
Improving Error Notification Comprehension
through Visual Overlays in IDEs

Titus Barik
North Carolina State University

tbarik@ncsu.edu

Abstract—Error notifications, as presented by modern in-
tegrated development environments, are cryptic and confusing
to developers. My dissertation research will demonstrate that
modifying production compilers to expose detailed semantics
about compilation errors is feasible, and that these semantics can
be leveraged through diagrammatic representations using visual
overlays on the source code to significantly improve compiler
error notification comprehension.

I. INTRODUCTION

The traditional abstraction of compilers is that they are
sophisticated black boxes [1]. In this abstraction, programmers
write source code, from which the compiler either successfully
generates an executable, or provides a notification in the event
that the compiler is unable to perform the task. Modern
integrated development environments (IDEs) challenge the
utility of this opaque abstraction. For example, the Eclipse
IDE includes an incremental compiler whose API is inten-
tionally exposed so that the IDE can provide features like
code assistance and support for refactoring.1 Similarly, the
Microsoft compiler, Roslyn, treats compilers as a platform,
postulating that the design of more intelligent and expressive
tools for use in the IDE will require compiler transparency
and the exposing of deep knowledge currently internal to the
compilation processes.2

My work incorporates this philosophy of compilers as a
platform to the domain of program comprehension, specifi-
cally, to the research goal of improving the comprehension of
compiler error notifications. I hypothesize that compilers can
be modified to expose detailed semantics about compilation
errors, and that these semantics can be leveraged by visual
overlays on the source code to significantly improve error
notification comprehension. The contribution of my research
will demonstrate: 1) that diagrams on the source code, or
visual overlays, are an appropriate representation that aligns
cognitively with the way developers reason about error notifi-
cations, 2) that such a visual representation can be generated
algorithmically through conceptual and visual ontologies, and
3) that a concrete implementation of such a tool is useful,
usable, and improves error notification comprehension.

II. WHY IMPROVE ERROR NOTIFICATION
COMPREHENSION USING VISUAL OVERLAYS?

There are a significant number of studies that indicate that
error notifications today are cryptic and confusing for devel-
opers; for a detailed literature review, see [2]. In part, this is

1http://www.eclipse.org/jdt/core/
2http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx

1 class X {
2 void m(int i, double d) { }
3 void m(double d, int m) { }
4

5 {
6

:
m
::::
(1,

::::
2);

7 }
8 }

(a) Traditional error notifications in IDEs

1 class X {
2 void m(int i, double d) { }
3 void m(double d, int m) { }
4

5 {
6 m(1, 2);
7 }
8 }

1

2

1

2

m((int) 1, (double) 2);

m((double) 1, (int) 2);

(b) Explanatory error notifications in IDEs

Fig. 1. A comparison of (a) traditional error notifications and (b) explanatory
error notifications in IDEs. Expressive representations are enabled by exposing
compilers internals for use by the IDE.

attributable not only to the complexity of modern programming
languages, but also because IDEs only partially leverage the
range of visual affordances available. For example, consider
the error notification for the source code listing in Figure 1a,
a situation in which the method call m(1, 2) is ambiguous
due to method overloading. The OpenJDK compiler output is:

reference to m is ambiguous, both method
m(int,double) in X and method m(double,int) in X
match

In addition to the text notification, the IDE provides a
:::
red

:::::
wavy

::::::::
underline overlay on Line 6 to indicate the point

of the error. It can do so because the compiler provides the
IDE with the description of the message, the line number,
and column number through an error object.3 Though the
underlying semantics of the error are provided as text to the
developer, the IDE cannot take advantage of a natural language
representation.

3For example, the ErrorItem object in the Developer Tools Environment
API in Visual Studio 2013 offers essentially the following properties: column,
description, error level, file name, line, and project.

2014 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

978-1-4799-4035-6/14/$31.00 ©2014 IEEE 177

By contrast, consider a more expressive notification, such
as through my prototype in Figure 1b. Such a notification can
be generated when the compiler exposes internal semantics to
the IDE. As before, the IDE indicates the point of the problem,
through (red box). Additionally, the compiler informs the
IDE that the concept of CLASH, or conflict between elements
in the program, has occurred. The compiler can do so because
of a common ontology that enables it to express such ideas
to other systems. Visually, the IDE translates the concept of
CLASH and marks the associations (arrows), and the conflict
between them (red cross). Furthermore, the explanation
draws visual attention through enumerations, such as 1 and
2 (numbered black circles). For each item in the enumeration,
the compiler conveys its internal reasoning for why it considers
this to be a problem, by providing the IDE an instantiation of
the issue, which is rendered as (dashed gray box).

Developers can potentially benefit from this choice of
diagrammatic representation. Self-explaining has been shown
to be an effective metacognitive strategy for understanding
materials, and diagrams can promote the self-explanation
effect [3]. Importantly, this effect is significantly increased
when comparing diagrams against text-only representations
due to computational offloading, re-representation, and graph-
ical constraining [3]. High explanation fidelity can also help
developers build useful mental models [4]. And having the
system explicate why it behaves a certain way can result in a
better understanding of the issue as well as stronger trust in
the tool [5].

One challenge is the way in which the compiler and IDE
should communicate their semantics, so that these visualiza-
tions can be generated on arbitrary source files. Asenov and
Müller have applied a domain-specific language, or grammar,
to support visualization of code contracts [6], with some suc-
cess. Consequently, I think the development of ontologies for
error notifications can offer similar benefits for the automatic
visualization of error explanations, by providing a consistent an
unified vocabulary, such as CLASH. My initial work describes
the details of such an ontology for error notifications [7].

III. EVALUATION PLAN

Representation alignment to mental models. If visual
overlays act as cognitive offloading for developers, then the
visual representation should align with the way in which
developers would reason about notifications. I have conducted
a preliminary evaluation on mental models and diagrammatic
representations by asking undergraduate programmers to hand-
draw annotations on printed source code. Our early results
show that participants generally used the same markings, such
as arrows and ×, to consistently describe concepts, but a
formal study is still needed. My expectation is that this study
will use a combination of eye tracking and cognitive models
to validate the appropriateness of the representation.

Ontologies for mapping concepts to visualizations.
Modern compilers contain an overwhelming number of er-
ror notifications, but many errors share common conceptual
explanations. I will conduct an empirical investigation by
examining a corpus of error notifications from production
compilers. A taxonomic approach will be used to construct
a conceptual ontology that classifies these error notifications

into semantic concepts. The semantic concepts will be mapped
to a visual ontology, so that a visualization in an IDE can
accept one or more concepts from the compiler, and render
them appropriately.

A software tool for expressive error notifications. I
will conduct a user study in which developers will explain
error notifications through the Visual Studio IDE, with a
modified version of Roslyn that supports error notification
semantics. Experimental frameworks, such as Barista, have
enabled the creation of visual representations on source code
within IDEs [8], and Visual Studio now offers the major-
ity of these capabilities through its Windows Presentation
Framework, making it an appropriate environment in which
to develop such a tool. The study will compare developer
comprehension using our novel visualization technique against
the traditional error notifications offered by the baseline IDE.

IV. CONCLUSION

The visual affordances available to tool designers within
integrated development environments are underutilized. By
exposing compiler internals to the IDE through a conceptual
to visual mapping, visualizations can be generated algorith-
mically and be made more expressive. My dissertation work
will apply these ideas to improving compiler error notification
comprehension, but I believe that my work can be extended
by researchers to develop diagrammatic representations for
other software engineering tasks, such as conveying unit test
coverage or explaining changes between multiple versions of
the code.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1217700. I thank the
Software Engineering group at ABB Corporate Research for
their support. I also thank my advisor, Dr. Emerson Murphy-
Hill, for his insights and support.

REFERENCES

[1] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004, pp. 75–86.

[2] V. J. Traver, “On compiler error messages: What they say and what
they mean,” Advances in Human-Computer Interaction, vol. 2010, pp.
1–26, 2010.

[3] S. Ainsworth and A. T. Loizou, “The effects of self-explaining when
learning with text or diagrams,” Cognitive Science, vol. 27, no. 4, pp.
669–681, Aug. 2003.

[4] T. Kulesza, S. Stumpf, M. Burnett, S. Yang, I. Kwan, and W.-K. Wong,
“Too much, too little, or just right? Ways explanations impact end
users’ mental models,” in VL/HCC, Sep. 2013, pp. 3–10.

[5] B. Y. Lim, A. K. Dey, and D. Avrahami, “Why and why not
explanations improve the intelligibility of context-aware intelligent
systems,” in CHI, Apr. 2009, pp. 2119–2128.

[6] D. Asenov and P. Müller, “Customizing the visualization and
interaction for embedded domain-specific languages in a structured
editor,” in VL/HCC, Sep. 2013, pp. 127–130.

[7] T. Barik, J. Witschey, B. Johnson, and E. Murphy-hill, “Compiler error
notifications revisited: An interaction-first approach for helping
developers more effectively comprehend and resolve error
notifications,” in ICSE NIER, Jun. 2014.

[8] A. J. Ko and B. A. Myers, “Barista: An implementation framework for
enabling new tools, interaction techniques, and views in code editors,”
in CHI, Apr. 2006, pp. 387–396.

178

