

Volume 5 Issue 8 • php|architect • 22

Integrating OpenLaszlo with PHP

CODE DIRECTORY: laszlo

FEATURE

T
here is a real need for a rich Internet application
platform that conventional Web technologies fail
to adequately provide. The Web, for the majority
of its history, has been essentially a document-
based platform. As a result, current approaches

such as DHTML, JavaScript and—more recently—AJAX,
have all attempted to transform this document-centric
model into an application-centric model. However,
these technologies fall short of filling the needs of an
application platform because they are, at their core,
simply extensions of an already outdated architecture.

OpenLaszlo is an open source platform that offers
a media-rich Internet application alternative. Laszlo
is an architecture built from the ground up to support
application-centric development and deployment.
Although it’s difficult to describe the abilities of
OpenLaszlo directly in a text medium, the highly accessible
Pandora music service available at http://pandora.com
demonstrates the rich capabilities of the OpenLaszlo
architecture in practice; the Pandora music service uses
OpenLaszlo as its application platform. If you don’t
have Internet access handy right now, you can see what
Pandora looks like in Figure 1.

As there is already extensive documentation and
promotional literature on working and developing

applications directly within the OpenLaszlo architecture,
an article dedicated to such a topic would be redundant.
Similarly, this article is not a tutorial on LZX, Laszlo’s
XML-based programming language. On the project
Web site you can find the source code, a selection
of examples and a quick start guide—as well as the
language documentation—to fill this role. The focus
of this article rather targets Laszlo or PHP developers
who wish to harness the capabilities of the OpenLaszlo

by TITUS BARIK

TO DISCUSS THIS ARTICLE VISIT:

http://forum.phparch.com/321

Rich Internet applications are a hot topic at present. This article introduces
OpenLaszlo, an upcoming technology designed to address this issue using
XML and Flash, and explains how to embed OpenLaszlo applications into
your PHP scripts—and how you can use PHP as a bridge to communicate
MySQL data via XML.

Integrating with PHP

PHP: 5

O/S: Debian Linux

OTHER SOFTWARE: Apache 2, Sun JDK 1.5, OpenLaszlo

LINKS:

http://www.openlaszlo.org/

http://httpd.apache.org/docs/2.0/mod/mod_proxy.html

®

http://www.openlaszlo.org
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html
http://forum.phparch.com/321

Volume 5 Issue 8 • php|architect • 23

Integrating OpenLaszlo with PHP

front-end from within a PHP back-end environment.
It covers the configuration, installation, OpenLaszlo
language constructs, and PHP coding practices that will
enable you to effectively utilize Laszlo and make the
most of this upcoming Web architecture from within your
applications.

OpenLaszlo Architecture Overview
OpenLaszlo offers a variety of configuration options that
affect the way the platform is built, and subsequently
deployed. This section will focus exclusively on one of
the more complex, but flexible, configurations—proxied
mode.

At the highest architectural level, OpenLaszlo can be
deployed in one of two ways: as proxied mode, or as
SOLO mode. The proxied mode configuration option we’re
interested in here requires a J2EE server to compile the
requested Laszlo source programs (LZX files) and present
the resulting binary to the Web client. In the OpenLaszlo
Developer Kit, Apache Tomcat is included as the J2EE
server.

To go into more detail: when a client makes a request
for a Laszlo application in proxied mode, the request
is proxied on to the J2EE server and compiled into
Macromedia Flash byte code using the Laszlo Presentation
Server (LPS). It’s then returned to the caller as a Flash
document. The Laszlo Presentation Server consolidates the

roles of compiling the source XML program, transcoding
media formats, connecting to third-party data sources
(through XML services), and caching Laszlo applications.
In a way, Macromedia Flash acts as a virtual machine for
OpenLaszlo.

In our applications, Laszlo is not running in isolation,
and must interface with our PHP code. In this situation,
Apache 2 needs to be configured as the primary web
server—running PHP of course—and any content that
requires the use of LPS is passed, or proxied, to the
secondary Tomcat server through the use of connector
and adaptor modules. At the first take, such a setup
may seem peculiar, but it is in fact a fairly standard
configuration in real-world situations where multiple
language support and/or advanced configuration are
necessary. When properly configured, this setup also
allows for greater security. Apache can filter requests
and pass them on in a limited manner as necessary to
Tomcat, rather than having Tomcat be directly accessible
to the Web browser. Figure 2 depicts the components and
interactions for such a setup.

Basically, Apache 2 proxies requests to Tomcat, which
in turn invokes the Laszlo Presentation Server, which
then returns the compiled Flash SWF file to the caller.

Installing OpenLaszlo
In this section, I will describe the steps required

FIGURE 1

OpenLaszlo provides several API methods for
communicating with XML.

Volume 5 Issue 8 • php|architect • 24

Integrating OpenLaszlo with PHP

to install OpenLaszlo. For more specific installation
instructions, you might want to refer to the OpenLaszlo
documentation.

Although configuring the Apache server to
communicate with LPS has its nuances, the installation
of the OpenLaszlo platform itself is simple. The bundled
version of OpenLaszlo has only one dependency: it needs
an installed Java SDK on the machine. Therefore, you’ll
need to ensure that Java is installed first. Don’t forget to
make sure that the JAVA_HOME environment variable is set
to point to your Java installation! Once that’s in place,
if you’re running Linux you will need to download the
OpenLaszlo Development Kit tarball from the project web
site and extract the contents into /usr/local. If you’re
on Windows or MacOSX, there is an installer available on
the site that will do all the dirty work for you.

The next thing is to start up the Tomcat server. Under
Windows there’s a click-and-go button on the Start menu,
Start/Programs/OpenLaszlo Server/Start OpenLaszlo

Server; under MacOSX there’s an even more straightforward
desktop icon, OpenLaszlo Start Tomcat.term, which will
start Tomcat with a double click. Under Linux, you will
need to run Tomcat’s startup shell script:

./lps-3.3.1/Server/tomcat-5.0.24/bin/startup.sh

Regardless of the underlying operating system, the
Tomcat server will run on port 8080. Also regardless of
the operating system, OpenLaszlo’s “Hello World” test
application can be accessed through the following URL:

http://example.org:8080/lps-3.3.1/examples/hello.lzx

Assuming all went well with your installation, the text
“Hello Laszlo!” should appear in your Web browser.
You can right-click on the text to verify that the text
genuinely originates from a compiled Flash SWF file.

Below the text label, you should see a development
console. This console appears when you’re working
with OpenLaszlo in development mode. It allows you to
experiment with the currently loaded application, and
should look something like the screen shot in Figure 3.
Having a console specifically tailored to development
needs enables you to debug your application and test
different deployment configurations.

If you would like a complete listing of the examples

and documentation provided with the OpenLaszlo bundle,
point your browser to:

http://example.org:8080/lps-3.3.1

It is worth spending a few moments exploring the same
applications and their source code to get a feel for the
way OpenLaszlo operates. For example, Figure 4 displays
a Web-based calendar—one of the many rich applications
written in Laszlo. This example calendar can be updated
and/or read from any machine; no layout or graphic
content is requested from the server, just data, pure and
simple.

Connecting to Apache 2
For the purposes of this article, I will assume that you
have an existing, working Apache 2 setup with PHP 5
installed on it, and that you are comfortable with making
changes to your Apache configuration.

There are a variety of adapters available to connect
Apache and Tomcat, including mod_jk, mod_jk2, and
mod_jserv. My recommendation is to ignore all these
server-specific connectors, unless you have a very
particular reason to use them, and use the more flexible
mod_proxy module that is provided with the Apache
distribution.

FIGURE 3

FIGURE 2

Volume 5 Issue 8 • php|architect • 25

Integrating OpenLaszlo with PHP

25 • php|architect • Volume 5 Issue 8

To enable the proxy module under Linux, if you have
a2enmod on board you can simply type:

a2enmod proxy

This command enables mod_cache, mod_disk_cache,
mod_proxy, and most importantly, mod_proxy_http. If you
aren’t using Linux or don’t have the a2enmod command,
you will need to add these modules to Apache’s httpd.conf
manually using the LoadModule directive.

Next, you will need to modify the Proxy section of
httpd.conf (or proxy.conf if you’re using that) to allow
clients to connect:

ProxyRequests Off

<Proxy *>

Order deny, allow

Allow from all

</Proxy>

Modify the desired site (usually default) under the sites-
available directory to proxy requests under the /lzx

directory to Tomcat:

ProxyPass /lzx http://localhost:8080/lps-3.3.1

ProxyPassReverse /lzx http://localhost:8080/lps-3.3.1

This configures a proxy and a reverse proxy, respectively.
Apache’s ProxyPass directive allows remote servers to
be mapped into the space of the local server; while the
ProxyPassReverse directive implements the reciprocal
operation and causes the response location to return
in the correct form. The use of localhost in the third
argument implies that one cannot generally connect to
Tomcat, but must do so over a public connection through
Apache, assuming that Apache and Tomcat are running
on the same machine.

For development purposes only, you’ll also want to
add lps-3.3.1 as a proxy directory, as many of the paths
in OpenLaszlo are hard-coded to look at this specific
location.

ProxyPass /lps-3.3.1 http://localhost:8080/lps-3.3.1

ProxyPassReverse /lps-3.3.1 http://localhost:8080/lps-3.3.1

FIGURE 4

Volume 5 Issue 8 • php|architect • 26

Integrating OpenLaszlo with PHP

FIGURE 5

Finally, you will need to make a small modification to
the Tomcat configuration file, server.conf. Change the
Connection parameter to:

<Connector

 port=”8080”

 proxyName=”example.org”

 proxyPort=”80” />

This will cause servlets inside the Tomcat Web application
to think that all proxied requests were directed to
example.org on port 80.

You can test whether or not the proxy is functioning
correctly by accessing Tomcat from within the lzx URL
structure:

http://example.org/lzx/examples/music/music.lzx

This URL will load the multimedia music application
as shown in Figure 5. If you’ve reached this far, your
configuration of Apache and Tomcat are complete.

The small application, Music, streams an mp3 file over
HTTP. OpenLaszlo provides functions to manipulate the
media stream.

Embedding Laszlo From Within PHP
So far, I’ve demonstrated several standalone Laszlo
applications, but none of these demo applications have
run as components embedded within other content
on a Web page. There are, in fact, several ways to
embedded Laszlo applications within a standard HTML
page, depending on your requirements. OpenLaszlo even
provides convenience methods, through JavaScript, that

facilitate the insertion of such components into HTML.
This is done by referencing a Laszlo application and
passing to it an lzt target parameter.

For example, if the target platform supports
JavaScript, one can add the embed.js JavaScript file to
the HTML <head> section:

<script src=”/lzx/lps/includes/embed.js”

 type=”text/javascript”>

</script>

FIGURE 6

FIGURE 7

FIGURE 8

OpenLaszlo is an
open source platform

that offers a
media-rich

Internet application
alternative.

Volume 5 Issue 8 • php|architect • 27

Integrating OpenLaszlo with PHP

This in turn enables the lzEmbed JavaScript function,
allowing you to embed content with your pages. You can
now tell the OpenLaszlo application to simply return the
appropriate JavaScript, by specifying an lzt target of
js:

<script

 src=”/lzx/demos/vacation-survey/vacation-survey.lzx?lzt=js”

 type=”text/javascript”>

</script>

If you need more flexibility—for example, say, you want
to set the background color—you can manually add the
lzEmbed function, like so:

<script type=”text/javascript”>

lzEmbed

{

 url: ‘/lzx/demos/vacation-survey/vacation-survey.lzx?lzt=swf’,

 bgcolor: ‘#ffffff’,

 width: ‘600’,

 height: ‘206’

}

</script>

Alternatively, if JavaScript is not available, a standard
HTML object tag can be used:

<object type=”application/x-shockwave-flash”

 data=”vacation-survey.lzx?lzt=swf&debug=false&lzr=swf7”

 width=”600” height=”206”>

 <param name=”movie” value=”vacation-survey.lzx?lzt=swf&debug=fals

e&lzr=swf7” />

 <param name=”quality” value=”high” />

 <param name=”scale” value=”noscale” />

 <param name=”salign” value=”LT” />

 <param name=”menu” value=”false” />

</object>

To aid in embedding, OpenLaszlo provides the Server

and SOLO options via the development console that was
alluded to earlier in this article. You can simply click on
these buttons to generate the appropriate XHTML code,
which you can then copy and paste into your web page.

By default, having no lzt parameter places the
application in development mode, where you can view
the source code, compile for different available targets,
and debug the application. In most cases, these features
are not desirable on a production server. To enable and
disable lzt request types on a case by case basis, edit
the lps.properties file found in WEB-INF/lps/config,
under Server/lps-3.3.1. For example, to disable viewing
of LZX source code, set the allowRequestSOURCE parameter
to false. To change the default request type, set the
defaultRequestType parameter.

Figure 6 demonstrates the stock vacation survey
application running in non-development mode from
within a PHP page, using the embed.js library. Above
and below the Laszlo application is a set of <h1> tags
to illustrate that it is indeed embedded within HTML
content. Note that the development console does not
appear because the lzt target type is swf—the Laszlo
Vacation application is embedded within the content of a
standard PHP or HTML page.

OpenLaszlo and XML
OpenLaszlo is based on XML, and it is therefore
unsurprising that its primary interface with external data
is also XML. OpenLaszlo provides several API methods for
communicating with XML. These include RPC services, such
as SOAP and XML-RPC, as well as databinding through
datasets, datapaths, and XPath queries. In the following
sections, we will use SOAP and REST-like services to
pull and push data to PHP. This flexibility enables us to
communicate with a variety of data sources, as long as
they can “speak” XML back to Laszlo.

Hello OpenLaszlo
As mentioned previously, this article is not a tutorial
on OpenLaszlo programming. However, a simple “Hello

There are several ways to embed
Laszlo applications within a standard HTML

page, depending on your requirements.

Volume 5 Issue 8 • php|architect • 28

Integrating OpenLaszlo with PHP

World” application serves to illustrate the code that
comprises a typical LZX source file, shown in Listing 1.
Figure 7 shows the compiled source code given in Listing
1, in action. While the example is artificial, it illustrates
a few basic points regarding the way LZX source code is
structured.

The base of any Laszlo source file is the canvas tag.
The canvas element represents the boundaries of a Laszlo
application. Within this particular canvas, there are two
windows and an embedded dataset. The first of these
windows displays the text “Hello world.” A button with
an onclick event handler serves as a trigger to change
this text to “Goodbye world” when clicked.

The Hello World application demonstrates the
XML source code for placing components, scripting
components, and working with XPath and datasets.

The second window populates a set of text labels
using the embedded dataset. The datapath attribute uses
a simple XPath query to pull data from a dataset. Because
the view has a datapath, and because the referenced path
is not a single element, the view iterates over the text
element until all data in the dataset is exhausted.

If the dataset had instead been stored in a static,
external XML file, one might change the dataset line to
the following:

<dataset name=”ds” src=”colors.xml” />

If, on the other hand, the XML file was dynamic—say,
created by a generated PHP page—then one would use
the type attribute, with a request attribute indicating that
the dataset should be loaded on application startup:

<dataset name=”ds” src=”colors.php”

 type=”http” request=”true” />

If you’ve programmed before in XUL or XAML, you’ll feel
right at home with LZX. At this point, you should have
a rough idea as to the ways in which OpenLaszlo will
interact with PHP using XML. It’s now time to explore
these interactions in detail.

Talking to PHP with SOAP
Whereas previously I showed you how to communicate
with OpenLaszlo through PHP passively, this section
actively uses Simple Access Object Protocol (SOAP)
libraries to exchange data with PHP. Unfortunately, unlike
SOAP technologies in J2EE, PHP SOAP implementations
have not yet fully matured. Still, I use the native PHP 5
SOAP functions, though they do not intrinsically provide
the ability to auto-generate WSDL files at this moment
in time.

 1 <canvas>
 2
 3 <dataset name=”ds”>
 4 <colors>
 5 <color>Blue</color>
 6 <color>Red</color>
 7 <color>Green</color>
 8 <color>Yellow</color>
 9 </colors>
10 </dataset>
11
12 <window width=”200” height=”150” y=”10”>
13 <view>
14 <simplelayout axis=”y” />
15 <text id=”mytext” width=”200”>Hello World!</text>
16
17 <button text=”Click Me”>
18 <handler name=”onclick”>
19 mytext.setText(“Goodbye World!”);
20 </handler>
21 </button>
22
23 </view>
24 </window>
25
26 <window width=”200” height=”200” x=”250” y=”10”>
27 <view datapath=”ds:/colors”>
28 <simplelayout axis=”y” />
29 <text datapath=”color/text()” />
30 </view>
31 </window>
32
33 </canvas>

LISTING 1

 1 <?php
 2
 3 $quotes = array(
 4 “amd” => 15.50,
 5 “ibm” => 70,
 6 “msft” => 20.80
 7);
 8
 9 function getQuote($symbol) {
10 global $quotes;
11 return $quotes[$symbol];
12 }
13
14 ini_set(“soap.wsdl_cache_enabled”, “0”); // disabling WSDL cache
15 $server = new SoapServer(“stockquote.wsdl”);
16 $server->addFunction(“getQuote”);
17 $server->handle();
18
19 ?>

LISTING 2

 1 <?xml version=’1.0’ encoding =’UTF-8’ ?>
 2 <definitions name=’StockQuote’
 3 targetNamespace=’http://example.org/StockQuote’
 4 xmlns:tns=’ http://example.org/StockQuote ‘
 5 xmlns:soap=’http://schemas.xmlsoap.org/wsdl/soap/’
 6 xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
 7 xmlns:soapenc=’http://schemas.xmlsoap.org/soap/encoding/’
 8 xmlns:wsdl=’http://schemas.xmlsoap.org/wsdl/’
 9 xmlns=’http://schemas.xmlsoap.org/wsdl/’>
10
11 <message name=’getQuoteRequest’>
12 <part name=’symbol’ type=’xsd:string’/>
13 </message>
14 <message name=’getQuoteResponse’>
15 <part name=’Result’ type=’xsd:float’/>
16 </message>
17
18 <portType name=’StockQuotePortType’>
19 <operation name=’getQuote’>
20 <input message=’tns:getQuoteRequest’/>
21 <output message=’tns:getQuoteResponse’/>
22 </operation>
23 </portType>
24
25 <binding name=’StockQuoteBinding’ type=’tns:StockQuotePortType’>
26 <soap:binding style=’rpc’ transport=’http://schemas.xmlsoap.org/soap/http’/>
27 <operation name=’getQuote’>
28 <soap:operation soapAction=’urn:xmethods-delayed-quotes#getQuote’/>
29 <input>
30 <soap:body use=’encoded’ namespace=’urn:xmethods-delayed-quotes’
31 encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’/>
32 </input>
33 <output>
34 <soap:body use=’encoded’ namespace=’urn:xmethods-delayed-quotes’
35 encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’/>
36 </output>
37 </operation>
38 </binding>
39
40 <service name=’StockQuoteService’>
41 <port name=’StockQuotePort’ binding=’StockQuoteBinding’>
42 <soap:address location=’soapserver.php’/>
43 </port>
44 </service>
45 </definitions>

LISTING 3

In this SOAP example, I implemented a SOAP
server that provides a fake “Delayed Stock Quote”
service that mimics the behavior of the XMethods
demo service. The example is taken from by the Zend
article “PHP Soap Extension,” by Dmitry Stogov
(http://www.zend.com/php5/articles/php5-SOAP.php), and is
expanded on to interface with OpenLaszlo. The SOAP Server
source code is shown in Listing 2. It provides a getQuote
method with hard-coded data that is made accessible
through SOAP via the PHP SoapServer addFunction()
function. The corresponding WSDL file, stockquote.wsdl,
is written by hand, and shown in Listing 3. Remember to
modify the soap:address line of the WSDL at the bottom
of the file to point to your PHP SOAP server location.

The code in the LZX file in Listing 3 uses the XML
soap element to interface with our Delayed Stock Quote
service. Of particular interest are the onload handler,
which ensures that the presentation client is able
to successfully connect to the SOAP service, and the
remotecall element, which specifies the available SOAP
functions. An onclick event handler is associated with
the request price button, which in turn invokes the
SOAP function through JavaScript. The global ondata
handler then updates the text label with the stock price.
If the SOAP service had more than one callable function,
then a custom ondata handler could be provided within
each remotecall element. You can see a screenshot of the
Stockquote Service application in action in Figure 8.

A SOAP service may not necessarily be available
or feasible to implement, depending on your PHP
application. I’ll now show you an alternative mechanism
to interface with PHP, through the use of datasets and
standard HTTP GET and POST operators.

Talking to PHP through GET and
POST
In this section, I will show you how to use REST-like
protocols (POST and GET) to read and write data to a
MySQL database from OpenLaszlo. Recall that OpenLaszlo
works with XML datasets, and not directly with database
servers. PHP is therefore used as a bridge that connects
to the database, and returns the result set in an XML
format appropriate for Laszlo.

Listing 5 contains the source code for a sample contact
manager application. It is designed to closely match
the sample contact manager provided with OpenLaszlo,
but uses PHP rather than JSP as the server-side XML
generator. The getcontacts.php file, shown in Listing
6, simply performs standard MySQL calls and wraps the
results in XML. The OpenLaszlo application retrieves data
from this PHP page through the dset dataset defined in
the LZX file.

 1 <canvas bgcolor=”#D4D0C8”>
 2 <dataset name=”dset” src=”getcontacts.php” request=”true” type=”http”/>
 3 <!-- 1 -->
 4 <dataset name=”dsSendData” request=”false” src=”contactmgr.php” type=”http”/>
 5
 6 <class name=”contactview” extends=”view” visible=”false” x=”20” height=”120”>
 7 <!-- 2 -->
 8 <text name=”pk” visible=”false” datapath=”@email”/>
 9 <text y=”10”>First Name:</text>
10 <edittext name=”firstName” datapath=”@firstName” x=”80” y=”10”/>
11 <text y=”35”>Last Name:</text>
12 <edittext name=”lastName” datapath=”@lastName” x=”80” y=”35”/>
13 <text y=”60”>Phone:</text>
14 <edittext name=”phone” datapath=”@phone” x=”80” y=”60”/>
15 <text y=”85”>Email:</text>
16 <edittext name=”email” datapath=”@email” x=”80” y=”85”/>
17 <method name=”sendData” args=”action”>
18 var d=canvas.datasets.dsSendData;
19 var p=new LzParam();
20 p.addValue(“action”, action, true);
21 p.addValue(“pk”, pk.getText(), true);
22 p.addValue(“firstName”, firstName.getText(), true);
23 p.addValue(“lastName”, lastName.getText(), true);
24 p.addValue(“phone”, phone.getText(), true);
25 p.addValue(“email”, email.getText(), true);
26 d.setQueryString(p);
27 d.doRequest();
28 </method>
29 <!-- 4 -->
30 </class>
31
32 <simplelayout axis=”y”/>
33
34 <view>
35 <simplelayout axis=”y”/>
36 <text onclick=”parent.newContact.setVisible(!parent.newContact.visible);”>New En-
try...</text>
37 <contactview name=”newContact” datapath=”new:/contact”>
38 <button width=”80” x=”200” y=”10”>Add
39 <handler name=”onclick”>
40 parent.sendData(“insert”);
41 parent.datapath.updateData();
42 var dp=canvas.datasets.dset.getPointer();
43 dp.selectChild();
44 dp.addNodeFromPointer(parent.datapath);
45 parent.setVisible(false);
46 parent.setDatapath(“new:/contact”);
47 </handler>
48 </button>
49 </contactview>
50 </view>
51
52 <view datapath=”dset:/phonebook/contact”>
53 <simplelayout axis=”y”/>
54 <view name=”list” onclick=”parent.updateContact.setVisible(!parent.updateContact.
visible);”>
55 <simplelayout axis=”x”/>
56 <text datapath=”@firstName”/>

LISTING 5

 1 <canvas debug=”true”>
 2
 3 <soap name=”maths” wsdl=”stockquote.wsdl”>
 4
 5 <handler name=”onload”>
 6 canvas.buttons.setAttribute(‘visible’, true);
 7 </handler>
 8
 9 <remotecall funcname=”getQuote”>
10 <param value=”${a.text}” />
11 </remotecall>
12
13 <handler name=”ondata” args=”value”>
14 result.setText(value);
15 </handler>
16
17 </soap>
18
19 <view name=”buttons” x=”10” y=”10” visible=”false” layout=”spacing: 10” >
20 <text>Stockquote Service</text>
21
22 <view layout=”axis: x”>
23 <text y=”3”>Symbol</text><edittext id=”a” text=”ibm”/>
24 </view>
25
26 <view layout=”axis: x”>
27 <text>Price:</text><text id=”result”/>
28 </view>
29
30 <button text=”Get Price” onclick=”canvas.maths.getQuote.invoke()” />
31 </view>
32
33 </canvas>

LISTING 4

Volume 5 Issue 8 • php|architect • 29

Integrating OpenLaszlo with PHP

http://www.zend.com/php5/articles/php5-SOAP.php

Volume 5 Issue 8 • php|architect • 30

Integrating OpenLaszlo with PHP

 1 <phonebook>
 2
 3 <?php
 4
 5 mysql_connect(‘localhost’, ‘username’, ‘password’);
 6 mysql_select_db(‘db’);
 7 $result = mysql_query(‘SELECT * FROM contact’);
 8
 9 while ($line = mysql_fetch_assoc($result)) {
10 extract($line);
11 ?>
12
13 <contact firstName=”<?=$first_name?>”
14 lastName=”<?=$last_name?>”
15 phone=”<?=$phone?>”
16 email=”<?=$email?>” />
17
18 <?php
19 }
20 ?>
21
22 </phonebook>

LISTING 6

 1 <?php
 2
 3 $action = $_REQUEST[‘action’];
 4 $firstName = $_REQUEST[‘firstName’];
 5 $lastName = $_REQUEST[‘lastName’];
 6 $phone = $_REQUEST[‘phone’];
 7 $email = $_REQUEST[‘email’];
 8 $pk = $_REQUEST[‘pk’];
 9 $result = null;
10
11 mysql_connect(‘localhost’, ‘username’, ‘password’);
12 mysql_select_db(‘db’);
13
14 switch ($action) {
15 case ‘insert’:
16 $sql = “INSERT INTO contact (first_name, last_name, phone, email) “ .
17 “VALUES (\”$firstName\”, \”$lastName\”, \”$phone\”, \”$email\”)”;
18 break;
19 case ‘update’:
20 $sql = “UPDATE contact SET first_name = ‘$firstName’, “.
21 “last_name = ‘$lastName’, phone = ‘$phone’, “.
22 “email = ‘$email’ WHERE email = ‘$pk’”;
23 break;
24 case ‘delete’:
25 $sql = “DELETE FROM contact WHERE email = ‘$pk’”;
26 break;
27 default:
28 $sql = null;
29 break;
30 }
31
32 if ($sql) {
33 $result = mysql_query($sql);
34 }
35
36 if ($result) {
37 echo ‘<result>success</result>’;
38 } else {
39 echo ‘<result>failure</result>’;
40 }
41
42 ?>

LISTING 7

The contactmgr.php file, in its entirety, is a dataset
conforming to dsSendData—also defined in the LZX
file—whose script is shown in Listing 7. Unlike dset,
however, dsSendData is used as a write-only dataset,
whose parameters are provided at run-time through
scripting. The sendData() method constructs a set of
parameters to send to the PHP script, and the doRequest()
method invokes this request. Using datasets in such a
manner allows you to pass data to PHP scripts, perform
business logic, and return the results to your OpenLaszlo
application.

By default, OpenLaszlo uses GET. One can convert a
query to POST simply by setting the querytype parameter
of the dataset to POST.

Conclusion
OpenLaszlo offers you the ability to generate rich
presentation logic, without having to abandon the
flexibility of the underlying PHP scripting. OpenLaszlo
also provides a variety of components that are not
available in traditional DHTML applications, and its
native XML and XPath abilities simplify databinding to
these components seamlessly.

That said, OpenLaszlo is not a perfect solution when
it comes to embedded Web applications. The fact that it
is based on Flash files can hinder accessibility and search
engine ranking if used in excess, and while most platforms
support Flash, a minority of browsers and users do not
have this capability. Additionally, Macromedia offers its
own rich commercial application environment: Flex. It
remains to be seen whether Flex will hinder or help the
adoption of OpenLaszlo. Plus, of course, AJAX continues
to be a strong competitor to these technologies.

Despite these concerns, companies have already,
and will continue to, implement applications using
OpenLaszlo. If you find that your current AJAX application
has grown in complexity, or if you’ve have hit a ceiling
on its presentation capabilities, then you may want to
give OpenLaszlo a try.

TITUS BARIK is a content application developer with an
interest in open source Enterprise solutions. He has deployed
both open source and proprietary content management systems
successfully in corporate and non-profit environments. His
personal weblog is available at barik.net, and he welcomes your
comments and suggestions.

57 <text datapath=”@lastName”/>
58 <text datapath=”@phone”/>
59 <text datapath=”@email”/>
60 </view>
61 <contactview name=”updateContact”>
62 <button width=”80” x=”200” y=”10”>Update
63 <handler name=”onclick”>
64 parent.sendData(“update”);
65 parent.parent.datapath.updateData();
66 </handler>
67 </button>
68 <button width=”80” x=”200” y=”40”>Delete
69 <handler name=”onclick”>
70 parent.sendData(“delete”);
71 parent.parent.datapath.deleteNode();
72 </handler>
73 </button>
74 </contactview>
75 </view>
76
77 </canvas>

LISTING 5 (CONT’D)

http://barik.net

	Cover Page
	0608_pdf_02.indd
	FEATURES
	Integrating OpenLaszlo with PHP

