a semi-
structured interview, followed by an interactive interview. A
grounded theory analysis was conducted on the transcripts
from those interviews.

For purposes of space, we replicate only the primary ques-
tion from the study, “What reasons do developers have for
using or not using static analysis tools to find bugs?” In
this replication, we use Hacker News as the underlying data
source.

We chose Hacker News for this replication for several rea-
sons. First, it has active discussions, with over 7.5 million
comments. Second, Hacker News attracts a technical audi-
ence, which means responses to grounded theory questions
relating to software engineering are abundant. Third, Hacker
News has strict moderation guidelines, as well as comment
ranking through a points system, both of which help to
enhance the overall quality of comments.

Using Hacker News, we validate our concept through three
research questions:

RQ1 Is there enough knowledge available within Hacker
News to replicate our study?

RQ2 Are there codes (that is, themes) that we obtain from
Hacker News that we failed to identify in our study?

4http://stackoverflow.com/
5Static analysis tools provide analysis on source code, without
actually executing the program. They are commonly used
for finding defects in code.

RQ3 Can knowledge extraction be conducted automati-
cally?

To answer these research questions, we first filtered all of
Hacker News using the search term “static analysis tools”.
This returned 601 comments by 477 users, from March 20,
2008 to June 4, 2015. For the 78 users who had more than
one comment, the mean number of comments was 2.6. Al-
though using this search term fails to retrieve comments that
may be related to static analysis but do not specifically use
these terms (e.g., lint), we felt that the number of returned
results were sufficient for a preliminary study. We then ran-
domly sampled a subset of 100 comments (94 users) for our
evaluation below.

4.1 Expanding Existing Themes (RQ1)
To evaluate RQ1, the first author performed a closed card

sort on the comments using the same themes as identified
in the original study, discarding unrelated comments. The
original study contained four themes. One theme, Result
Understandability, was derived from the interactive interview.
We felt it unlikely that Hacker News would contain any
comments pertaining to a very specific experimental task,
and as a result, combined this theme with Tool Output. This
resulted in three themes: Tool Output, Collaboration, and
Customizability.

Tool Output includes comments related to the output
produced by the tool. As a result of merging Result Under-
standability, this theme also includes comments pertaining to
the ability or inability to understand or interpret the results
produced by a static analysis tool.

As with the original study, we identified the high rate of
false positives in tool output as a frustration for developers:6

[T]he real problem is false positives. If it was
caught, but the report was buried in hundreds or
thousands of crappy reports about things that ac-
tually aren’t problems, then it might as well not
have been caught. (7567485)

On the other hand, some tools appear to do a better job
than others:

I hated every attempt at static analysis until I
started programming with Xcode. In my usage,
Build and Analyze is always right — that’s the dif-
ference. Other tools (lint, FXCop) are too noisy.
(4849800)

Our replication also identified an issue that was not iden-
tified in the original study — the impact of an incorrect fix.
For example, two comments in the set relayed the negative
experiences when a tool did this. Here’s one:

I love developing in rails but let’s be clear, refac-
toring ruby is just painful at the moment. Yester-
day I decided to rename a model, it took over an
hour to get the tests passing again. (2241462)

Collaboration includes comments about using static anal-
ysis tools in a team or collaborative setting.

As with the original study, we identified that tools are
used to enforce coding standards within the team:
6The number in parentheses for each quote is the object ID
in the dataset, for example, http://hn.algolia.com/api/
v1/items/7567485.

The obvious problem is that if you want to use the
C subset in a multi-person project (whose team
evolves over time), you have to create a way to
enforce that. (3953726)

Tools are also used in conjunction with collaborative pro-
cesses, such as code reviews. Tools can guide developers
in learning best practices, and, by having tools, the devel-
oper can use their time more effectively for higher-level code
review issues:

The best thing I can say is that when interacting
with other people, subtle course correction early
on has a big effect in the long run. . . . Code re-
view is an easy one if you’re not doing it already
. . . as well as doing a little bit of static analysis
to automatically detect and fix certain classes of
errors. By doing these things, every engineer gets
guided to the right path without needing to reach
out to anyone. (5787595)

We automatically run FindBugs (along with unit
test etc) on our code base every time new code is
pushed by a developer and it definitely helps pick
up quirky little errors much more cheaply than
code reviews. (1460517)

Customizability includes comments about being able to
customize the tool, for example, when modifying rule sets.

Again, as with the original study, we were able to confirm
that tool customizability needs to be dead simple, that some
developers have no interest in doing even minimal customiza-
tion, and that the way in which a tool is configured plays a
large role in the output that the developer receives:

Worse, lint was part of the original C toolchain,
but very few people cared to use it, because they
couldn’t be bored [bothered] to tune the tool to their
projects. This is the type of error that any static
analysis tool would easily pick. (7282227)

To our surprise, and unlike the original study, we found
that some developers genuinely seem to enjoy customizing
their tools extensively:

You see, I have file/project trees, warning/error
buffers, build status and shells (among other things)
in Vim and Emacs with keyboard-driven access to
all the tools I use, without having to hunt through
a twisty passage of menus . . . [e]ven static analysis
and error highlighting is available. (3548469)

In summary, we assert that RQ1 is supported, and the
use of social news websites can provide additional credibility
for themes in existing studies. We also discovered previously
unidentified nuances with some of the themes, which supplied
additional insights. As a result, we are more confident in the
precision of our themes in the original study.

4.2 Discovering Additional Themes (RQ2)
To evaluate RQ2, the first author re-examined the com-

ments and performed an open card sort to find comments
that did not fit into any existing themes. If we are able
to identify themes not found in the original study, it would

suggest that the original study did not achieve a theoretical
saturation that is acceptable for transferability of the theory.

The replication study did in fact identify several themes
not discovered in the original study. These themes include
awareness (not knowing about a particular tool), cost (regard-
ing the price of the tool), ego (self-evaluation with respect to
peers or tools), management (mandates from management
to require tool use), maintenance (improving the quality of
the code, and supporting legacy languages not designed for
static analysis), and security (relating to identifying exploits
or other vulnerabilities in the source code). Therefore, we
assert that RQ2 is also supported.

Briefly, let’s inspect one of the themes, Ego. Even without
knowing the individual, we can glean quite a bit of insight
about how personality can influence adoption decisions about
tools:

Unfortunately the decision to use static analysis
tools would have to come from developers who are
comfortable admitting they make mistakes some-
times. It takes a special kind of ego to write an
SSL library with no unit tests, not turn on com-
piler warnings, and not use static analysis tools.
(7283205)

4.3 Automatic Extraction of Codes (RQ3)
RQ1 and RQ2 provide support that it is not only fea-

sible, but also useful, to extract relevant knowledge about
a software-related research question through the use of so-
cial news websites. However, a significant amount of effort,
roughly 2.5 hours, was still required to actually perform the
coding activities in grounded theory — and thus far we have
not discussed any mechanisms to aid the researcher in this
effort.

For RQ3, we have only begun to examine machine learning
approaches to assist with the coding process. One approach
to tackling this problem may be to utilize the work of Titov
and McDonald, who extend standard modeling techniques
such as LDA and PLSA to induce multi-grain topics [13].
The unsupervised algorithm is able to cluster topics into co-
herent, hierarchical concepts. Application of such techniques
to grounded theory coding can facilitate automated theory
generation. Still other ideas from knowledge discovery and
databases (KDD) might be successfully adapted to grounded
theory processes, and warrant further investigation.

5. CONCLUSION
Our new idea is an approach in which empirical researchers

can leverage social news websites to extract knowledge about
software-related research questions that would typically be
asked or encountered in grounded theory research. To demon-
strate the utility of this approach, we have conducted a
proof-of-concept replication of static analysis tool adoption,
through Hacker News.

Our approach can be used to augment traditional grounded
theory methods in several ways. First, it can extend theoret-
ical sampling, by providing experiences outside of those that
may be attainable through physical interviews. Second, it
can inexpensively help to assess and identify gaps in theo-
retical saturation, through relatively simple queries against
social news websites. Third, our approach offers a convenient
source for replication studies, which aids the transferability
of the theory.

With automatic analysis infrastructure, we envision that
researchers will not only be able to conduct grounded theory
replications to assess the validity of existing grounded theory
studies, but also to rapidly understand and theorize about
emerging software developer experiences.

6. ACKNOWLEDGMENTS
This material is based in part upon work supported by the

National Science Foundation under grant numbers 1252995
and 1217700.

7. REFERENCES
[1] S. Adolph, W. Hall, and P. Kruchten. A methodological

leg to stand on: Lessons learned using grounded theory
to study software development. In CASCON ’08, pages
1–13, Oct. 2008.

[2] S. Adolph, W. Hall, and P. Kruchten. Using grounded
theory to study the experience of software development.
Empirical Software Engineering, 16(4):487–513, Jan.
2011.

[3] B. Brown. Daring Greatly. Gotham, 2012.

[4] S. Easterbrook, J. Singer, M.-A. Storey, and
D. Damian. Selecting Empirical Methods for Software
Engineering. In F. Shull, J. Singer, and D. Sjøberg,
editors, Guide to Advanced Empirical Software
Engineering, chapter 11, pages 285–311. 2008.

[5] R. Hoda, J. Noble, and S. Marshall. Developing a
grounded theory to explain the practices of
self-organizing Agile teams. Empirical Software
Engineering, 17(6):609–639, Apr. 2011.

[6] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge.
Why don’t software developers use static analysis tools
to find bugs? In ICSE ’13, pages 672–681, May 2013.

[7] P. Li, A. Ko, and J. Zhu. What makes a great software
engineer? In ICSE ’15, pages 700–710, May 2015.

[8] M. Mason. Sample size and saturation in PhD studies
using qualitative interviews. Forum: Qualitative Social
Research, 11(3), Aug. 2010.

[9] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns. What
makes a good code example?: A study of programming
Q&A in StackOverflow. In ICSM ’12, pages 25–34,
Sept. 2012.

[10] J. S. Olson and W. A. Kellogg, editors. Ways of
Knowing in HCI. Springer, 2014.

[11] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo. The
role of replications in Empirical Software Engineering.
Empirical Software Engineering, 13(2):211–218, Jan.
2008.

[12] R. Suddaby. From the editors: What grounded theory
is not. The Academy of Management Journal,
49(4):633–642, Aug. 2006.

[13] I. Titov and R. McDonald. Modeling online reviews
with multi-grain topic models. In WWW ’08, pages
111–120, Apr. 2008.

[14] J. Tsay, L. Dabbish, and J. Herbsleb. Let’s talk about
it: Evaluating contributions through discussion in
GitHub. In FSE ’14, pages 144–154, Nov. 2014.

[15] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di
Penta, D. German, and D. Poshyvanyk. License usage
and changes: A large scale study of Java projects on
GitHub. In ICPC ’15, pages 218–228, 2015.

