
Commit Bubbles
Titus Barik∗†, Kevin Lubick†, Emerson Murphy-Hill†
∗ABB Corporate Research, Raleigh, North Carolina, USA

†North Carolina State University, Raleigh, North Carolina, USA
titus.barik@us.abb.com, kjlubick@ncsu.edu, emerson@csc.ncsu.edu

Abstract—Developers who use version control are expected
to produce systematic commit histories that show well-defined
steps with logical forward progress. Existing version control
tools assume that developers also write code systematically.
Unfortunately, the process by which developers write source
code is often evolutionary, or as-needed, rather than systematic.
Our contribution is a fragment-oriented concept called Commit
Bubbles that will allow developers to construct systematic commit
histories that adhere to version control best practices with less
cognitive effort, and in a way that integrates with their as-needed
coding workflows.

I. MOTIVATION

In version control systems, a commit represents an atomic
set of changes with respect to a previous state; together, these
sequences of commits form a commit history [1]. There are
many best practices when adding commits to version control
commit histories. For the commit itself, these best practices
include using a descriptive commit message; avoiding indis-
criminate commits, that is, commits that blindly include all
changed files; and making each commit a “logical unit” —
such that each commit has a singular purpose [2]. Extending
this idea, the resulting published commit histories should, in
some sense, be systematic, in that the history shows well-
defined steps, each with logical forward progress, telling a
cohesive narrative without broken or suboptimal steps [1].

Yet the way in which developers write and edit source
code is not commonly done in a systematic way, but an as-
needed way instead [3], [4]. When using a systematic strategy,
developers first construct a plan to complete a set of tasks
and only then make the edits (e.g., waterfall). In contrast,
when adopting an as-needed strategy, developers identify a
relevant point in the program and continue making edits until
the solution emerges (e.g., agile).

The fundamental problem is that the as-needed strategy
developers frequently use to write code is incompatible with
the systematic strategy that developers would need to use
in order to generate their published commit histories. As
evidence, Murphy-Hill and colleagues found that refactoring
operations are performed frequently, and that programmers
frequently interleave refactoring with other types of program-
ming activity [5]. Similarly, Negara and colleagues found that
46% of refactored program entities are interspersed with other
changes [6], and Kusunoki and colleagues found that 20%-
60% of commits intersperse peripheral changes, such as code
formatting [7]. In version control histories, these as-needed
edits manifest themselves as tangled commits, that is, commits
that contain two or more logical units of changes [8], and

as incomplete or incorrect commit messages, which fail to
capture the full description of the change [9], [5]. Both of these
issues are obstacles to supporting downstream change manage-
ment tasks, such as merging commits between branches, and
conducting effective code reviews [8].

Parnas and Clements propose that although real software is
rarely developed systematically, it should be possible to make
it appear that software was designed by such a process [10].
In version control, for instance, one mechanism for accom-
plishing this is to untangle commit histories into systematic
histories using history revision operations offered by version
control systems.1 For example, a developer can theoretically
reorder or delete commits using rebase. However, in practice,
this procedure is difficult to perform correctly [11].

In this paper, we argue that the primary barrier to per-
forming effective history revision is that current revision
tools inadequately align their tool functionality with devel-
oper workflows [12]. First, revision activities, if they occur
at all, are typically performed as a distinct activity from
coding [3]. This context switch makes it difficult to remember
all of the change activities related to a particular commit,
since human memory is particularly failure-prone during these
switches [13]. Second, history revision as supported in tools
today takes the perspective that developers are ordinarily able
to successfully create systematic histories, and that revision
is an exceptional situation. However, research indicates that
exceptions are normal in work processes, and tools should
support handling exceptional situations as routine [14].

Our vision is a development model that reconciles as-
needed coding activities with systematic commit activities. We
operationalize this model by adding commit support to Code
Bubbles, a metaphor and tool that allows developers to reason
in terms of fragments and working sets, and allows for fluid
rearrangement and manipulation of these working sets [15].
Our proposed extension, Commit Bubbles, supports developers
by a) blending coding and commit activities through fragments
to minimize context switching, and b) treating history revision
as a routine, rather than exceptional process. Our contribution
is a concept that will allow developers to construct commit
histories that adhere to version control best practices with less
cognitive effort, and in a way that integrates with their as-
needed coding workflows.

1Robertson calls this “sausage making” — “The process of developing
software, similar to the process of making sausage, is a messy, messy business
[. . .] If you hide the sausage making, you can create a beautiful looking history
where each step looks as delicious as the end-product” [11].

Code Bubbles [with Commit Bubbles Extension]

New Class

New Interface

New Enum

org eclipse shouldIgnoreOptionalProblems(...)

 if (folderNames == null || fileName == null) {
 return false;
 }

 for (int i = 0, max = folderNames.length; i < max; i++) {
 char[] folderName = folderNames[i];
 isParentOf(folderName, fileName));
 }
 return false;
}

org eclipse isParentOf(...)

Search

A

private static boolean isParentOf(char[] folderName,
 char[] fileName) {
 if (folderName.length >= fileName.length) {
 return false;
 }
 if (fileName[folderName.length] != '/') {
 return false;
 }
 for (int i = folderName.length - 1; i >= 0; i--) {
 if (folderNamei != fileNamei) {
 return false;
 }
 }
 return true;
}

B org eclipse shouldIgnoreOptionalProblems(...)

 for (int i = 0, max = folderNames.length; i < max; i++) {
 char[] folderName = folderNames[i];
 if (folderName.length >= fileName.length) {
 continue;
 }
 if (fileName[folderName.length] != '/') {
 continue;
 }
 }
 return false;
}

D

v3.9.1

Branch - v4.0

Branch - v3.9.1

v4.0 v4.0-RC2 Experimental

F

 Extract isParentOf Logic into its own method.

diff of all

C

Changes continues in for loop to return...

[Extract Method] Body of for loop to isPar...

Changes return type of isParentOf to boo...

Patch for 3.x optimizer race condition

Adds parallelizable optimizer module

E

Fig. 1. A mockup of Code Bubbles, extended with Commit Bubble elements. (A), (B) and (D) are code bubbles, which can be placed on the screen by using
the search bar (E) or a dragging-and-dropping from a navigation tree (not shown). (F) shows a task context, that is, a panel of working sets. A commit bubble
can be expanded (C) to reveal additional information. In this figure, (C) consists of two squashed commits, with a third commit bubble being added to this
set using drag-and-drop. The environment offers an infinitely scrollable canvas where the developer performs both coding and commit activities.

II. COMMIT BUBBLES

Researchers recognize the cognitive benefits of tools that
support thinking in terms of arbitrary subsets of source code,
or fragments, rather than files [15], [16], [17], [18]. Fragments
offer a metaphor for displaying relevant pieces of information
in an as-needed way, for example, when coding or debugging.
We postulate that version control activities frequently require
fragment-based thinking, for example, when comparing code
at two different states, when determining an atomic set of
changes to commit, and when reordering commit histories.

We chose Code Bubbles to prototype our concept because it
is an open source, fragment-based development environment.
Code Bubbles realizes the metaphor of light-weight editable
code fragments as bubbles (Figure 1). The bubbles metaphor
makes it easier for developers to see many fragments of
information at once, without having to context switch between
different windows or tools. The metaphor also enables fluid
manipulation of fragments without enforcing rigid boundaries
about where information should be placed.

Our contribution, Commit Bubbles, extends fragment-based
tools to support the manipulation of commits, an essential
activity to translating as-needed activities into a systematic
history. Existing version control tools require that developers
code in a systematic way. Therefore, these tools assume that
commit histories by default align with version control best
practices, and that revision is rare. Our insight is that by
treating revision as a frequent and routine activity, developers
will be able to continue working in their as-needed way, while
simultaneously producing systematic histories.

In the next section, we narrate a user experience that
demonstrates how a developer would use Commit Bubbles
with existing fragment-based environments in their daily pro-
gramming activities to correct a defect present in multiple
versions of the code base.

Example User Experience

Anthony is a software developer who has been tasked
with adding a new feature to the Eclipse JDT 4.0
branch.2 During this coding activity, he opens the method
shouldIgnoreOptionalProblems as a code bub-
ble (Figure 1A). As he examines the method, he notices a
particularly complicated piece of logic in the loop, which
he decides to refactor to isParentOf using a combination
of the extract method tool of his integrated development
environment and some manual cleanup (Figure 1B). Through
a change detection algorithm, Commit Bubbles generates three
new commit bubbles to reflect these actions (Figure 2).

These three commit bubbles are all part of the same change,
so he squashes, that is, combines them into one larger commit
bubble by dragging and dropping. He edits the autogenerated
commit message (Figure 1C) to better reflect his intent, by
clicking and then typing the new message.

Anthony is about to handle the return value of the newly
extracted method when he notices the extracted code has a
bug — isParentOf only checks for the Unix line separator

2This example is based on the Main.java file located at http://download.
eclipse.org/eclipse/downloads/drops4/R-4.4.1-201409250400/#JDTCORE.

Adds if statement to shouldIgnoreOption...

Branch - v4.0

Adds parallelizable optimizer module

[Extract Method] Body of for loop to isPar...

Changes return type of isParentOf to boo...

Branch - v3.9.1

Patch for 3.x optimizer race condition

Branch - v4.0

Adds parallelizable optimizer module

 Extract isParentOf Logic into its own method.

Fixes Windows Path seperator logic in parent...

diff of all

Adds Windows seperator alongside Unix pat...

[Extract Local Variable] lastChar created from...

Branch - v3.9.1

Patch for 3.x optimizer race condition

Branch - v4.0

Adds parallelizable optimizer module

 Extract isParentOf Logic into its own method. Drop Zone

Branch - v3.9.1

Patch for 3.x optimizer race condition

Fixes Windows Path seperator logic in parent...

diff of all

Adds Windows seperator alongside Unix pat...

[Extract Local Variable] lastChar created from...

org eclipse shouldIgnoreOptionalProblems(...)

 if (folderName.length >= fileName.length) {
 continue;
 }
 char lastChar = fileName[folderName.length];
 if (lastChar != '/' && lastChar != '\\') {
 continue;
 }

 }
 return false;
}

Fixes Windows Path seperator logic in parent...

diff of all

Adds Windows seperator alongside Unix pat...

[Extract Local Variable] lastChar created from...

Fixes Windows Path seperator logic in parent...

diff of all

Adds Windows seperator alongside Unix pat...

[Extract Local Variable] lastChar created from...

Changes continues in for loop to return...

A

Fig. 2. Commit bubbles are generated automatically while developing code. A
solid outline indicates the commit bubble has been stored to public history, and
dashed outlines indicate commits that can be reordered. These autogenerated
commit bubbles give a starting point for a systematic history.

(‘/’). Anthony adds a condition for the Windows line sepa-
rator (‘\\’) and creates a local variable to reduce redundant
code. As before, he squashes these two commit bubbles into
one (Figure 3A). This bug exists in the 3.9.1 branch as well,
which he verifies by instantiating the corresponding code
bubble (Figure 1D). With Commit Bubbles, Anthony can have
more than one version of a fragment open at time.

Adds if statement to shouldIgnoreOption...

Branch - v4.0

Adds parallelizable optimizer module

[Extract Method] Body of for loop to isPar...

Changes return type of isParentOf to boo...

Branch - v3.9.1

Patch for 3.x optimizer race condition

Branch - v4.0

Adds parallelizable optimizer module

 Extract isParentOf Logic into its own method.

Fixes Windows Path seperator logic in parent...

diff of all

Adds Windows seperator alongside Unix pat...

[Extract Local Variable] lastChar created from...

Branch - v3.9.1

Patch for 3.x optimizer race condition

Branch - v4.0

Adds parallelizable optimizer module

 Extract isParentOf Logic into its own method. Drop Zone

Branch - v3.9.1

Patch for 3.x optimizer race condition

Fixes Windows Path seperator logic in parent...

diff of all

Adds Windows seperator alongside Unix pat...

[Extract Local Variable] lastChar created from...

org eclipse shouldIgnoreOptionalProblems(...)

 if (folderName.length >= fileName.length) {
 continue;
 }
 char lastChar = fileName[folderName.length];
 if (lastChar != '/' && lastChar != '\\') {
 continue;
 }

 }
 return false;
}

Fixes Windows Path seperator logic in parent...

diff of all

Adds Windows seperator alongside Unix pat...

[Extract Local Variable] lastChar created from...

Fixes Windows Path seperator logic in parent...

diff of all

Adds Windows seperator alongside Unix pat...

[Extract Local Variable] lastChar created from...

Changes continues in for loop to return...

A

Fig. 3. Commit bubbles are copied from one branch and integrated into
another by dragging and-dropping the commit bubble from the source branch
to the target branch. While existing tools optimize for making commits, our
tool makes revising history tasks just as easy.

In existing version control tools, Anthony would not be able
to easily transfer his commits across the two branches; line-
based patches do not understand the semantics of the code
and fails to apply the patch. He would not be able to transfer
the refactoring commits (Figure 1C) and the bugfix either
because the branch is in a strict “bugfixes only” cycle which
does not allow non-essential changes such as refactorings.
Decoupling this relatively simply refactoring change from the
bugfix is unexpectedly nontrivial. One recommended “low-
tech” way to do this would be to “save all your edits, then re-
introduce them in logical chunks, committing as you go” [2].
More sophisticated approaches exist, but they are even more
burdensome and error-prone because they rely on complex
and non-obvious data structure-level manipulations [11]. Worst
of all, in either approach, Anthony would have to abandon
his current working set to perform the transformation because
existing tools only allow one working set at a time.

Adds if statement to shouldIgnoreOption...

Branch - v4.0

Adds parallelizable optimizer module

[Extract Method] Body of for loop to isPar...

Changes return type of isParentOf to boo...

Branch - v3.9.1

Patch for 3.x optimizer race condition

Branch - v4.0

Adds parallelizable optimizer module

 Extract isParentOf Logic into its own method.

Fixes Windows Path seperator logic in parent...

diff of all

Adds Windows seperator alongside Unix pat...

[Extract Local Variable] lastChar created from...

Branch - v3.9.1

Patch for 3.x optimizer race condition

Branch - v4.0

Adds parallelizable optimizer module

 Extract isParentOf Logic into its own method. Drop Zone

Branch - v3.9.1

Patch for 3.x optimizer race condition

Fixes Windows Path seperator logic in parent...

diff of all

Adds Windows seperator alongside Unix pat...

[Extract Local Variable] lastChar created from...

org eclipse shouldIgnoreOptionalProblems(...)

 if (folderName.length >= fileName.length) {
 continue;
 }
 char lastChar = fileName[folderName.length];
 if (lastChar != '/' && lastChar != '\\') {
 continue;
 }

 }
 return false;
}

Fixes Windows Path seperator logic in parent...

diff of all

Adds Windows seperator alongside Unix pat...

[Extract Local Variable] lastChar created from...

Fixes Windows Path seperator logic in parent...

diff of all

Adds Windows seperator alongside Unix pat...

[Extract Local Variable] lastChar created from...

Changes continues in for loop to return...

A

Fig. 4. An inline diff visualization of a squashed commit bubble. The diff
is presented on an already-visible code bubble present within in the current
task context to minimize context switching.

This interruption would have several consequences. An-
thony might forget details of his original task, for example, that
shouldIgnoreOptionalProblems is in a broken state.
Even if he does remember, he is now forced to recreate his
working set, which duplicates work he has already done [19].

With Commit Bubbles, Anthony obtains the same result
without breaking his flow; after writing the bugfix, he simply
drags his two commits to the 3.9.1 working set and verifies
the diff looks correct (Figures 3 and 4, respectively). Commit
Bubbles keeps track of the different contexts and utilizes
AST- and heuristic-based algorithms (see Section IV) to fluidly
perform these history changes. Incidentally, since Anthony
did not have to context switch, he quickly resumes properly
handling the return value of isParentOf.

III. EMERGING RESULTS

We have conducted an informal pilot study (n = 5) in which
participants from our lab were asked to perform an activity
similar to the one described in Section II using Git3. We found
that although participants could verbally describe the history
revision they needed, they were unable to actually accomplish
the task. The participants had to frequently switch between
different tools, and the revision commands needed to perform
the action were unintuitive (e.g., rebase).

Moreover, we found that participants verbally described
operations in terms of code fragments, e.g., “move this con-
ditional statement,” yet version control tools required them to
think in terms of lines. In contrast, when developers were first
given the desired commit history (e.g. systematic strategy) and
then instructed to make the necessary code changes, they were
able to both write the code and create the history. We used
this preliminary feedback as an inspiration for our vision.

3http://www.git-scm.com/

IV. CHALLENGES

We articulate technical and usability challenges that we face
in realizing our vision, and while doing so, reference related
work that makes progress towards these areas.

Technical challenges. Two technical challenges require
techniques that can automatically generate commits in real
time and more robustly rearrange commit history. Generating
commits is straightforward when the developer explicitly uses
a tool, but research has shown that many developers perform
operations manually, even when an automatic tool is avail-
able [5]. Towards these efforts, Negara and colleagues have
proposed AST-based (rather than text-based) approaches to
capturing edit sequences at an appropriate level of abstrac-
tion [6]. Similarly, Kirinuki and colleagues use past commits
to determine if a proposed commit may include a tangled
change [8]. Buse and colleagues offer an automatic technique
for synthesizing human-readable documentation for arbitrary
program differences [9]. Finally, Hayashi and colleagues have
proposed an algorithm for refactoring commit histories without
impacting the resulting code [20]. We think the advancement
of these technical obstacles is critical to implementing our
vision.

Usability challenges. We posit that blending coding ac-
tivities with commit activities solves several key obstacles
to generating best-practice commit histories, but the blending
process introduces its own challenges. First, it is possible that
keeping coding and commit activities as separate activities has
its own cognitive benefits, and that these benefits are lost when
these activities are unified. It is also possible that developers do
not find the unification of these activities to support their flow;
instead, they may be perceived as interruptions [13]. Relatedly,
we must also consider if as-needed version control approaches
can be complemented with other task-driven approaches, such
as Mylyn [21]. In addition, we have not yet addressed the
problem of “bubble overload”, in which multiple bubbles for
different tasks present themselves to the developer simultane-
ously, resulting in task contexts that are unmanageable for the
developer. A possible avenue for addressing these issues may
be recommendation systems, which appropriately reveal and
dismiss information or tools as needed to support a particular
task [22].

V. CONCLUSION

A significant barrier to creating systematic commit histories
is that developers do not always work systematically; instead,
they frequently work in an as-needed way. Our emerging re-
sults revealed that translating as-needed activities to systematic
commit histories as a separate maintenance activity is a time-
consuming and difficult process for developers to perform
successfully. We proposed an alternative interaction model in
which expensive cognitive context switches are minimized,
and one in which exceptional situations are treated as a routine
part of the developer’s workflow. Finally, we demonstrated
the promise of this approach by applying these principles to
version control commits using Commit Bubbles. Our work

demonstrates the potential of tools that adapt to developers’
familiar workflow, rather than constraining developers to a
tool’s computational model.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1217700. We thank
Steven P. Reiss for introducing us to Code Bubbles.

REFERENCES

[1] J. Loeliger and M. McCullough, Version Control with Git, 2nd ed.
O’Reilly Media, 2012.

[2] M. Ernst. (2014, Jul.) Version control concepts and best practices.
[Online]. Available: http://homes.cs.washington.edu/∼mernst/advice/
version-control.html

[3] D. E. Perry, “The Inscape environment,” in ICSE ’89, May 1989, pp.
2–11.

[4] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models
and software maintenance,” Journal of Systems and Software, vol. 7,
no. 4, pp. 341–355, 1987.

[5] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 5–18, Jan. 2012.

[6] S. Negara, M. Vakilian, N. Chen, R. Johnson, and D. Dig, “Is it dan-
gerous to use version control histories to study source code evolution?”
in ECOOP ’12, 2012, vol. 7313, pp. 79–103.

[7] N. Kusunoki, K. Hotta, Y. Higo, and S. Kusumoto, “How much do
code repositories include peripheral modifications?” in 2013 20th Asia-
Pacific Software Engineering Conference (APSEC), vol. 2, Dec. 2013,
pp. 19–24.

[8] H. Kirinuki, Y. Higo, K. Hotta, and S. Kusumoto, “Hey! Are you
committing tangled changes?” in ICPC ’14, Jun. 2014, pp. 262–265.

[9] R. P. Buse and W. R. Weimer, “Automatically documenting program
changes,” in ASE ’10, Sep. 2010, pp. 33–42.

[10] D. L. Parnas and P. C. Clements, “A rational design process: How and
why to fake it,” IEEE Transactions on Software Engineering, vol. SE-12,
no. 2, pp. 251–257, Feb. 1986.

[11] S. Robertson. (2012, Feb.) Commit often, perfect later, publish once:
Git best practices. [Online]. Available: http://sethrobertson.github.io/
GitBestPractices/

[12] S. Perez De Rosso and D. Jackson, “What’s wrong with Git?” in
Onward! ’13, Oct. 2013, pp. 37–52.

[13] C. Parnin and S. Rugaber, “Programmer information needs after memory
failure,” in ICPC ’12, Jun. 2012, pp. 123–132.

[14] M. Ackerman, “The intellectual challenge of CSCW: The gap between
social requirements and technical feasibility,” Human-Computer Inter-
action, vol. 15, no. 2, pp. 179–203, Sep. 2000.

[15] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, “Code Bubbles: A working
set-based interface for code understanding and maintenance,” in CHI
’10, Apr. 2010, pp. 2503–2512.

[16] R. DeLine and K. Rowan, “Code Canvas: Zooming towards better
development environments,” in ICSE ’10, vol. 2, May 2010, pp. 207–
210.

[17] A. Z. Henley and S. D. Fleming, “The Patchworks code editor,” in CHI
’14, Apr. 2014, pp. 2511–2520.

[18] M. J. Coblenz, A. J. Ko, and B. A. Myers, “JASPER: An Eclipse plug-in
to facilitate software maintenance tasks,” in OOPSLA Workshop: Eclipse
’06, Oct. 2006, pp. 65–69.

[19] A. Ko, B. Myers, M. Coblenz, and H. Aung, “An exploratory study of
how developers seek, relate, and collect relevant information during soft-
ware maintenance tasks,” IEEE Transactions on Software Engineering,
vol. 32, no. 12, pp. 971–987, Dec. 2006.

[20] S. Hayashi, T. Omori, T. Zenmyo, K. Maruyama, and M. Saeki,
“Refactoring edit history of source code,” in ICSM ’12, Sep. 2012, pp.
617–620.

[21] M. Kersten and G. C. Murphy, “Using task context to improve program-
mer productivity,” in FSE ’06, Nov. 2006, pp. 1–11.

[22] G. C. Murphy, M. Kersten, M. P. Robillard, and D. Čubranić, “The
emergent structure of development tasks,” in ECOOP ’05, Jul. 2005,
pp. 33–48.

