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Abstract
This paper describes the development of subsymbolic ACT-R
models for the Concentration game. Performance data is taken
from an experiment in which participants played the game un-
der two conditions: minimizing the number of mismatches/
turns during a game, and minimizing the time to complete a
game. Conflict resolution and parameter tuning are used to
implement an accuracy model and a speed model that capture
the differences for the two conditions. Visual attention drives
exploration of the game board in the models. Modeling re-
sults are generally consistent with human performance, though
some systematic differences can be seen. Modeling decisions,
model limitations, and open issues are discussed.
Keywords: Cognitive modeling; ACT-R; Concentration
game; memory game; speed-accuracy tradeoff

Introduction
The game of Concentration has been used for decades as an
exercise in reasoning about probabilities (Kirkpatrick, 1954)
and for testing theories of memory (Eskritt, Lee, & Donald,
2001). Recently it has also become a target for cognitive
modeling.

The Concentration Game, also known as the Memory
Game, is a classic solitaire card game in which cards are laid
face down on a board or table. On each turn, the player turns
over a first card and then a second card so that both are face
up. If the two cards match (i.e., if they show the same sym-
bol), the cards are removed from the board. If the cards are a
mismatch, then they are turned face down again and the next
turn proceeds. The object of the game is to turn over pairs of
matching cards until all of the cards have been removed from
the board. For every card on the board, there exists exactly
one matching card.

In this paper we describe an experiment using an online
version of Concentration with 16 cards arranged on a grid.
179 participants played the game under two conditions, accu-
racy and speed. We describe ACT-R models for each condi-
tion. We show that some aspects of a speed/accuracy tradeoff
for this task can be reproduced in a simple way in conflict res-
olution for productions that retrieve information about cards
from memory (Gerjets, Scheiter, & Tack, 2000). Modeling
results are qualitatively similar to participant data.

To our knowledge, no ACT-R models of the Concentration
game exist in the literature. Our results are preliminary, but
we believe they provide useful insight into a rich and complex
task for cognitive modeling research.

Related Work
Lavenex et al. (2011) describe game play as a procedure that
retrieves card information from a fixed-size memory. On a

given turn, if two cards in memory are a match, both are
turned face up. The matching cards are then forgotten. Oth-
erwise, the first card is chosen at random from those on the
board but not in memory. If a match is found in memory, that
becomes the second card; if not, a second card is turned face
up at random. New cards are added to memory, with matches
being preferred if memory capacity is reached.

Anderson et al. (2012) analyze a more complex variant of
Concentration in which cards show math or verbal puzzles in-
stead of symbols; these must be solved to determine whether
cards are a match. An Imperfect Memory Model (IMM)
records information about the board: “The model forgets the
location of a matching card with probability p f . However,
even if the card is forgotten the model remembers that there
was a matching card. If the model forgets the location of a
card it tries one guess among the visited cards” (Anderson et
al., 2012, p. 637). Participant choices are modeled by a 625-
state Hidden Markov Model that uses the IMM to estimate
transition probabilities. Combining the IMM with click tim-
ing and fMRI data, Anderson et al.’s model predicts the most
probable path a participant takes through the game at better
than 80% accuracy.

The ACT-R models developed in the body of this paper
are simple, but they extend Lavenex et al. by incorporating
cognitive constraints (e.g., they relax the assumption of per-
fect retrievals from a fixed-size memory, and they identify
possible mechanisms for dealing with visual aspects of the
game). While not approaching the sophistication of Anderson
et al.’s work, our models explore a different aspect of behav-
ior, speed/accuracy tradeoffs, which have been studied in only
a few areas of the ACT-R architecture (e.g. Schneider & An-
derson, 2012; Gerjets et al., 2000).

Method
We implemented a computer-based version of the Concentra-
tion game, as shown in Figure 1. The interface consists of
a 4× 4 grid of tiles, each tile 100 pixels square, to represent
cards. When face down, a card is black. When face up, the
card shows a white background with a single, centered black
letter from the set A, B, C, E, H, I, P, and Q. Letters are pre-
sented in the Helvetica Neue LT Std 65 Medium typeface.
We chose these letters and typeface to minimize letter confu-
sion (Mueller & Weidemann, 2012).

In each trial, the participant turns over a card by clicking on
it. When two cards are face up, their symbols are displayed
for 1 second; at that point the cards are turned face down (in
case of a mismatch) or cleared from the board (in case of a
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Figure 1: The Concentration interface, speed condition.

match). The participant may proceed without waiting for the
system to turn cards back over, by clicking on any facedown
card in the case of match, or by clicking on any card at all in
the case of a mismatch. In either case, the clicked card then
becomes the first card of the next turn. A trial is complete
when all cards have been cleared from the board.1

To recruit participants for our study, we used snowball
sampling, a technique in which initial participants help re-
cruit additional acquaintances through various online social
networks. After clicking on a recruitment message, partici-
pants completed a consent form followed by an optional sur-
vey asking for their age, gender, computer skills, and the type
of pointing device that they would use for the study. The par-
ticipant then played a small practice round with an in-game
tutorial using a 2×2 board to become familiar with the game
rules. Finally, the participants played the game.

A total of 179 out of 260 participants (69%) finished the
experiment, though not all answered every survey question.
We designed the experiment to take 10-15 minutes. The en-
tire experiment lasted 9.6 minutes on average, not including
times from 6 outlier players who took more than 1.5 hours to
complete the experiment. 68 (38%) reported their gender as
female, and 110 (61.5%) as male. Ages ranged from 16 to 67
with a mean of 30. With respect to computer skill, the break-
down among participants was 8 at the beginner level (4.5%),
41 intermediate (22.9%), 90 advanced (50.3%), and 39 ex-
pert (21.8%). For input devices, 116 used an external mouse
(64.8%), 55 a touchpad (30.7%), 4 a pointing stick (2.2%),
and 3 a trackball (1.7%). Because participants self-selected
for the study, it is possible that the participant demograph-
ics are biased towards individuals who enjoy these types of
games or have a better than average memory.

All participants were asked to play the game under two
conditions: accuracy and speed. The conditions were distin-
guished by instructions and payoffs (Wickelgren, 1977). In
the accuracy condition, participants were shown the number
of mismatches on the screen during their game play, and they

1Completing a turn requires just two clicks, unlike Anderson et
al. (2012), in which a third click ends each turn; our game design
does not allow us to distinguish between the end of one turn and the
beginning of the next, which limits our analysis.

Table 1: Participant performance, mean (standard deviation).

Condition Turns Time
Accuracy 15.7 (4.0) 40.99 (16.12)
Speed 18.4 (4.9) 32.11 (11.96)

were scored on their ability to minimize mismatches. (The
number of mismatches is a surrogate for the number of turns,
because turns = mismatches+matches, where matches is al-
ways 8 to clear a 4×4 board; for consistency with the litera-
ture, we will discuss only turns in the remainder of this paper.)
In the speed condition, participants were continuously shown
the elapsed time in minutes and seconds on the screen, and
they were scored on minimizing the time that it takes to clear
the board. Participants played ten trials, each trial with a dif-
ferent board arrangement. Five of these trials were performed
under one condition followed by five trials in the other condi-
tion. Within each condition, all participants played the same
set of five boards in the same order. The order in which partic-
ipants played each condition (accuracy rounds first or speed
rounds first) was randomized. In brief, we have a repeated
measures experiment, with participant being a random effect.

Results
To save space, we report only those results that are relevant
to our modeling effort. Data cleaning reduced the 179 par-
ticipants to 168, eliminating participants who had very long
games (pauses of over 20 seconds). Our experiment results
are as follows, with summary statistics in Table 1:

• Participants average fewer turns in the accuracy condition
than in the speed condition (15.7 versus 18.4 turns, a differ-
ence of 2.7 turns; neglecting secondary variables, a within-
subjects ANOVA gives F = 82.26, p < 0.001).

• Participants average less time in the speed condition than
in the accuracy condition (32.11 versus 40.99 seconds, a
difference of 8.88 seconds; neglecting secondary variables,
a within-subjects ANOVA gives F = 41.29, p < 0.001).

The number of turns in the accuracy condition is com-
parable to values obtained in other experiments: 14.5
turns (Lavenex et al., 2011) and 16.9 turns (Anderson et al.,
2012). 27 participants averaged below 13 turns on their five
accuracy games, not far above Anderson et al.’s estimate of
12.24 turns for optimal performance. As expected, we also
found significant variation across participants in both condi-
tions, as shown in Figures 2 and 3; the distributions are trun-
cated to better show their shapes. The range of turns was [10,
49] over all participants in the accuracy condition, [12, 47] in
the speed condition. Completion times are similarly variable,
with a range of [14.32, 129.44] in the accuracy condition and
[12.60, 92.92] in the speed condition.

Game performance can be characterized in a number
of ways beyond turns and time. Two interesting short-
term strategies used by players are exploration—visiting
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Figure 2: Participant turns per game.
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Figure 3: Participant time per game.

“new” cards, given memory limitations—and exploitation—
successfully revisiting cards to find matches.

One relevant measure of exploration is the probability of
not revisiting a card, especially on the first click of a turn; this
is 66.4% in the accuracy condition and 54.2% in the speed
condition. Thus, exploration is performed more often in the
former case.

A useful measure of exploitation is the probability of
choosing a match to a first card, given that the matching card
has already been visited. Participants are successful 74.0% of
the time in the accuracy condition (higher than Anderson et
al.’s value of 62%, which we attribute to the greater cognitive
demands of their game), and 62.4% in the speed condition.
To summarize, players are better at both exploring the board
as well as exploiting their limited memory in the accuracy
condition, resulting in fewer mistakes, but lower completion
times in the speed condition suggest that they trade off this
accuracy for speed with some success.

Modeling
Our goal in modeling with ACT-R is to use the architecture to
explain how our experimental results could arise. We worked
within the basic architecture, without extensions, and relied
on ACT-R parameters to fit our models to participant data.
We built a baseline model for the accuracy condition, with-
out subsymbolic processing, and then modified the model to
handle the speed condition. Finally, we enabled subsymbolic
computations, yielding a total of four models.

We started by translating Lavenex et al.’s description into

TAKE-TURN(memory)

pair = RECALL-PAIR(memory) //
if pair not recalled //

f irst. location = RANDOM-NIM(memory)
f irst.symbol = TURN-OVER( f irst. location)
second. location = RECALL(memory, f irst.symbol)
if second recalled

TURN-OVER(second. location)
else second. location = RANDOM-LOCATION()

second.symbol = TURN-OVER(second. location)
else TURN-OVER(pair.first. location) //

TURN-OVER(pair.second. location) //
if MATCH( f irst.symbol, second.symbol)

REMOVE(memory, first)
REMOVE(memory, second)

else STORE(memory, first)
STORE(memory, second)

Figure 4: Algorithm based on Lavenex et al. (2011).

an explicit algorithm, shown in Figure 4. With a memory size
of 4, the algorithm generates a reasonable prediction for the
number of turns under our accuracy condition. Simulation of
1,000 games, sampled from the ten board arrangements used
in our experiment, produces a mean of 15.0 turns per game.

At a more detailed level, however, the algorithm does not
quite reflect participant behavior. Specifically, consider when
a pair of matching cards is recalled. This happens when the
second card visited on a turn is added to memory; the pair
will be taken off the board on the next turn. Because mem-
ory is limited, though, a pair is not always identified even if
both cards have been seen before. In simulation, the second
card on a turn matches an item that has been visited before in
about 20% of turns. The algorithm retrieves such a pair with
80% probability; in the remaining cases, the matching card
is no longer in memory. In contrast, in the same situation,
participants choose the matching cards on the following turn
only about 45% of the time. More commonly, 52% of the
time, participants chose neither of the matching cards on the
following turn. This suggests to us that identifying pairs in
memory for the following turn is not critical in participants’
strategies. We thus simplified the algorithm in Figure 4 by
removing the lines marked //.

The next issue we addressed was representation of infor-
mation in memory. The algorithm records the location and
symbol of a card together. Our model follows the algorithm in
recording card locations and symbols in a single card chunk,
with a location and a symbol slot, and new chunks are created
with these slots filled when a card on the board is first visited.

A question for model design is whether card locations
should be treated as positions in space or rather simply as
unique identifiers, as the algorithm does. We found some spa-
tial patterns in the participants’ choice of cards and their suc-
cess in identifying matches. When a player chooses a card,
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sometimes its match has been visited before, but that match-
ing card is not always chosen. Our intuition was that the lo-
cations of the mismatches would be closer to the matching
card rather than uniformly distributed over the board. Fig-
ure 5 shows a representative distribution over all participant
trials for accuracy and speed conditions, with the matching
card in the top left corner.

0.803 (477) 0.017 (10) 0.017 (10) 0.013 (8)
0.618 (436) 0.012 (7) 0.016 (8) 0.005 (3)
0.015 (9) 0.024 (14) 0.007 (4) 0.019 (11)
0.009 (6) 0.030 (21) 0.023 (15) 0.016 (11)
0.017 (10) 0.007 (4) 0.010 (6) 0.008 (5)
0.021 (15) 0.019 (14) 0.007 (4) 0.024 (14)
0.013 (8) 0.008 (5) 0.015 (9) 0.007 (4)
0.005 (3) 0.018 (9) 0.009 (5) 0.014 (8)

Figure 5: Participant probability of correctly choosing a pre-
viously visited card, top left (with raw counts over all trials).
Speed trials are italicized. The grid represents the 4x4 game
board.

The mean probability of choosing a specific non-matching
location in the accuracy condition when the matching card
has been visited before is 1.7%, with a maximum of 5.7%.
For the speed condition, the mean probability is 2.5%, with
a maximum of 7.7%. There may be spatial patterns in the
cases where the matching card is not chosen, dependent on
its location, but we have not yet identified a way to predict
them. Given these small probabilities, the models treat the
locations of cards only as identifiers.

An important related issue is the interaction between vi-
sion and memory when exploring the board—the algorithm
chooses the first card on a turn from those not in memory.
To narrow the space of possible mechanisms, we examined
the relationship between the duration between clicks and the
number of cards seen; we find a near-zero correlation. We
also find no relationship between click duration and the num-
ber of cards remaining on the board. This suggests to us that
if memory is involved in the choice of new cards, it is not a
simple serial elimination of cards that have been seen.

The algorithm can explicitly remove items from memory
via the REMOVE operator (matching cards taken off the board
should no longer be considered). The algorithm also has per-
fect memory, with failures due to capacity constraints. Fi-
nally, it can also determine whether a given card is not in
memory (for the purpose of visiting a new card). ACT-R
doesn’t directly support removing items from memory. To
choose cards not in memory in approximately constant time,
the models rely on the visual attention capabilities of ACT-R.
The models choose an unattended location for the first card
on a turn and do the same when choosing a second card at
random. Reliance on the visual system rather than memory
retrievals to initiate a choice ensures that only cards still on
the board will be considered.

The models implement the algorithm as productions in a

straightforward way. The models begin by choosing an unat-
tended card, clicking it, and reading the symbol. The chunk
in the visual buffer is copied into the imaginal buffer for stor-
age. The models then check for a second card in memory
that matches the first. If a matching card is found (subject
to memory limitations), that card is clicked. Otherwise, an-
other unattended card is chosen, clicked, read, and stored in
memory.

All of the above applies to the models for the accuracy
condition. The models for the speed condition differ in a
simple way: after the first card on a turn has been visited,
the model may skip the memory retrieval of a possible match
(via a different production) and instead choose an unattended
card. The intuition is that participants speed up their ac-
tions by sometimes bypassing the time needed for memory
retrievals, at the cost of missing matches. We implemented
this by enabling randomness, so that the retrieval is skipped
with a probability of 0.5. The speed model also contains ad-
justments to default motor module parameters (burst time and
feature preparation time), to reduce the time to select targets.2

Our analysis of motor issues has been minimal so far, in part
due to the noisiness of movement in the participant data.

Results for these models on the Concentration game are
shown in Table 2, in the ACT-Rbaseline rows. Model entries
are based on 1,000 runs of the accuracy and speed models
on board arrangements sampled from the ten used in the ex-
periment, in a game simulation that uses ACT-R’s interface-
building facilities.3 The baseline models fit human perfor-
mance surprisingly well. The most obvious (and expected)
discrepancy is the accuracy model’s perfect memory of vis-
ited cards, shown in the Match column of the table. Other
metrics show that the models revisit already-seen cards more
often than participants, which increases both the number of
turns and completion time, but this is offset by generally
higher accuracy in memory retrievals than the participants.

Baseline model distributions of the number of turns and
time per game are shown in Figures 6 and 7, overlaid with
participant data. The means of the model distributions are
close to the participant distributions, but there are clear differ-
ences, with the participant distributions having earlier peaks
and longer tails. The models fail to capture some aspects
of participant behavior, perhaps because participants apply a
wider range of strategies than represented in the models.

To better reflect memory limitations, we enabled subsym-
bolic computations in the models and tuned ACT-R declar-
ative parameters to approximate human performance. This
contrasts with the algorithm’s direct use of capacity con-
straints to enable memory failures and with Anderson et al.’s

2This corresponds to (sgp :er t :motor-burst-time 0.01
:motor-feature-prep-time 0.01).

3The ACT-R game simulation is a simplification of the game
used by participants in that all card symbols are visible at the start of
the game; this allows us to avoid programming a one-second time-
out to turn cards face down. Nevertheless, the models do not read
any card symbol until after the card has been clicked and the state of
the manual buffer is free.
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Table 2: Mean participant and model performance across conditions, for turns and time per game; mean probability per game
of visiting a previously seen card as the first card (Revisit1), the second card when it is a match (Revisit2+), and the second card
when it is not a match (Revisit2−); the mean probability of choosing a matching second card when it has been seen before.

Condition Turns Time Revisit1 Revisit2+ Revisit2− Match
Accuracy Participant 15.7 40.99 0.336 0.883 0.226 0.740

ACT-Rbaseline 15.1 33.50 0.338 0.842 0.276 1.000
ACT-Rsc 15.9 36.60 0.383 0.848 0.315 0.805

Speed Participant 18.4 32.11 0.458 0.900 0.358 0.624
ACT-Rbaseline 18.6 24.58 0.487 0.902 0.414 0.619
ACT-Rsc 19.5 26.26 0.516 0.913 0.412 0.597
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Figure 6: Baseline model turns per game (accuracy in gray,
speed in light blue).
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Figure 7: Baseline model time per game (accuracy in gray,
speed in light blue).

p f . We further modified the speed model, by associating util-
ities with the productions for retrieval and for choosing an
unattended second card, and adding a small amount of noise.4

Results are shown in the ACT-Rsc rows of Table 2. The
changes to the models alter the numbers but not the overall
patterns in the relationship between the accuracy and speed
models, or between the models and the participant data. In

4Parameter values were established by optimization (hill-
climbing) over small neighborhoods, using turns for the objective
function. Specifically, the accuracy model is parameterized with
(sgp :esc t :bll 0.5 :blc 3 :rt 2.4). The speed model
adds (sgp :ul t :egs 1 :er t) and (spp retrieve-second
:u 10) (spp random-second :u 12) (spp find-match
:reward 8).

particular, for the new accuracy model, the probability of
choosing a second card that matches the first card, given that
the second card has been seen before, is a more reasonable
80.5%, though still above the participants’ value of 74.0%.
The distributions of turns and time for the new models are
similar to those in Figures 6 and 7, shifted slightly to the
right and with a wider spread. While the absolute estimates
of performance are not perfect, all are within the bounds of
participant performance. Further tuning of model parameters
is possible (but changes should be motivated by specific hy-
potheses, which we are still developing). We also find that the
metrics in Table 2 are very sensitive to small changes in the
relationship between the baseline constant and the retrieval
threshold.

To summarize, the accuracy and speed models give a rea-
sonable match to participants on basic measures of perfor-
mance, though we also find systematic differences.

Discussion
A number of caveats apply to our work. Decisions different
from those we made are justifiable, and some would improve
our models.

One modeling challenge was that of “choos[ing]
at random a card from amongst those that are not
in. . . memory” (Lavenex et al., 2011, p. 137), in ap-
proximately constant time. Our models rely on visual
attention for this task. Given that the models revisit cards too
often, and that the distributions of the number of turns per
game consistently peak later than those of participants, we
believe that the models are relying too much on the visual
system for exploration, neglecting a memory component. A
different approach could involve a memory representation
that captures board information at a higher level than that
of individual cards. Other possibilities are suggested by
Johnson, Wang, and Zhang (2003), who have extended
ACT-R to automatically encode relationships between visual
objects in declarative memory, and by Lyon, Gunzelmann,
and Gluck (2004), who model visuospatial working memory
using similarity values in declarative memory. These may all
be more cognitively plausible than our approach.

Our models ignore the spatial layout of cards, even though
this clearly influences the participants’ strategies. For exam-
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ple, the cards most commonly visited early in the game are in
the top row; these account for 49% of clicks before the first
match is found. The first three card choices in a game typi-
cally walk the top row from left to right: the leftmost card first
(67% of games), then the next card to the right (40%), and
then again to the right (35%). This may allow for participants
to exploit a form of distributed cognition: if a participant con-
sistently follows a specific spatial pattern, then by remember-
ing, “B was the first card I saw,” the location of that card
can be offloaded to the practiced procedure. Figure 1 sug-
gests another possibility, that visual patterns in the aggrega-
tion of cards on the board may aid memory; we might suspect
that the card directly under the top right card is more mem-
orable than the others. A spatial component, as proposed by
Gunzelmann and Lyon (2011), might support such retrievals.

A representation issue is raised by our models’ storage of
the location and symbol of a card in a single chunk. Follow-
ing Altmann (2000), separating these items would allow for
a more realistic representation of serial memory effects; also,
as Anderson et al. (2012) note, Concentration players may
remember having seen a card symbol before without remem-
bering its location (Eskritt et al., 2001).

Another issue is our procedural approach to handling the
difference between accuracy and speed trials, through conflict
resolution between productions, which is a coarse approxi-
mation. A better approach could involve a memory model in
which a longer period of time allocated for a retrieval would
be more likely to return a result. The Retrieval by ACcumu-
lating Evidence (RACE) model of memory by Van Maanen
and Van Rijn (2007) suggests one possible avenue.

If our procedural approach were to generalize to other
tasks, this would still leave open the question of how par-
ticipants make the transition between the speed and accuracy
conditions. The speed model incorporates a superset of the
productions in the accuracy model, and it would be straight-
forward to include these as low- or zero-utility productions in
the accuracy model. Learning new utility values poses chal-
lenging problems, however: participants were not given feed-
back per action or per turn about their performance, but rather
a running total of either mismatches or time elapsed. They
nevertheless adapted their performance successfully based on
these cumulative measures. This is a non-trivial accomplish-
ment; if we imagine that the fastest choices could be made by
devoting no cognitive resources to memory at all, we would
see purely random games in the speed condition that take
more than 60 turns to finish.

Finally, as suggested earlier, it’s important to recognize
that our work has mainly been on model fitting. Our models
constitute hypotheses about how Concentration is played and
possible explanations for performance differences between
the accuracy and speed conditions. Our models of accuracy
and speed represent the behavior of a hypothetical “average”
participant; we have not yet extended our work to the mod-
eling of specific participants, and our analysis of patterns in
their behavior is ongoing. Testing and validation of the as-

sumptions behind our models remain for future work.
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