
Compiler Error Notifications Revisited

An Interaction-First Approach for Helping Developers More Effectively
Comprehend and Resolve Error Notifications

Titus Barik, Jim Witschey, Brittany Johnson, Emerson Murphy-Hill
Department of Computer Science

North Carolina State University, USA
{tbarik, jim_witschey, bijohnso}@ncsu.edu, emerson@csc.ncsu.edu

Emerson Murphy-Hill
North Carolina State University

Department of Computer Science
emerson@csc.ncsu.edu

ABSTRACT
Error notifications and their resolutions, as presented by
modern IDEs, are still cryptic and confusing to developers.
We propose an interaction-first approach to help develop-
ers more effectively comprehend and resolve compiler error
notifications through a conceptual interaction framework.
We propose novel taxonomies that can serve as controlled
vocabularies for compiler notifications and their resolutions.
We use preliminary taxonomies to demonstrate, through a
prototype IDE, how the taxonomies make notifications and
their resolutions more consistent and unified.

Categories and Subject Descriptors
D.3.0 [Programming Languages]: General; D.2.6
[Software Engineering]: Programming Environments;
D.2.10 [Software Engineering]: Design

General Terms
Design, Human Factors, Languages

Keywords
Compiler error messages, IDE, visualization, taxonomy

1. INTRODUCTION
Programming is a cognitively demanding task [17]. One

demanding subtask is the cycle of comprehending feedback
as presented through compiler error notifications and artic-
ulating appropriate resolutions for each. In our experience,
it seems nearly every developer has stories about impene-
trable error notifications that caused them consternation.
Unfortunately, today’s integrated development environments
(IDEs) emit cryptic and confusing messages, leaving their
resolutions equally elusive, even for experts [16, 13].

When the IDE was itself a new idea, researchers recognized
its potential to present and resolve compiler messages in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

innovative ways, by taking advantage of graphics and multiple
windows [3]. Consider quick fixes, which augment text-based
notifications by offering candidate resolutions. While more
useful than text notifications alone, even quick fixes do not
fully realize the potential of the IDE. Quick fixes only offer
one mechanism for all errors, one that may not be appropriate
for every error.

This leads us to ask: How should error notifications be
presented, and for what errors? Does a single notification
style work for all errors? Should every error have a unique
notification, or is the best solution somewhere in between,
where some errors should be presented in the same way? Do
the resolutions offered by these tools actually align with the
way developers articulate them? We suggest a principled
approach to understanding this space will help us develop
more effective tools.

We propose two taxonomies that formalize an interaction
framework from human-computer interaction (HCI) research.
These taxonomies model notifications and resolutions and
can be used as a controlled vocabulary, which can be rea-
soned about both cognitively and computationally. Though
preliminary, we believe this research is useful and will provide
tool developers with new tools to design consistent, unified
presentations of notifications and their resolutions. We show
how abstract representations of notifications can be com-
putationalized, or expressed in a form that machines can
interpret, and how this representation supports tools that
help developers comprehend and resolve error notifications.
To demonstrate how tools can implement our formalism, we
introduce a language-agnostic prototype system in which
new visualizations, as well as quick fixes and other resolution
strategies, can be implemented.

2. RELATED WORK
Though researchers have previously identified the problems

developers encounter when interpreting and resolving error
notifications [2, 8, 18], few provide concrete solutions. As
early as the 1960s, researchers designed systems to support
developer comprehension of compiler error messages [9, 12, 7],
but much of this work has focused on text-only solutions that
do not take advantage of IDEs. Other researchers have writ-
ten guidelines for the development of error notifications [11,
15, 14], but these guidelines cannot be directly understood
by machines. There has also been recent research on systems
to help developers comprehend and resolve errors [10, 6, 13].
In particular, Hartmann and colleagues use a social recom-
mender system which provides suggestions to developers that

Output

Input

DeveloperCompiler

observation

articulationperformance

presentation

IDE

Figure 1: The interaction framework, instantiated
for IDEs.

cognitively align with their comprehension and resolution
process [6]. However, a limitation of this system is that the
suggestions require a corpus of human-generated fixes.

3. OUR APPROACH
We describe Abowd and Beale’s interaction framework [1],

how it models the interaction between developers and IDEs
(Section 3.1), and through which we identify areas for im-
provement. We propose two cognitively and computationally
expressive taxonomies for building tools that allow developers
to more effectively comprehend and resolve error notifications
(Section 3.2).

3.1 First Principles: Interaction Framework
Traver considered the difficulty of error message compre-

hension and resolution from an HCI perspective [16]. This
perspective offers a useful insight: Traver describes modern
compiler use, as enabled by IDEs, as a specialized instanti-
ation of the Abowd and Beale’s interaction framework [1].
However, conventional tools are modeled by the framework
only incidentally, and not by design. We believe designing
tools for interaction in a principled way will help us make bet-
ter tools. We briefly describe here the framework (Figure 1)
and its applicability to IDEs.

This framework comprises four components: a compiler,
a developer, an input, and an output. The input and out-
put constitute the interface, which, for developers, is the
IDE. For example, imagine a compiler has identified an error
in some C# code. The compiler presents this error to the
developer through the IDE, and the IDE can augment this
presentation by, e.g., visually underlining the offending code.
This notification must then be observed and comprehended
by the developer. The developer must then articulate a
resolution through the IDE, either as a manual edit to the
code or through an automated tool in the IDE. The IDE
then invokes the compiler, which performs the compilation
process, and the cycle repeats. Abowd and Beale call these
four steps translations. This framework exposes interdepen-
dence between the translations: if the developer observes a
cryptic message and misinterprets it, they are more likely to
articulate an incorrect resolution.

3.2 Formalizing Translations: Taxonomies
While all four translations in the interaction cycle are

important, we think research on some of these translations
have made greater computational progress than others. In
our opinion, the translations that have made less progress
with regards to improving error notifications are presenta-
tion and articulation. As with other translations, there are

Errors

Inheritance Relationship

Improper Name

Generated Code

Data Flow

Clash

Bad Practice
Dead Code

Unsafe Operation

Figure 2: A partial taxonomy for categorizing noti-
fications by presentation concerns.

likely many useful formalizations. We chose taxonomies from
knowledge management theory as a starting point for de-
signing our formalization, because they help people retrieve,
manage, and improve complex problem spaces [5]. We intend
to develop a notification taxonomy describing information
content to include in the presentation of errors, and a resolu-
tion taxonomy describing how programmers articulate error
resolutions to the compiler.

Presentation: A Notification Taxonomy.
We have conducted preliminary research on the first taxon-

omy by randomly sampling and categorizing roughly 40% of
the 500 possible OpenJDK compiler error notifications. The
notifications are categorized based on information needed for
developer comprehension. We categorized error notifications
in a way that identifies the important information that would
help a developer understand the underlying error irrespective
of any potential resolution strategies. A subset of this taxon-
omy, which is still in preliminary stages of development, is
shown in Figure 2.

One category in this taxonomy is a Clash, which informs
a developer that two elements cannot coexist in the program.
As a result, a notification for a Clash should inform the
developer which two program elements are in conflict. For
instance, two local variables declared in the same scope in
Java with the same name would cause a Clash.

Articulation: A Resolution Taxonomy.
This taxonomy describes strategies developers use to ar-

ticulate resolutions to errors. By observing and capturing
developer resolution strategies, we can potentially generate
interfaces which help developers articulate resolutions more
naturally and at the appropriate level of abstraction. Table
1 shows a subset of these taxonomy elements as tasks, and
how they might be used as GUI widgets or operations. The
ChooseOneOf task occurs because a developer must delete
all but one of a set of elements from a program, as when a
method has been inadvertently assigned both public and
private qualifiers. In this case, the compiler can populate
the ChooseOneOf task with the two qualifiers as arguments.
This task may be offered as a resolution through an error
notification during presentation. Future empirical studies
will evaluate the appropriateness of these tasks.

Table 1: A Partial Taxonomy of Developer Resolution Tasks

Semantic Task Description GUI Example

ChooseOneOf(X,Y, . . .) Chooses an argument from the provided arguments. Dropdown
Merge(X,Y, . . .) Merges a set of identical arguments. Radio button
Remove(X) Removes a subtree from the source, e.g., dead code. Radio button
Replace(X,Y) Replaces the first argument with the second. Radio button or text field
Move(X) Moves the argument to a different location in the code. Drag and drop

(a) Pattern matches are overlapped

(b) Name clash: Methods have same erasure

Figure 3: A prototype IDE for notifications and
resolutions. The prototype leverages the notifica-
tion and resolution taxonomies to reuse visualization
components. The resolver is a single component,
and generates appropriate resolutions using the res-
olution taxonomy. The text with a red, dashed bor-
der is generated code added by the system to help
explain the error.

4. EMERGING RESULTS
We present a prototype IDE, shown in Figure 3. The pro-

totype consists of a text editor pane that can be augmented
with visualizations, a resolver pane that the IDE can use to
present candidate resolutions, and a traditional console pane
containing the raw text error message. Internally, the proto-
type leverages the presentation and articulation taxonomies
by passing notifications as error objects. For this paper, it
is sufficient to think of these objects as elements from the
taxonomies augmented with additional semantic information
such as line number, location, or other relevant information
for use by the IDE. Here, we demonstrate the use of these
taxonomies with two examples.

The IDE in Figure 3a presents an overlapping pattern error
in Haskell, where the first ‘1’ pattern overlaps the second ‘1’
completely, such that the second ‘1’ case can never execute.
This error is presented to the IDE as a Clash error object
(Figure 2). It displays the clash between the conflicting
cases with a red bracket. The error object also contains
resolution tasks (Table 1) for the developer to articulate:
Merge, Replace (for the first conflicting pattern), and
Replace (for the second conflicting pattern). With this
information, the IDE presents a set of resolution tasks, with
graphical widgets (radio buttons, text fields, and so on) as
appropriate for articulating each task.

In this example, the developer has chosen the third res-
olution, so the IDE also displays, in green, the effect of
articulating a Replace task: a strike-through for the case
that will change, along with boxed text indicating what the
case will be changed to.

A second, more complex Java example, is shown in Fig-
ure 3b. This error is tricky in that it results from generics-
related type information that is available at compilation time
but not at runtime – this is called type erasure. Roughly,
during the compilation process, parameterized classes are
turned into raw classes – for example, Param<Integer> and
Param<String> will both resemble Param, at which point,
their signatures would be the same (or have the same era-

sure, according to OpenJDK) and the runtime would not
be able to tell them apart because both are still available
(neither hides the other).

At first glance this notification may appear to be a com-
pletely different error than that in Figure 3a. However, if we
consider it from a user-centric perspective, we can reduce it
to a Clash error – a clash between method signatures after
type erasure. Because the effect of the error is not apparent
in the source code, but is manifested in the compiled code,
we also consider it a Generated Code notification.

The error text provided by OpenJDK describes this error,
but in a cryptic way. Our visualization is clearer because it
directly shows the effect of the type erasure using red arrows
labeled erasure and inserts a representation of the generated

code, which is displayed in a box with a red, dashed border
to differentiate it from the developer’s code. The IDE also
displays red brackets, as before, to show that the methods
are in conflict after erasure. Without this visualization,
a developer would have thought through the erasure step
of compilation and come to the same conclusion, but our
visualization reduces the cognitive burden by performing this
reasoning for them.

Our taxonomy helped us recognize the semantic similarity
between these two notifications. Then, we used it to rep-
resent them both computationally. Our visualization can
reuse the same infrastructure for the Clash semantics of the
errors, despite being different errors in different languages. In
addition, our example demonstrates the composability of the
notification semantics, which allows Figure 3b to augment
the Clash visualization with an explanation that the Clash
occurs in Generated Code.

This demonstrates the immediate benefit of using these
taxonomies – they give consistent and unified semantics
to notifications and resolutions. This, in turn, allows IDE
developers to add presentation and articulation features to
their tools for minimal incremental cost.

5. CHALLENGES
The discovery of tasks within the resolution taxonomy

may reveal non-reusable tasks that are only applicable to
a particular error notification. If special cases occur fre-
quently, then it will negate the advantages of unification
that taxonomies would otherwise provide. We must make
design tradeoffs in the number of categories. A small number
of highly abstract categories allows for greater consistency
between notifications, but at the cost of detailed informa-
tion about individual errors. It is also possible that some
elements of these taxonomies cannot be computationalized.
For example, consider possible Bad Practice notifications
relating to “code smells”, which are not necessarily errors,
but may indicate general flaws [4]. Resolving code smells
is often wholly subjective, preventing any computational
solution. So far, we have only used the OpenJDK in creating
our taxonomies, though we intend to incorporate more lan-
guages in the future. Though we expect our taxonomies to
capture a broad range of languages, new language features
may require revisions to the taxonomies. A final challenge
of our approach is that its effectiveness is constrained by the
accuracy of error diagnostics provided by the compiler.

6. CONCLUSIONS
We think our taxonomies will provide developers and com-

pilers with controlled and expressive vocabularies with which
to communicate about errors and their resolutions. The
taxonomies give consistent and unified semantics to error
objects, which in turn allows IDE developers to easily add
presentation and articulation features to their tools. More
importantly, the taxonomies allow IDE developers to also
design presentation and articulation of notifications in a con-
sistent and unified way. In doing so, tools can offer error
notifications and resolutions that align more closely with the
way in which developers observe and resolve notifications in
their programming activities.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 1217700. We
thank the Software Engineering group at ABB Corporate
Research for their funding and support.

8. REFERENCES
[1] G. D. Abowd and R. Beale. Users, systems and

interfaces: A unifying framework for interaction. In
People and Computers VI, pages 73–87, 1991.

[2] P. J. Brown. ’My system gives excellent error
messages’–or does it? Software: Practice and
Experience, 12(1):91–94, Jan. 1982.

[3] P. J. Brown. Error messages: The neglected area of the
man/machine interface. Communications of the ACM,
26(4):246–249, Apr. 1983.

[4] M. Fowler. Refactoring: Improving the Design of
Existing Code. 1999.

[5] M. Frické. Logic and the Organization of Information.
Springer New York, New York, NY, 2012.

[6] B. Hartmann, D. MacDougall, J. Brandt, and S. R.
Klemmer. What would other programmers do. In CHI
’10, page 1019, Apr. 2010.

[7] M. Hristova, A. Misra, M. Rutter, and R. Mercuri.
Identifying and correcting Java programming errors for
introductory computer science students. ACM SIGCSE
Bulletin, 35(1):153, Jan. 2003.

[8] J. Jackson, M. Cobb, and C. Carver. Identifying top
Java errors for novice programmers. In FIE ’05’, pages
24–27, 2005.

[9] C. Litecky. An expert system for Cobol program
debugging. ACM SIGMIS Database, 20(1):1–6, Apr.
1989.

[10] G. Marceau, K. Fisler, and S. Krishnamurthi. Mind
your language: On novices’ interactions with error
messages. In ONWARD ’11, page 3, Oct. 2011.

[11] R. Molich and J. Nielsen. Improving a human-computer
dialogue. Communications of the ACM, 33(3):338–348,
Mar. 1990.

[12] P. G. Moulton and M. E. Muller. DITRAN—a compiler
emphasizing diagnostics. Communications of the ACM,
10(1):45–52, Jan. 1967.

[13] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and
D. Notkin. Speculative analysis of integrated
development environment recommendations. In
OOPSLA ’12, pages 669–682, Oct. 2012.

[14] S. Packowski. A lightweight and flexible process for
designing intuitive error handling and effective error
messages. In CASCON ’09, pages 149–163, Nov. 2009.

[15] B. Shneiderman. System message design: Guidelines
and experimental results. In Directions in
Human-Computer Interaction, pages 55–78. 1982.

[16] V. J. Traver. On compiler error messages: What they
say and what they mean. Advances in
Human-Computer Interaction, 2010:1–26, 2010.

[17] G. M. Weinberg. The Psychology of Computer
Programming. Dorset House Publications, 1998.

[18] E. A. Youngs. Human errors in programming.
International Journal of Man-Machine Studies,
6(3):361–376, 1974.

