
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

One λ at a time: What do we know about presenting
human-friendly output from program analysis tools?

A Scoping Review of PLDI Proceedings for HCI Researchers

Titus Barik

North Carolina State University

Chris Parnin

North Carolina State University

Emerson Murphy-Hill

North Carolina State University

Abstract
Program analysis tools perform sophisticated analysis on

source code to help programmers resolve compiler errors,

apply optimizations, and identify security vulnerabilities.

Despite the utility of these tools, research suggests that pro-

grammers do not frequently adopt them in practice—a pri-

mary reason being that the output of these tools are difficult

to understand. Towards providing a synthesis of what rese-

archers know about the presentation of program analysis

output to programmers, we conducted a scoping review of

the PLDI conference proceedings. The scoping review serves

as interim guidance for advancing collaborations between

research disciplines. We discuss how cross-disciplinary com-

munities, such as PLATEAU, are are critical to improving

the usability of program analysis tools.

ACM Reference Format:
Titus Barik, Chris Parnin, and Emerson Murphy-Hill. 2017. One λ at
a time: What do we know about presenting human-friendly output

from program analysis tools?. In Proceedings of ACM SIGPLAN
Conference on Programming Languages, New York, NY, USA, January
01–03, 2017 (PL’17), 8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
In 1983, Brown lamented that one of the most neglected

aspects of the human-machine interface was the quality

of the error messages produced by the machine. Today, it

appears that many of Brown’s laments still hold true with

regard to program analysis tools—tools that are intended to

help programmers resolve defects in their code. For example,

interview and survey studies conducted at Microsoft reveal

that poor error messages remain one of the top pain points

when using program analysis tools [14], and other studies

show similar frustration with error messages in tools [7, 30,

51]. In academia, the situation seems even more dire. As

Hanenberg noted in his essay on programming languages

research: “developers, which are the main audience for new

language constructs, are hardly considered in the research

process.” And Danas et al. note that in some cases, the output

PL’17, January 01–03, 2017, New York, NY, USA
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Output

Input

ProgrammerTool

observation

articulationperformance

presentation

IDE/console

Figure 1. The interaction framework.

of program analysis tools, such as in model-finders and SAT-

solvers, are generated arbitrarily and in an unprincipled way,

without regard to the friendliness towards the programmer

who might actually use them [17].

In prior work, we have modeled the interaction of pro-

grammers with their program analysis tools in terms of an

interaction framework, conceptualized by Abowd and Be-

agle [1] and adapted to tools by Traver [57] (Figure 1). The

interaction framework describes the different interactions be-

tween the tool and the programmer, with the tool performing

some sophisticated analysis, presenting the information to

the programmer through a console or IDE, and then allowing

the developer to articulate their intentions back to the tool.

In this paper, we are interested specifically in the presen-
tation aspect of the framework, and what we know about

presenting human-friendly output from program analysis

tools.

Towards the longer-term goal of providing a comprehen-

sive knowledge synthesis about program analysis output,

we conducted an interim scoping review of the proceedings

from Programming Language Design and Implementation

(PLDI), from 1988-2017. The scoping review is intended to

be accessible to human-computer interaction (HCI) rese-

archers who want to understand how the PL community

is currently applying program analysis output, in order to

eventually bridge HCI research with program analysis tools.

Consequently, while PLDI papers are typically written to

emphasize the formal properties of their program analysis

tools as their primary goal, our scoping review reframes

these papers in terms of the their program analysis output as
the primary investigation.

The contributions of this scoping review are:

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PL’17, January 01–03, 2017, New York, NY, USA Titus Barik, Chris Parnin, and Emerson Murphy-Hill

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

• A quasi-gold set of manually-identified papers from

PLDI that relate to program analysis output, to boot-

strap future, comprehensive literature reviews on the

subject of human-friendly program analysis output.

• A knowledge synthesis of the features of program

analysis output that researchers employ to present

output to programmers, instantiated as a taxonomy

(Section 3). Our taxonomy is agnostic to a particular

mode of output, such as text or graphics.

• A bridge from HCI to PL, to foster collaboration bet-

ween researchers in both communities, and to familia-

rize the HCI community with program analysis tools

in PL.

2 Methodology
2.1 What is a Scoping Review?
In this study, we conduct a scoping review—a reduced form of

the traditional systematic literature review [5, 32]. Scoping

reviews have many of the same characteristics of traditional

literature reviews: their purpose is to collect, evaluate, and

present the available research evidence for a particular in-

vestigation. However, because of their reduced form, they

can also be executed more rapidly than traditional literature

reviews [50]. For example, reductions to scoping reviews in-

clude limiting the types of literature databases, constraining

the date range under investigation, or eliding consistency

measures such as inter-rater agreement. A notable weak-

ness of scoping reviews are that they are not a final output;

instead, they provide interim guidance towards what can be

expected if a comprehensive literature review is conducted.

Scoping reviews are particularly useful in this interim stage

for soliciting guidance on conducting a more formal review,

as is our intention in this paper.

2.2 Execution of SALSA Framework
We conducted our scoping review using the traditional SALSA

framework: Search, Appraisal, Synthesis, and Analysis. Here,

we discuss the additional constraints we adopted in using

SALSA for our scoping review.

Search.We scoped our search to all papers within a single

conference: Programming Language Design and Implemen-

tation (PLDI), for all years (1988-2017). As HCI researchers,

we selected PLDI because it is considered to be a top-tier

conference for programming languages research, because

it contains a variety of program analysis tools, and because

these tools tend to have formal properties of soundness and

completeness that are not typically found in prototype tools

within HCI. Discussions with other researchers within PLDI

also revealed that researchers are interested in having their

tools adopted by a broader community, but confusing pro-

gram analysis output hinders usability of the tools to users

outside their own research groups.

Appraisal.We manually identified papers through multi-

ple passes. In the first pass, we skimmed titles and abstracts

and included any papers which mentioned a program ana-

lysis tool and indicated output intended to be consumed by

a programmer other than the authors of the tool. In this

pass, our goal was to be liberal with paper inclusion, and to

minimize false negatives. We interpreted program analysis

tools in the broadest sense, to include model checkers, veri-

fiers, static analysis tools, and dynamic tools. In the second

pass, we examined the contents of the paper to identify if the

paper did contributed or discuss its output for programmers.

Finally, we removed papers that were purely related to redu-

cing false positives, unless those papers used false positives

as part of their output to provide additional information to

a programmer. For some papers, the output was measured

in terms of manual patches submitted to bug repositories.

We excluded such papers since the output was manually

constructed, and not directly from the tool.

Synthesis and Analysis.We synthesized the papers into

a taxonomy of presentation attributes (Section 3). For analy-

sis, we opted for a narrative approach in which we summa-

rized the contributions of each of the papers with respect to

human-friendly presentations.

2.3 Limitations
As a form of interim guidance, a scoping review has several

important limitations, which we openly acknowledge. First,

the review is biased in several ways. Being scoped only to

PLDI means that the identified taxonomy is likely to be in-

complete. Second, the scoping review by definition misses

key contributions found in other conferences, such as the

International Conference on Software Engineering (ICSE),

Foundations of Software Engineering (FSE), and the Con-

ference on Human Factors in Computing Systems (CHI),

just to name a few. Third, the paper summaries are inten-

ded to be accessible to HCI researchers who may not have

formal PL experience. As a result, in the interest of being bro-

adly accessible, some of the summaries of the papers may be

oversimplified in terms of their PL contributions. Finally, any

conclusions made from this interim work should be treated

as provisional and subject to revision as more comprehensive

reviews are conducted.

3 Taxonomy of Presentation
In this section, we classify each of the identified papers that

discuss or contribute to program analysis output intended

for programmers. Intentionally, we labeled the taxonomy

features such that they do not commit to a particular textual

or visualization affordance. For example, in a text-interface,

the feature of ranking (Section 3.0.7) may be implemented as

an enumerated list of items in the console, with a prompt for

selection, if interactivity is required. In a graphical interface,

ranking might instead be implemented through a pop-up

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Human-friendly output from program analysis tools PL’17, January 01–03, 2017, New York, NY, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Table 1. Taxonomy of Presentation

Feature Section

Alignment Section 3.0.1

Clustering and Classification Section 3.0.2

Comparing Section 3.0.3

Example Section 3.0.4

Interactivity Section 3.0.5

Localizing Section 3.0.6

Ranking Section 3.0.7

Reducing Section 3.0.8

Tracing Section 3.0.9

drop-down, through which the programmer would select

their desired option.

The identified taxonomy of presentation features are sum-

marized in Table 1. Some papers describe output that use

multiple features; in such a case, we selected the feature

which we felt best represented the contribution of the out-

put.

3.0.1 Alignment
In alignment, program analysis output is presented in a re-

presentation that is already familiar to the programmer.

Within this feature, Pombrio and Krishnamurthi tackle the

problem of syntactic sugar—programming constructs that

make things easier to express—but are ultimately reducible

to alternative constructs. For example, in C, the array access

notation a[i] is syntactic sugar for (the sometimes less con-

venient notation) *(a + i). Unfortunately, syntactic sugar is
eliminated by many transformation algorithms, making the

resulting program unfamiliar to the programmer. Pombrio

and Krishnamurthi introduce a process of resugaring to allow
computation reductions in terms of the surface syntax [46].

With similar aims, the AutoCorres tool uses a technique of

specification abstraction, to present programmers with a re-

presentation of the program at a human-readable abstraction

while additionally producing a formal refinement of the final

presentation [22].

Notions of natural language and readability find their

place in several PLDI papers. Qiu et al. propose natural proofs,
in which automated reasoning systems restrict themselves

to using common patterns found in human proofs [44, 47].

Given a reference implementation, and an error model of po-

tential corrections, Singh et al. introduce a method for auto-

matically deriving minimal corrections to students’ incorrect

solutions, in the form a itemized list of changes, expressed in

natural language form [53]. And the AFix tool uses a variety

of static analysis and static code transformations to design

bug fixes for a type of concurrency bug, single- variable ato-
micity violations [28]. The bug fixes are human-friendly in

that they attempt to provide a fix that, in addition to other

metrics, does not harm code readability. To support readabi-

lity, the authors manually evaluated several possible locking

policies to determine which ones were most readable.

Issues of alignment and representation become impor-

tant to programmers during understanding of optimizations

in source-level debugging of optimized code [2]; in their

approach, Adl-Tabatabai and Gross implement engendered
variables that would cause the programmer to draw incor-

rect conclusions as a result of internal optimizations by the

compiler. Earlier work by [10] [10] and Coutant et al. [16]

also provide techniques within this space.

3.0.2 Clustering and Classification
Clustering and classification output aims to organize or sepa-

rate information in a way that reduces the cognitive burden

for programmers. For example, Narayanasamy et al. focus

on a dynamic analysis technique to automatically classify

data races—a type of concurrency bug in multi-threaded

programs—as being potentially benign or potentially harm-

ful [40]; furthermore, the tool provides the programmer with

a reproducible scenario of the data race to help the developer

understand how it manifests.

Liblit et al. present a statistical dynamic debugging techni-

que that isolates bugs in programs containing multiple un-

diagnosed bugs [36]; importantly, the algorithm separates

the effects of different bugs and identifies predictors that are

associated with individual bugs. An earlier technique using

statistical sampling is also presented by the authors [35].

Other classification techniques include Ha et al.; they intro-

duce Clarify, a system which classifies behavior profiles—
essentially, an application’s behavior—for black box software

components where the source code is not available [23]. And

Ammons et al. consider the problem of specification on pro-

grams in that the specifications themselves need methods

for debugging; they present a method for debugging formal,

temporal specifications through concept analysis to automa-

tically group traces into highly similar clusters [3].

3.0.3 Comparing
Comparisons occur in program analysis tools when the pro-

grammer has a need to examine or understand differences

between two or more versions of their code. Within this fea-

ture, Hoffman et al. introduce a technique of semantic views
of program executions to perform trace analysis; they ap-

ply their technique to identify regressions in large software

applications [25]. Through a differencing technique, their

RPrism tool outputs a semantic “diff” between the original

and new versions, to allow potential causes to be viewed in

their full context. Similarly, early work by Horwitz identifies

both semantic and textual differences between two versions

of a program [26], in contrast to traditional diff-tools that

treat source as plain text.

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

PL’17, January 01–03, 2017, New York, NY, USA Titus Barik, Chris Parnin, and Emerson Murphy-Hill

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

3.0.4 Example
Examples and counterexamples are forms of output that

provide evidence for why a situation can occur or how a

situation can be violated. Examples are usually provided in

conjunction with other presentation features. Contributions

in this feature focus on the type of example to present to the

programmer, which is sometimes arbitrary and sometimes

based on an output measure, such as minimizing lines of

code.

The Alive-Infer tool, for example, infers preconditions to

ensure the validity of a peephole compiler optimization. To

the user, it reports both a weakest precondition and a set

of “succinct” partial preconditions. For wrong optimizations,

the tool provides counterexamples [39]. Zhang et al. apply a

technique of skeletal program enumeration to generate small

test programs for reporting bugs about in GCC and clang

compilers; the generated test programs contain fewer than

30 lines on average [61]. Still other work with test programs

devise a test-case reducer for C compiler bugs to obtain

small and valid test-cases consistently [48]; the underlying

machinery is based on generic fixpoint computations which
invokes a modular reducer.
Padon et al. hypothesize that one of the reasons auto-

mated methods are difficult to use in practice is because

they are opaque. As Padon et al. states, “they fail in ways

that are difficult for a human user to understand and to re-

medy” [43]. Their system, Ivy, graphically displays concrete

counterexamples to induction, and allows the user to inte-

ractively guide generation from these counterexamples [43].

NguyáżĚn and Van Horn implement a tool in Racket to gene-

rate counterexamples for erroneous modules [41] and Isradi-

saikul and Myers design an algorithm that generates helpful

counterexamples for parsing ambiguities; for every parsing

conflict, the algorithm generates a compact counterexample

illustrating the ambiguity [27].

PSketch is a program synthesis tool that helps program-

mers implement concurrent data structures; it uses a counter
example guided inductive synthesis algorithm (CEGIS) to con-

verge to a solution within a handful of iterations [54].

For type error messages, Lerner et al. pursue an approach

in which the type-checker itself does not produce error mes-

sages, but instead relies on an oracle for a search procedure

that finds similar programs that do type-check; to bypass

the typically-inscrutable type error messages, their system

provides examples of code (at the same location) that would

type check [33].

And for memory-related output, Cherem et al. implement

a practical analysis algorithm for detecting memory leaks in

C programs; their analysis uses sparse value-flows to present

concise error messages to developers [13].

3.0.5 Interactivity
We identified several papers whose tools support interacti-

vity in limited ways. That is, the programmer can interact

with the tool either before the output is produced, in order

to customize the output—or work with the output of the tool

in a mixed-initiative fashion, where both the programmer

and the tool collaborate to arrive at a solution.

Within this feature, Parsify is a program synthesis tool

that synthesizes a parser from input and output examples.

The tool interface provides immediate visual feedback in

response to changes in the grammar being refined, as well

as a graphical mechanism for specifying example parse trees

using only textual selections [34].

Live programming is a user interface capability that allows

a programmer to edit code and immediately see the effect

of the code changes. Burckhardt et al. introduce a type and

effect system that formalizes the separation of rendering and

non-rendering aspects of the user interface to make feedback

responsive [11].

Dillig et al. present a technique called abductive inference—
that is, to find an explanatory hypothesis for a desired outcome—

to assist programmers in classifying error reports. The techni-

que computes small relevant queries presented to a user that

capture exactly the information the analysis is missing to

either discharge or validate the error [18].

LeakChaser identifies unnecessarily-held memory refe-

rences which often result in memory leaks and performance

issues in manages languages such as Java. The tool allows an

iterative process through three tiers which assist program-

mers at different levels of abstraction, from transactions at
the highest-level tier to lifetime relationships at the lowest
level tier.

Chameleon assists programmers in choosing an abstract

collection implementation in their algorithm [52]. During

program execution, Chameleon computes trace metrics

using semantic profiling, together with a set of collection

selection rules, to present recommended collection adapta-

tion strategies to the programmers. Similarly, the PetaBricks

tool makes algorithm choice a first-class construct of the

language [4].

von Dincklage and Diwan identify that too many under-

lying false positives in tools, such as in refactoring, can com-

promise a tool’s usefulness [59]. They propose a method to

produce necessary and sufficient reasons, that is, awhy expla-
nation, for a potentially undesirable result; the programmer

can then—through applying predicates—provide feedback

on whether the given analysis result is desirable.

Finally, MrSpidey is a user-friendly, static debugger for

Scheme [20]; the program analysis computes value set des-
criptions for each term in the program and constructs a va-
lue flow graph connecting the set descriptions; these flows

are made visible to the programmer through a value flow

browser which overlays arrows over the program text. The

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Human-friendly output from program analysis tools PL’17, January 01–03, 2017, New York, NY, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

programmer can interactively expose portions of the value

graph.

3.0.6 Localizing
We identified localizing in two forms: 1) a point localization,
in which a program analysis tool tries to identify a single

source as relevant to the error, and 2) as slices, where multiple

statements are responsible for the error.

Point. Zhang et al. implement, within the GHC compi-

ler, a simple Bayesian type error diagnostic that identifies

the most likely source of the type error, rather than the first
source the inference engine “trips over” [60]. The BugAssist
tool implements an algorithm for error cause localization

based on a reduction to the maximal satisfiability problem
to identify the cause of an error from failing execution tra-

ces [31]. The Breadcrumbs tool uses a probabilistic calling
context (essentially, a stack trace) to identify the root cause

of bug, by recording extra information that might be useful
in explaining a failure [9].

Slices. Program slicing identifies parts of the program

that may affect a point of interest—such as those related

to an error message; Sridharan et al. propose a technique

called thin slicing which helps programmer better identify

bugs because it identifies more relevant lines of code than

traditional slicing [55]. Analogous to thin slicing, Zhang

et al. developed a strategy for pruning dynamic slices to

identify subsets of statements that are likely responsible for

producing an incorrect value; for each statement executed

in the dynamic slice, their tool computes a confidence value,

with higher values corresponding to greater likelihood that

the execution of the statement produced a correct value [62].

3.0.7 Ranking
Ranking is a presentation feature that orders the output

of the program analysis in a systematic way. For example,

random testing tools, that is, fuzzers, can be frustrating to

use because they “indiscriminately and repeatedly find bugs

that may not be severe enough to fix right away” [12]. Chen

et al. propose a technique that orders test cases in a way that

diverse, interesting cases (defined through a machine techni-

que called furthest point first) are highly ranked [12]. And

the AcSpec tool prioritizes alarms for automatic program

verifiers through semantic inconsistency detection in order to

report high-confidence warnings to the programmer [8].

Coppa et al. present a profiling methodology and toolkit

for helping developers discover asymptotic inefficiencies in

their code [15]. The output of the profiler is, for each exe-

cuted routine of the program, a set of tuples that aggregate

performance costs by input size—these outputs are intended

to be used as input to performance plots. The Kremlin tool

makes recommendations about which parts of the program a

programmer should spend effort parallelizing; the tool identi-

fies these regions through a hierarchical critical path analysis

and presents to the programmer an ordered (by speedup)

parallelism plan as a list of files and lines to modify [21].

Perelman et al. provide ranked expressions for completi-

ons in API libraries through a language of partial expressions,
which allows the programmer to leave “holes” for the parts

they do not know [45].

3.0.8 Reduction
Reduction approaches take a large design space of allowable

program output and reduce that space using some syste-

matic rule. For example, Logozzo et al. introduce a static

analysis technique of Verification Modulo Versions (VMV),

which reduces the number of alarms reported by verifiers

while maintaining semantic guarantees [38]. Specifically,

VMV is designed for scenarios in which programmers desire

to fix new defects introduced since a previous release.

3.0.9 Tracing
Tracing involves flows of information, and understanding

how information propagates across source code. As one ex-

ample, Ohmann et al. present a system that answers control-

flow queries posed by developers as formal languages. The

tool indicates whether the query expresses control flow that

is possible or impossible for a given failure report. As another

example, PIDGIN is a program analysis and understanding

tool that allows programmers to interactively explore infor-
mation flows, through program dependence graphs, within
their applications and investigate counterexamples [29]. Taint

analysis is another information-flow analysis that establis-

hes whether values from unstructured parameters may flow

into security-sensitive operations [58]; implemented as TAJ,

the tool additionally eliminates redundant reports through

hybrid thin slicing and remediation logic over library local

points. Other techniques, such as those by Rubio-González

et al., use data-flow analysis techniques to track errors as

they propagate through file system code [49].

To support algorithmic debugging, Faddegon and Chitil

developed a library in Haskell, that, after annotating sus-

pected functions, presents a detailed computational tree [19].
Computational trees are essentially a trace to help developers

understand how a program works or why it does not work.

The tool TraceBack provides debugging information for pro-

duction systems by providing execution history data about

program problems [6]; it uses first-fault diagnosis to discover
what went wrong the first time the fault is encountered.

MemSAT helps programmers debug and reason about

memory models: given an axiomatic specification, the tool
outputs a trace—sequences of reads and writes—of the pro-

gram in which the specification is satisfied, or a minimal
subset of the memory model and program constraints that

are unsatisfiable [56].

The Merlin security analysis tool infers information flows
in a program to identify security vulnerabilities such as cross-

site scripting and SQL inject attacks [37]. Internally, the

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

PL’17, January 01–03, 2017, New York, NY, USA Titus Barik, Chris Parnin, and Emerson Murphy-Hill

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

inference is based on modeling a data propagation graph
using probabilistic constraints.

4 Discussion
Lack of user evaluations in PL. Although we identified

and classified papers within PLDI in terms of a taxonomy of

presentation, our investigation confirms that papers either

perform no usability evaluation with programmers, or the

claims of usability of the tool are made through intuition,

using the authors of the paper as subjects. For example, con-

sider the presentation attribute of alignment (Section 3.0.1),

in which several assumptions are made about how output

should be presented in familiar representations to the pro-

grammer. All of these assumptions appear to be intuitive—

give output in the same level of syntactic sugar as their

source code for consistency, use proof constructions com-

monly found in human proofs, and support readability. Un-

fortunately, none of these assumptions are tested with actual

developers, reminding us of the concerns noted by Hanen-

berg and others in the introduction. It’s likely some of these

assumptions are actually incorrect, which may explain the

lack of adoption in practice and the confusing tool output

programmers report formany of these sophisticated program

analysis tools.

Lack of operational tools in HCI. At the same time,

HCI researchers perform usability studies on user interfa-

ces, yet the experiments they conduct are often performed

on prototype platforms that are built specifically for the

experiment under consideration. Consequently, even if the

user interfaces are found to be effective or usable for some

measures, the tools themselves cannot actually be used in

practice. Regrettably, this means that user interface advances

remain within academic papers, and do not ever make it to

actual programmers without significant investment for tools

that may not even be possible to build due to fundamental

technical limitations.

Bridging PL and HCI. In our view, both deficiencies in

HCI and PL can be reduced by fostering collaborations bet-

ween the disciplines. A cross-disciplinary approach to tool

development would enable usable program analysis tools,

by having a pipeline from program analysis tools to user

evaluations in HCI. HCI contributions could then feedback

to PL to further improve the output of program analysis tools.

But doing so requires a cross-disciplinary community that

can provide such opportunities for collaboration. We suggest

that PLATEAU has the potential to become this community.

5 Conclusions
In this paper, we conducted a scoping review of PLDI from

the period of 1988-2017, to identify and catalog papers for

program analysis tools that discussed or made contributions

to the presentation of output towards programmers. Admit-

tedly, a scoping review is only a starting point for investiga-

tion, and can only provide interim guidance. Nevertheless,

our hope is that the scoping review we have conducted can

serve to bootstrap a future comprehensive systematic litera-

ture reviews. We are open to feedback on practicals methods

to realizing that goal.

References
[1] Gregory D Abowd and Russell Beale. 1991. Users, systems and interfa-

ces: A unifying framework for interaction. In People and Computers VI.
73–87.

[2] Ali-Reza Adl-Tabatabai and Thomas Gross. 1996. Source-level Debug-

ging of Scalar Optimized Code. In Proceedings of the ACM SIGPLAN
1996 Conference on Programming Language Design and Implementation
(PLDI ’96). ACM, 33–43. https://doi.org/10.1145/231379.231388

[3] Glenn Ammons, David Mandelin, Rastislav Bodík, and James R. Larus.

2003. Debugging Temporal Specifications with Concept Analysis. In

Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI ’03). ACM, 182–195. https:
//doi.org/10.1145/781131.781152

[4] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,

Alan Edelman, and Saman Amarasinghe. 2009. PetaBricks: A Language

and Compiler for Algorithmic Choice. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’09). ACM, 38–49. https://doi.org/10.1145/1542476.1542481

[5] H Arksey and L O’Malley. 2005. Scoping studies: towards a methodo-

logical framework. Int J Soc Res Methodol 8 (2005).
[6] Andrew Ayers, Richard Schooler, Chris Metcalf, Anant Agarwal,

Junghwan Rhee, and Emmett Witchel. 2005. TraceBack: First Fault

Diagnosis by Reconstruction of Distributed Control Flow. In Procee-
dings of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI ’05). ACM, 201–212. https:
//doi.org/10.1145/1065010.1065035

[7] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng,

Emerson Murphy-Hill, and Chris Parnin. 2017. Do Developers Read

Compiler Error Messages?. In Proceedings of the 39th International
Conference on Software Engineering (ICSE ’17). IEEE Press, Piscataway,

NJ, USA, 575–585. https://doi.org/10.1109/ICSE.2017.59
[8] Sam Blackshear and Shuvendu K. Lahiri. 2013. Almost-correct Specifi-

cations: A Modular Semantic Framework for Assigning Confidence

to Warnings. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’13). ACM,

209–218. https://doi.org/10.1145/2491956.2462188
[9] Michael D. Bond, Graham Z. Baker, and Samuel Z. Guyer. 2010. Bre-

adcrumbs: Efficient Context Sensitivity for Dynamic Bug Detection

Analyses. In Proceedings of the 31st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’10). ACM, 13–

24. https://doi.org/10.1145/1806596.1806599
[10] Gary Brooks, Gilbert J. Hansen, and Steve Simmons. 1992. A New Ap-

proach to Debugging Optimized Code. In Proceedings of the ACM SIG-
PLAN 1992 Conference on Programming Language Design and Implemen-
tation (PLDI ’92). ACM, 1–11. https://doi.org/10.1145/143095.143108

[11] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean

McDirmid, Michal Moskal, Nikolai Tillmann, and Jun Kato. 2013. It’s

Alive! Continuous Feedback in UI Programming. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’13). ACM, 95–104. https://doi.org/10.1145/
2491956.2462170

[12] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli

Fern, Eric Eide, and John Regehr. 2013. Taming Compiler Fuzzers.

In Proceedings of the 34th ACM SIGPLAN Conference on Programming

6

https://doi.org/10.1145/231379.231388
https://doi.org/10.1145/781131.781152
https://doi.org/10.1145/781131.781152
https://doi.org/10.1145/1542476.1542481
https://doi.org/10.1145/1065010.1065035
https://doi.org/10.1145/1065010.1065035
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1145/2491956.2462188
https://doi.org/10.1145/1806596.1806599
https://doi.org/10.1145/143095.143108
https://doi.org/10.1145/2491956.2462170
https://doi.org/10.1145/2491956.2462170

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Human-friendly output from program analysis tools PL’17, January 01–03, 2017, New York, NY, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Language Design and Implementation (PLDI ’13). ACM, 197–208. https:
//doi.org/10.1145/2491956.2462173

[13] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practi-

cal Memory Leak Detection Using Guarded Value-flow Analysis.

In Proceedings of the 28th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’07). ACM, 480–491.

https://doi.org/10.1145/1250734.1250789
[14] Maria Christakis and Christian Bird. 2016. What developers want

and need from program analysis: an empirical study. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering - ASE 2016. ACM Press, New York, New York, USA, 332–

343. https://doi.org/10.1145/2970276.2970347
[15] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. 2012. Input-

sensitive Profiling. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’12). ACM,

89–98. https://doi.org/10.1145/2254064.2254076
[16] D. S. Coutant, S. Meloy, and M. Ruscetta. 1988. DOC: A Practical

Approach to Source-level Debugging of Globally Optimized Code. In

Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation (PLDI ’88). ACM, 125–134. https:
//doi.org/10.1145/53990.54003

[17] Natasha Danas, Tim Nelson, Lane Harrison, Shriram Krishnamurthi,

and Daniel J. Dougherty. 2017. User Studies of Principled Model

Finder Output. In Software Engineering and Formal Methods, (Software
Engineering and Formal Methods,).

[18] Isil Dillig, Thomas Dillig, and Alex Aiken. 2012. Automat-d Error

Diagnosis Using Abductive Inference. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’12). ACM, 181–192. https://doi.org/10.1145/2254064.
2254087

[19] Maarten Faddegon and Olaf Chitil. 2016. Lightweight Computation

Tree Tracing for Lazy Functional Languages. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’16). ACM, 114–128. https://doi.org/10.1145/
2908080.2908104

[20] Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie

Weirich, and Matthias Felleisen. 1996. Catching Bugs in the Web of

Program Invariants. In Proceedings of the ACM SIGPLAN 1996 Confe-
rence on Programming Language Design and Implementation (PLDI ’96).
ACM, 23–32. https://doi.org/10.1145/231379.231387

[21] Saturnino Garcia, Donghwan Jeon, Christopher M. Louie, and Mi-

chael Bedford Taylor. 2011. Kremlin: Rethinking and Rebooting Gprof

for the Multicore Age. In Proceedings of the 32Nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’11). ACM, 458–469. https://doi.org/10.1145/1993498.1993553

[22] David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein.

2014. Don’T Sweat the Small Stuff: Formal Verification of C Code

Without the Pain. SIGPLAN Not. 49, 6 (June 2014), 429–439. https:
//doi.org/10.1145/2666356.2594296

[23] Jungwoo Ha, Christopher J. Rossbach, Jason V. Davis, Indrajit Roy,

Hany E. Ramadan, Donald E. Porter, David L. Chen, and Emmett

Witchel. 2007. Improved Error Reporting for Software That Uses Black-

box Components. In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’07). ACM,

101–111. https://doi.org/10.1145/1250734.1250747
[24] Stefan Hanenberg. 2010. Faith, Hope, and Love: An Essay on Soft-

ware Science’s Neglect of Human Factors. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA ’10). ACM, 933–946. https:
//doi.org/10.1145/1869459.1869536

[25] Kevin J. Hoffman, Patrick Eugster, and Suresh Jagannathan. 2009.

Semantics-aware Trace Analysis. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’09). ACM, 453–464. https://doi.org/10.1145/1542476.

1542527
[26] Susan Horwitz. 1990. Identifying the Semantic and Textual Differences

Between Two Versions of a Program. In Proceedings of the ACM SIG-
PLAN 1990 Conference on Programming Language Design and Implemen-
tation (PLDI ’90). ACM, 234–245. https://doi.org/10.1145/93542.93574

[27] Chinawat Isradisaikul and Andrew C. Myers. 2015. Finding Counterex-

amples from Parsing Conflicts. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’15). ACM, 555–564. https://doi.org/10.1145/2737924.2737961

[28] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011.

Automated Atomicity-violation Fixing. In Proceedings of the 32Nd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’11). ACM, 389–400. https://doi.org/10.1145/1993498.
1993544

[29] Andrew Johnson, Lucas Waye, Scott Moore, and Stephen Chong. 2015.

Exploring and Enforcing Security Guarantees via ProgramDependence

Graphs. SIGPLAN Not. 50, 6 (June 2015), 291–302. https://doi.org/10.
1145/2813885.2737957

[30] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert

Bowdidge. 2013. Why don’t software developers use static analysis

tools to find bugs?. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 672–681. https://doi.org/10.1109/ICSE.2013.
6606613

[31] Manu Jose and Rupak Majumdar. 2011. Cause Clue Clauses: Error

Localization Using Maximum Satisfiability. In Proceedings of the 32Nd
ACM SIGPLANConference on Programming Language Design and Imple-
mentation (PLDI ’11). ACM, 437–446. https://doi.org/10.1145/1993498.
1993550

[32] Barbara Kitchenham. 2004. Procedures for performing systematic

reviews. Keele, UK, Keele University 33, 2004 (2004), 1–26.

[33] Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Cham-

bers. 2007. Searching for Type-error Messages. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’07). ACM, 425–434. https://doi.org/10.1145/
1250734.1250783

[34] Alan Leung, John Sarracino, and Sorin Lerner. 2015. Interactive Parser

Synthesis by Example. In Proceedings of the 36th ACM SIGPLAN Confe-
rence on Programming Language Design and Implementation (PLDI ’15).
ACM, 565–574. https://doi.org/10.1145/2737924.2738002

[35] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. 2003.

Bug Isolation via Remote Program Sampling. In Proceedings of the
ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation (PLDI ’03). ACM, 141–154. https://doi.org/10.1145/
781131.781148

[36] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I.

Jordan. 2005. Scalable Statistical Bug Isolation. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’05). ACM, 15–26. https://doi.org/10.1145/
1065010.1065014

[37] Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya

Banerjee. 2009. Merlin: Specification Inference for Explicit Information

Flow Problems. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’09). ACM,

75–86. https://doi.org/10.1145/1542476.1542485
[38] Francesco Logozzo, Shuvendu K. Lahiri, Manuel Fähndrich, and Sam

Blackshear. 2014. Verification Modulo Versions: Towards Usable Veri-

fication. SIGPLAN Not. 49, 6 (June 2014), 294–304. https://doi.org/10.
1145/2666356.2594326

[39] David Menendez and Santosh Nagarakatte. 2017. Alive-Infer: Data-

driven Precondition Inference for Peephole Optimizations in LLVM.

In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2017). ACM, 49–63. https:
//doi.org/10.1145/3062341.3062372

7

https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/1250734.1250789
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2254064.2254076
https://doi.org/10.1145/53990.54003
https://doi.org/10.1145/53990.54003
https://doi.org/10.1145/2254064.2254087
https://doi.org/10.1145/2254064.2254087
https://doi.org/10.1145/2908080.2908104
https://doi.org/10.1145/2908080.2908104
https://doi.org/10.1145/231379.231387
https://doi.org/10.1145/1993498.1993553
https://doi.org/10.1145/2666356.2594296
https://doi.org/10.1145/2666356.2594296
https://doi.org/10.1145/1250734.1250747
https://doi.org/10.1145/1869459.1869536
https://doi.org/10.1145/1869459.1869536
https://doi.org/10.1145/1542476.1542527
https://doi.org/10.1145/1542476.1542527
https://doi.org/10.1145/93542.93574
https://doi.org/10.1145/2737924.2737961
https://doi.org/10.1145/1993498.1993544
https://doi.org/10.1145/1993498.1993544
https://doi.org/10.1145/2813885.2737957
https://doi.org/10.1145/2813885.2737957
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/2737924.2738002
https://doi.org/10.1145/781131.781148
https://doi.org/10.1145/781131.781148
https://doi.org/10.1145/1065010.1065014
https://doi.org/10.1145/1065010.1065014
https://doi.org/10.1145/1542476.1542485
https://doi.org/10.1145/2666356.2594326
https://doi.org/10.1145/2666356.2594326
https://doi.org/10.1145/3062341.3062372
https://doi.org/10.1145/3062341.3062372

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PL’17, January 01–03, 2017, New York, NY, USA Titus Barik, Chris Parnin, and Emerson Murphy-Hill

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

[40] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Ed-

wards, and Brad Calder. 2007. Automatically Classifying Benign and

Harmful Data Races Using Replay Analysis. In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI ’07). ACM, 22–31. https://doi.org/10.1145/1250734.
1250738

[41] Phúc C NguyáżĚn and David Van Horn. 2015. Relatively Complete

Counterexamples for Higher-order Programs. SIGPLAN Not. 50, 6
(June 2015), 446–456. https://doi.org/10.1145/2813885.2737971

[42] Peter Ohmann, Alexander Brooks, Loris D'Antoni, and Ben

Liblit. 2017. Control-flow Recovery from Partial Failure Reports. In

Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2017). ACM, 390–405. https:
//doi.org/10.1145/3062341.3062368

[43] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and

Sharon Shoham. 2016. Ivy: Safety Verification by Interactive Gene-

ralization. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’16). ACM,

614–630. https://doi.org/10.1145/2908080.2908118
[44] Edgar Pek, Xiaokang Qiu, and P. Madhusudan. 2014. Natural Proofs

for Data Structure Manipulation in C Using Separation Logic. SIG-
PLAN Not. 49, 6 (June 2014), 440–451. https://doi.org/10.1145/2666356.
2594325

[45] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman.

2012. Type-directed Completion of Partial Expressions. In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’12). ACM, 275–286. https://doi.org/10.1145/
2254064.2254098

[46] Justin Pombrio and Shriram Krishnamurthi. 2014. Resugaring: Lifting

Evaluation Sequences Through Syntactic Sugar. SIGPLAN Not. 49, 6
(June 2014), 361–371. https://doi.org/10.1145/2666356.2594319

[47] Xiaokang Qiu, Pranav Garg, Andrei Ştefănescu, and Parthasarathy

Madhusudan. 2013. Natural Proofs for Structure, Data, and Separation.

In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’13). ACM, New York, NY,

USA, 231–242. https://doi.org/10.1145/2491956.2462169
[48] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and

Xuejun Yang. 2012. Test-case Reduction for C Compiler Bugs. In

Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’12). ACM, 335–346. https:
//doi.org/10.1145/2254064.2254104

[49] Cindy Rubio-González, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-

Dusseau, and Andrea C. Arpaci-Dusseau. 2009. Error Propagation

Analysis for File Systems. In Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’09). ACM, 270–280. https://doi.org/10.1145/1542476.1542506

[50] Holger J Schünemann and Lorenzo Moja. 2015. Reviews: Rapid! Rapid!

Rapid! . . . and systematic. Systematic Reviews 4, 1 (2015), 4. https:
//doi.org/10.1186/2046-4053-4-4

[51] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandi-

lian, and Robert Bowdidge. 2014. Programmers’ build errors: a case

study (at google). In Proceedings of the 36th International Conference
on Software Engineering - ICSE 2014. ACM Press, New York, New York,

USA, 724–734. https://doi.org/10.1145/2568225.2568255
[52] Ohad Shacham, Martin Vechev, and Eran Yahav. 2009. Chameleon:

Adaptive Selection of Collections. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’09). ACM, 408–418. https://doi.org/10.1145/1542476.
1542522

[53] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013.

Automated Feedback Generation for Introductory Programming As-

signments. SIGPLAN Not. 48, 6 (June 2013), 15–26. https://doi.org/10.
1145/2499370.2462195

[54] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik.

2008. Sketching Concurrent Data Structures. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’08). ACM, 136–148. https://doi.org/10.1145/
1375581.1375599

[55] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. 2007. Thin Sli-

cing. In Proceedings of the 28th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’07). ACM, 112–122.

https://doi.org/10.1145/1250734.1250748
[56] Emina Torlak, Mandana Vaziri, and Julian Dolby. 2010. MemSAT:

Checking Axiomatic Specifications of Memory Models. SIGPLAN Not.
45, 6 (June 2010), 341–350. https://doi.org/10.1145/1809028.1806635

[57] V. Javier Traver. 2010. On compiler error messages: What they say

and what they mean. Advances in Human-Computer Interaction 2010

(2010), 1–26. https://doi.org/10.1155/2010/602570
[58] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri

Weisman. 2009. TAJ: Effective Taint Analysis of Web Applications.

In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’09). ACM, 87–97. https:
//doi.org/10.1145/1542476.1542486

[59] Daniel von Dincklage and Amer Diwan. 2008. Explaining Failures of

Program Analyses. In Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’08). ACM,

260–269. https://doi.org/10.1145/1375581.1375614
[60] Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon

Peyton-Jones. 2015. Diagnosing Type Errors with Class. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’15). ACM, 12–21. https://doi.org/10.1145/
2737924.2738009

[61] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Pro-

gram Enumeration for Rigorous Compiler Testing. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2017). ACM, 347–361. https://doi.org/10.
1145/3062341.3062379

[62] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Pruning Dyna-

mic Slices with Confidence. In Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’06). ACM, 169–180. https://doi.org/10.1145/1133981.1134002

8

https://doi.org/10.1145/1250734.1250738
https://doi.org/10.1145/1250734.1250738
https://doi.org/10.1145/2813885.2737971
https://doi.org/10.1145/3062341.3062368
https://doi.org/10.1145/3062341.3062368
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2666356.2594325
https://doi.org/10.1145/2666356.2594325
https://doi.org/10.1145/2254064.2254098
https://doi.org/10.1145/2254064.2254098
https://doi.org/10.1145/2666356.2594319
https://doi.org/10.1145/2491956.2462169
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/1542476.1542506
https://doi.org/10.1186/2046-4053-4-4
https://doi.org/10.1186/2046-4053-4-4
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1145/1542476.1542522
https://doi.org/10.1145/1542476.1542522
https://doi.org/10.1145/2499370.2462195
https://doi.org/10.1145/2499370.2462195
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/1809028.1806635
https://doi.org/10.1155/2010/602570
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1145/1375581.1375614
https://doi.org/10.1145/2737924.2738009
https://doi.org/10.1145/2737924.2738009
https://doi.org/10.1145/3062341.3062379
https://doi.org/10.1145/3062341.3062379
https://doi.org/10.1145/1133981.1134002

	Abstract
	1 Introduction
	2 Methodology
	2.1 What is a Scoping Review?
	2.2 Execution of SALSA Framework
	2.3 Limitations

	3 Taxonomy of Presentation
	4 Discussion
	5 Conclusions
	References

