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Abstract
Program analysis tools perform sophisticated analysis on

source code to help programmers resolve compiler errors,

apply optimizations, and identify security vulnerabilities.

Despite the utility of these tools, research suggests that pro-

grammers do not frequently adopt them in practice—a pri-

mary reason being that the output of these tools are difficult

to understand. Towards providing a synthesis of what rese-

archers know about the presentation of program analysis

output to programmers, we conducted a scoping review of

the PLDI conference proceedings. The scoping review serves

as interim guidance for advancing collaborations between

research disciplines. We discuss how cross-disciplinary com-

munities, such as PLATEAU, are are critical to improving

the usability of program analysis tools.
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a time: What do we know about presenting human-friendly output

from program analysis tools?. In Proceedings of ACM SIGPLAN
Conference on Programming Languages, New York, NY, USA, January
01–03, 2017 (PL’17), 8 pages.
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1 Introduction
In 1983, Brown lamented that one of the most neglected

aspects of the human-machine interface was the quality

of the error messages produced by the machine. Today, it

appears that many of Brown’s laments still hold true with

regard to program analysis tools—tools that are intended to

help programmers resolve defects in their code. For example,

interview and survey studies conducted at Microsoft reveal

that poor error messages remain one of the top pain points

when using program analysis tools [14], and other studies

show similar frustration with error messages in tools [7, 30,

51]. In academia, the situation seems even more dire. As

Hanenberg noted in his essay on programming languages

research: “developers, which are the main audience for new

language constructs, are hardly considered in the research

process.” And Danas et al. note that in some cases, the output

PL’17, January 01–03, 2017, New York, NY, USA
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Figure 1. The interaction framework.

of program analysis tools, such as in model-finders and SAT-

solvers, are generated arbitrarily and in an unprincipled way,

without regard to the friendliness towards the programmer

who might actually use them [17].

In prior work, we have modeled the interaction of pro-

grammers with their program analysis tools in terms of an

interaction framework, conceptualized by Abowd and Be-

agle [1] and adapted to tools by Traver [57] (Figure 1). The

interaction framework describes the different interactions be-

tween the tool and the programmer, with the tool performing

some sophisticated analysis, presenting the information to

the programmer through a console or IDE, and then allowing

the developer to articulate their intentions back to the tool.

In this paper, we are interested specifically in the presen-
tation aspect of the framework, and what we know about

presenting human-friendly output from program analysis

tools.

Towards the longer-term goal of providing a comprehen-

sive knowledge synthesis about program analysis output,

we conducted an interim scoping review of the proceedings

from Programming Language Design and Implementation

(PLDI), from 1988-2017. The scoping review is intended to

be accessible to human-computer interaction (HCI) rese-

archers who want to understand how the PL community

is currently applying program analysis output, in order to

eventually bridge HCI research with program analysis tools.

Consequently, while PLDI papers are typically written to

emphasize the formal properties of their program analysis

tools as their primary goal, our scoping review reframes

these papers in terms of the their program analysis output as
the primary investigation.

The contributions of this scoping review are:

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PL’17, January 01–03, 2017, New York, NY, USA Titus Barik, Chris Parnin, and Emerson Murphy-Hill

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

• A quasi-gold set of manually-identified papers from

PLDI that relate to program analysis output, to boot-

strap future, comprehensive literature reviews on the

subject of human-friendly program analysis output.

• A knowledge synthesis of the features of program

analysis output that researchers employ to present

output to programmers, instantiated as a taxonomy

(Section 3). Our taxonomy is agnostic to a particular

mode of output, such as text or graphics.

• A bridge from HCI to PL, to foster collaboration bet-

ween researchers in both communities, and to familia-

rize the HCI community with program analysis tools

in PL.

2 Methodology
2.1 What is a Scoping Review?
In this study, we conduct a scoping review—a reduced form of

the traditional systematic literature review [5, 32]. Scoping

reviews have many of the same characteristics of traditional

literature reviews: their purpose is to collect, evaluate, and

present the available research evidence for a particular in-

vestigation. However, because of their reduced form, they

can also be executed more rapidly than traditional literature

reviews [50]. For example, reductions to scoping reviews in-

clude limiting the types of literature databases, constraining

the date range under investigation, or eliding consistency

measures such as inter-rater agreement. A notable weak-

ness of scoping reviews are that they are not a final output;

instead, they provide interim guidance towards what can be

expected if a comprehensive literature review is conducted.

Scoping reviews are particularly useful in this interim stage

for soliciting guidance on conducting a more formal review,

as is our intention in this paper.

2.2 Execution of SALSA Framework
We conducted our scoping review using the traditional SALSA

framework: Search, Appraisal, Synthesis, and Analysis. Here,

we discuss the additional constraints we adopted in using

SALSA for our scoping review.

Search.We scoped our search to all papers within a single

conference: Programming Language Design and Implemen-

tation (PLDI), for all years (1988-2017). As HCI researchers,

we selected PLDI because it is considered to be a top-tier

conference for programming languages research, because

it contains a variety of program analysis tools, and because

these tools tend to have formal properties of soundness and

completeness that are not typically found in prototype tools

within HCI. Discussions with other researchers within PLDI

also revealed that researchers are interested in having their

tools adopted by a broader community, but confusing pro-

gram analysis output hinders usability of the tools to users

outside their own research groups.

Appraisal.We manually identified papers through multi-

ple passes. In the first pass, we skimmed titles and abstracts

and included any papers which mentioned a program ana-

lysis tool and indicated output intended to be consumed by

a programmer other than the authors of the tool. In this

pass, our goal was to be liberal with paper inclusion, and to

minimize false negatives. We interpreted program analysis

tools in the broadest sense, to include model checkers, veri-

fiers, static analysis tools, and dynamic tools. In the second

pass, we examined the contents of the paper to identify if the

paper did contributed or discuss its output for programmers.

Finally, we removed papers that were purely related to redu-

cing false positives, unless those papers used false positives

as part of their output to provide additional information to

a programmer. For some papers, the output was measured

in terms of manual patches submitted to bug repositories.

We excluded such papers since the output was manually

constructed, and not directly from the tool.

Synthesis and Analysis.We synthesized the papers into

a taxonomy of presentation attributes (Section 3). For analy-

sis, we opted for a narrative approach in which we summa-

rized the contributions of each of the papers with respect to

human-friendly presentations.

2.3 Limitations
As a form of interim guidance, a scoping review has several

important limitations, which we openly acknowledge. First,

the review is biased in several ways. Being scoped only to

PLDI means that the identified taxonomy is likely to be in-

complete. Second, the scoping review by definition misses

key contributions found in other conferences, such as the

International Conference on Software Engineering (ICSE),

Foundations of Software Engineering (FSE), and the Con-

ference on Human Factors in Computing Systems (CHI),

just to name a few. Third, the paper summaries are inten-

ded to be accessible to HCI researchers who may not have

formal PL experience. As a result, in the interest of being bro-

adly accessible, some of the summaries of the papers may be

oversimplified in terms of their PL contributions. Finally, any

conclusions made from this interim work should be treated

as provisional and subject to revision as more comprehensive

reviews are conducted.

3 Taxonomy of Presentation
In this section, we classify each of the identified papers that

discuss or contribute to program analysis output intended

for programmers. Intentionally, we labeled the taxonomy

features such that they do not commit to a particular textual

or visualization affordance. For example, in a text-interface,

the feature of ranking (Section 3.0.7) may be implemented as

an enumerated list of items in the console, with a prompt for

selection, if interactivity is required. In a graphical interface,

ranking might instead be implemented through a pop-up

2
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Table 1. Taxonomy of Presentation

Feature Section

Alignment Section 3.0.1

Clustering and Classification Section 3.0.2

Comparing Section 3.0.3

Example Section 3.0.4

Interactivity Section 3.0.5

Localizing Section 3.0.6

Ranking Section 3.0.7

Reducing Section 3.0.8

Tracing Section 3.0.9

drop-down, through which the programmer would select

their desired option.

The identified taxonomy of presentation features are sum-

marized in Table 1. Some papers describe output that use

multiple features; in such a case, we selected the feature

which we felt best represented the contribution of the out-

put.

3.0.1 Alignment
In alignment, program analysis output is presented in a re-

presentation that is already familiar to the programmer.

Within this feature, Pombrio and Krishnamurthi tackle the

problem of syntactic sugar—programming constructs that

make things easier to express—but are ultimately reducible

to alternative constructs. For example, in C, the array access

notation a[i] is syntactic sugar for (the sometimes less con-

venient notation) *(a + i). Unfortunately, syntactic sugar is
eliminated by many transformation algorithms, making the

resulting program unfamiliar to the programmer. Pombrio

and Krishnamurthi introduce a process of resugaring to allow
computation reductions in terms of the surface syntax [46].

With similar aims, the AutoCorres tool uses a technique of

specification abstraction, to present programmers with a re-

presentation of the program at a human-readable abstraction

while additionally producing a formal refinement of the final

presentation [22].

Notions of natural language and readability find their

place in several PLDI papers. Qiu et al. propose natural proofs,
in which automated reasoning systems restrict themselves

to using common patterns found in human proofs [44, 47].

Given a reference implementation, and an error model of po-

tential corrections, Singh et al. introduce a method for auto-

matically deriving minimal corrections to students’ incorrect

solutions, in the form a itemized list of changes, expressed in

natural language form [53]. And the AFix tool uses a variety

of static analysis and static code transformations to design

bug fixes for a type of concurrency bug, single- variable ato-
micity violations [28]. The bug fixes are human-friendly in

that they attempt to provide a fix that, in addition to other

metrics, does not harm code readability. To support readabi-

lity, the authors manually evaluated several possible locking

policies to determine which ones were most readable.

Issues of alignment and representation become impor-

tant to programmers during understanding of optimizations

in source-level debugging of optimized code [2]; in their

approach, Adl-Tabatabai and Gross implement engendered
variables that would cause the programmer to draw incor-

rect conclusions as a result of internal optimizations by the

compiler. Earlier work by [10] [10] and Coutant et al. [16]

also provide techniques within this space.

3.0.2 Clustering and Classification
Clustering and classification output aims to organize or sepa-

rate information in a way that reduces the cognitive burden

for programmers. For example, Narayanasamy et al. focus

on a dynamic analysis technique to automatically classify

data races—a type of concurrency bug in multi-threaded

programs—as being potentially benign or potentially harm-

ful [40]; furthermore, the tool provides the programmer with

a reproducible scenario of the data race to help the developer

understand how it manifests.

Liblit et al. present a statistical dynamic debugging techni-

que that isolates bugs in programs containing multiple un-

diagnosed bugs [36]; importantly, the algorithm separates

the effects of different bugs and identifies predictors that are

associated with individual bugs. An earlier technique using

statistical sampling is also presented by the authors [35].

Other classification techniques include Ha et al.; they intro-

duce Clarify, a system which classifies behavior profiles—
essentially, an application’s behavior—for black box software

components where the source code is not available [23]. And

Ammons et al. consider the problem of specification on pro-

grams in that the specifications themselves need methods

for debugging; they present a method for debugging formal,

temporal specifications through concept analysis to automa-

tically group traces into highly similar clusters [3].

3.0.3 Comparing
Comparisons occur in program analysis tools when the pro-

grammer has a need to examine or understand differences

between two or more versions of their code. Within this fea-

ture, Hoffman et al. introduce a technique of semantic views
of program executions to perform trace analysis; they ap-

ply their technique to identify regressions in large software

applications [25]. Through a differencing technique, their

RPrism tool outputs a semantic “diff” between the original

and new versions, to allow potential causes to be viewed in

their full context. Similarly, early work by Horwitz identifies

both semantic and textual differences between two versions

of a program [26], in contrast to traditional diff-tools that

treat source as plain text.
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3.0.4 Example
Examples and counterexamples are forms of output that

provide evidence for why a situation can occur or how a

situation can be violated. Examples are usually provided in

conjunction with other presentation features. Contributions

in this feature focus on the type of example to present to the

programmer, which is sometimes arbitrary and sometimes

based on an output measure, such as minimizing lines of

code.

The Alive-Infer tool, for example, infers preconditions to

ensure the validity of a peephole compiler optimization. To

the user, it reports both a weakest precondition and a set

of “succinct” partial preconditions. For wrong optimizations,

the tool provides counterexamples [39]. Zhang et al. apply a

technique of skeletal program enumeration to generate small

test programs for reporting bugs about in GCC and clang

compilers; the generated test programs contain fewer than

30 lines on average [61]. Still other work with test programs

devise a test-case reducer for C compiler bugs to obtain

small and valid test-cases consistently [48]; the underlying

machinery is based on generic fixpoint computations which
invokes a modular reducer.
Padon et al. hypothesize that one of the reasons auto-

mated methods are difficult to use in practice is because

they are opaque. As Padon et al. states, “they fail in ways

that are difficult for a human user to understand and to re-

medy” [43]. Their system, Ivy, graphically displays concrete

counterexamples to induction, and allows the user to inte-

ractively guide generation from these counterexamples [43].

NguyáżĚn and Van Horn implement a tool in Racket to gene-

rate counterexamples for erroneous modules [41] and Isradi-

saikul and Myers design an algorithm that generates helpful

counterexamples for parsing ambiguities; for every parsing

conflict, the algorithm generates a compact counterexample

illustrating the ambiguity [27].

PSketch is a program synthesis tool that helps program-

mers implement concurrent data structures; it uses a counter
example guided inductive synthesis algorithm (CEGIS) to con-

verge to a solution within a handful of iterations [54].

For type error messages, Lerner et al. pursue an approach

in which the type-checker itself does not produce error mes-

sages, but instead relies on an oracle for a search procedure

that finds similar programs that do type-check; to bypass

the typically-inscrutable type error messages, their system

provides examples of code (at the same location) that would

type check [33].

And for memory-related output, Cherem et al. implement

a practical analysis algorithm for detecting memory leaks in

C programs; their analysis uses sparse value-flows to present

concise error messages to developers [13].

3.0.5 Interactivity
We identified several papers whose tools support interacti-

vity in limited ways. That is, the programmer can interact

with the tool either before the output is produced, in order

to customize the output—or work with the output of the tool

in a mixed-initiative fashion, where both the programmer

and the tool collaborate to arrive at a solution.

Within this feature, Parsify is a program synthesis tool

that synthesizes a parser from input and output examples.

The tool interface provides immediate visual feedback in

response to changes in the grammar being refined, as well

as a graphical mechanism for specifying example parse trees

using only textual selections [34].

Live programming is a user interface capability that allows

a programmer to edit code and immediately see the effect

of the code changes. Burckhardt et al. introduce a type and

effect system that formalizes the separation of rendering and

non-rendering aspects of the user interface to make feedback

responsive [11].

Dillig et al. present a technique called abductive inference—
that is, to find an explanatory hypothesis for a desired outcome—

to assist programmers in classifying error reports. The techni-

que computes small relevant queries presented to a user that

capture exactly the information the analysis is missing to

either discharge or validate the error [18].

LeakChaser identifies unnecessarily-held memory refe-

rences which often result in memory leaks and performance

issues in manages languages such as Java. The tool allows an

iterative process through three tiers which assist program-

mers at different levels of abstraction, from transactions at
the highest-level tier to lifetime relationships at the lowest
level tier.

Chameleon assists programmers in choosing an abstract

collection implementation in their algorithm [52]. During

program execution, Chameleon computes trace metrics

using semantic profiling, together with a set of collection

selection rules, to present recommended collection adapta-

tion strategies to the programmers. Similarly, the PetaBricks

tool makes algorithm choice a first-class construct of the

language [4].

von Dincklage and Diwan identify that too many under-

lying false positives in tools, such as in refactoring, can com-

promise a tool’s usefulness [59]. They propose a method to

produce necessary and sufficient reasons, that is, awhy expla-
nation, for a potentially undesirable result; the programmer

can then—through applying predicates—provide feedback

on whether the given analysis result is desirable.

Finally, MrSpidey is a user-friendly, static debugger for

Scheme [20]; the program analysis computes value set des-
criptions for each term in the program and constructs a va-
lue flow graph connecting the set descriptions; these flows

are made visible to the programmer through a value flow

browser which overlays arrows over the program text. The
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programmer can interactively expose portions of the value

graph.

3.0.6 Localizing
We identified localizing in two forms: 1) a point localization,
in which a program analysis tool tries to identify a single

source as relevant to the error, and 2) as slices, where multiple

statements are responsible for the error.

Point. Zhang et al. implement, within the GHC compi-

ler, a simple Bayesian type error diagnostic that identifies

the most likely source of the type error, rather than the first
source the inference engine “trips over” [60]. The BugAssist
tool implements an algorithm for error cause localization

based on a reduction to the maximal satisfiability problem
to identify the cause of an error from failing execution tra-

ces [31]. The Breadcrumbs tool uses a probabilistic calling
context (essentially, a stack trace) to identify the root cause

of bug, by recording extra information that might be useful
in explaining a failure [9].

Slices. Program slicing identifies parts of the program

that may affect a point of interest—such as those related

to an error message; Sridharan et al. propose a technique

called thin slicing which helps programmer better identify

bugs because it identifies more relevant lines of code than

traditional slicing [55]. Analogous to thin slicing, Zhang

et al. developed a strategy for pruning dynamic slices to

identify subsets of statements that are likely responsible for

producing an incorrect value; for each statement executed

in the dynamic slice, their tool computes a confidence value,

with higher values corresponding to greater likelihood that

the execution of the statement produced a correct value [62].

3.0.7 Ranking
Ranking is a presentation feature that orders the output

of the program analysis in a systematic way. For example,

random testing tools, that is, fuzzers, can be frustrating to

use because they “indiscriminately and repeatedly find bugs

that may not be severe enough to fix right away” [12]. Chen

et al. propose a technique that orders test cases in a way that

diverse, interesting cases (defined through a machine techni-

que called furthest point first) are highly ranked [12]. And

the AcSpec tool prioritizes alarms for automatic program

verifiers through semantic inconsistency detection in order to

report high-confidence warnings to the programmer [8].

Coppa et al. present a profiling methodology and toolkit

for helping developers discover asymptotic inefficiencies in

their code [15]. The output of the profiler is, for each exe-

cuted routine of the program, a set of tuples that aggregate

performance costs by input size—these outputs are intended

to be used as input to performance plots. The Kremlin tool

makes recommendations about which parts of the program a

programmer should spend effort parallelizing; the tool identi-

fies these regions through a hierarchical critical path analysis

and presents to the programmer an ordered (by speedup)

parallelism plan as a list of files and lines to modify [21].

Perelman et al. provide ranked expressions for completi-

ons in API libraries through a language of partial expressions,
which allows the programmer to leave “holes” for the parts

they do not know [45].

3.0.8 Reduction
Reduction approaches take a large design space of allowable

program output and reduce that space using some syste-

matic rule. For example, Logozzo et al. introduce a static

analysis technique of Verification Modulo Versions (VMV),

which reduces the number of alarms reported by verifiers

while maintaining semantic guarantees [38]. Specifically,

VMV is designed for scenarios in which programmers desire

to fix new defects introduced since a previous release.

3.0.9 Tracing
Tracing involves flows of information, and understanding

how information propagates across source code. As one ex-

ample, Ohmann et al. present a system that answers control-

flow queries posed by developers as formal languages. The

tool indicates whether the query expresses control flow that

is possible or impossible for a given failure report. As another

example, PIDGIN is a program analysis and understanding

tool that allows programmers to interactively explore infor-
mation flows, through program dependence graphs, within
their applications and investigate counterexamples [29]. Taint

analysis is another information-flow analysis that establis-

hes whether values from unstructured parameters may flow

into security-sensitive operations [58]; implemented as TAJ,

the tool additionally eliminates redundant reports through

hybrid thin slicing and remediation logic over library local

points. Other techniques, such as those by Rubio-González

et al., use data-flow analysis techniques to track errors as

they propagate through file system code [49].

To support algorithmic debugging, Faddegon and Chitil

developed a library in Haskell, that, after annotating sus-

pected functions, presents a detailed computational tree [19].
Computational trees are essentially a trace to help developers

understand how a program works or why it does not work.

The tool TraceBack provides debugging information for pro-

duction systems by providing execution history data about

program problems [6]; it uses first-fault diagnosis to discover
what went wrong the first time the fault is encountered.

MemSAT helps programmers debug and reason about

memory models: given an axiomatic specification, the tool
outputs a trace—sequences of reads and writes—of the pro-

gram in which the specification is satisfied, or a minimal
subset of the memory model and program constraints that

are unsatisfiable [56].

The Merlin security analysis tool infers information flows
in a program to identify security vulnerabilities such as cross-

site scripting and SQL inject attacks [37]. Internally, the
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inference is based on modeling a data propagation graph
using probabilistic constraints.

4 Discussion
Lack of user evaluations in PL. Although we identified

and classified papers within PLDI in terms of a taxonomy of

presentation, our investigation confirms that papers either

perform no usability evaluation with programmers, or the

claims of usability of the tool are made through intuition,

using the authors of the paper as subjects. For example, con-

sider the presentation attribute of alignment (Section 3.0.1),

in which several assumptions are made about how output

should be presented in familiar representations to the pro-

grammer. All of these assumptions appear to be intuitive—

give output in the same level of syntactic sugar as their

source code for consistency, use proof constructions com-

monly found in human proofs, and support readability. Un-

fortunately, none of these assumptions are tested with actual

developers, reminding us of the concerns noted by Hanen-

berg and others in the introduction. It’s likely some of these

assumptions are actually incorrect, which may explain the

lack of adoption in practice and the confusing tool output

programmers report formany of these sophisticated program

analysis tools.

Lack of operational tools in HCI. At the same time,

HCI researchers perform usability studies on user interfa-

ces, yet the experiments they conduct are often performed

on prototype platforms that are built specifically for the

experiment under consideration. Consequently, even if the

user interfaces are found to be effective or usable for some

measures, the tools themselves cannot actually be used in

practice. Regrettably, this means that user interface advances

remain within academic papers, and do not ever make it to

actual programmers without significant investment for tools

that may not even be possible to build due to fundamental

technical limitations.

Bridging PL and HCI. In our view, both deficiencies in

HCI and PL can be reduced by fostering collaborations bet-

ween the disciplines. A cross-disciplinary approach to tool

development would enable usable program analysis tools,

by having a pipeline from program analysis tools to user

evaluations in HCI. HCI contributions could then feedback

to PL to further improve the output of program analysis tools.

But doing so requires a cross-disciplinary community that

can provide such opportunities for collaboration. We suggest

that PLATEAU has the potential to become this community.

5 Conclusions
In this paper, we conducted a scoping review of PLDI from

the period of 1988-2017, to identify and catalog papers for

program analysis tools that discussed or made contributions

to the presentation of output towards programmers. Admit-

tedly, a scoping review is only a starting point for investiga-

tion, and can only provide interim guidance. Nevertheless,

our hope is that the scoping review we have conducted can

serve to bootstrap a future comprehensive systematic litera-

ture reviews. We are open to feedback on practicals methods

to realizing that goal.
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