
A Perspective on Blending
Programming Environments and Games:

Beyond Points, Badges, and Leaderboards∗

Titus Barik, Emerson Murphy-Hill
North Carolina State University, USA

tbarik@ncsu.edu, emerson@csc.ncsu.edu

Thomas Zimmermann
Microsoft Research, USA
tzimmer@microsoft.com

Abstract—Programming environments and game environments
share many of the same characteristics, such as requiring their
users to understand strategies and solve difficult challenges. Yet,
only game designers have been able to capitalize on methods
that are consistently able to keep their users engaged. Conse-
quently, software engineers have been increasingly interested in
understanding how these game experiences can be transferred to
programming experiences, a process termed gamification.

In this position paper, we assert through formal argument that
gamification as applied today is predominately narrow, placing
emphasis on adopting the reward aspects of game mechanics
at the expense of other important game elements, such as
framing. We argue that more authentic game experiences are
possible when programming environments are re-conceptualized
and assessed as a holistic, serious games. This broad gamification
enables us to more effectively apply and leverage the breadth
of game elements to the construction and understanding of
programming environments.

I. INTRODUCTION

Blending programming environments with games is a
fascinating, human-centered intersection for exploration by
software engineering researchers, because these two contexts
appear to share many of the same characteristics: they both
have complex rules and strategies to learn, require long hours
and deliberate practice to build mastery, and produce boundless
obstacles and challenges that must be overcome. Yet we
immediately recognize that though programming environments
and games are ultimately just software, the experience that we
get from software as programming environments when we’re
programmers and software as games when we’re players just
feels very different. In particular, games are somehow able to
offer us an experience in which we are focused, motivated, and
productive in a way that is unmatched by the environments
that we use to work [1].

Other software engineering researchers have also arrived
at the same conclusion.1 As a result, they too have been
increasingly interested in transferring game experiences to

∗ Note to reviewers: This paper is submitted under the topic “Human
aspects and psychology of software development and language design,” and
supports its claims through “formal argument.”

1In this paper, we use the term software engineering researchers, or
sometimes just researchers, in a broad sense to refer to people who have
an interest in researching or building tools that help other programmers. We
use the term programmers to the refer to people who are intended to be the
users of these tools.

programmers, so that programmers can more effectively and
efficiently create software artifacts [2]. One mechanism by
which researchers have investigated this process is through
gamification [3], that is essentially: “the use of game design
elements in non-game contexts” [3].

In this perspective paper, we argue that the application
of gamification has thus far been focused narrowly on the
game element of incorporating reward-based mechanics, such
as points, leaderboards, and badges. In doing so, software
engineering researchers elide other essential game elements,
such as purpose, aesthetic, and framing [4]. We demonstrate
that broad gamification, or gamification that considers a holistic
view of game elements, can provide more substantive game
experiences in programming environments.

As a method of inquiry, this paper uses the Toulmin model
of argument to present and evaluate its claim [5]. It is a formal
method of argument, though not in the mathematical proof
sense. Rather, the model’s formality lies in the components of
the argument.2 Through this argument, we offer the following
insights:3

• We claim that programming environments can be concep-
tualized as serious games, a class of games that do not
have entertainment as their primary purpose (Section II).

• Through the use of Mitgutsch and Alvarado’s Serious
Game Design Assessment (SGDA) framework, we offer
a warrant of broad gamification that enables us to
assess programming environments as games (Section III).
Consequently, we are better able to express the ways
in which programming environments today fall short of
meeting the full potential of game experiences.

• Through facts, we argue that existing implementations
of gamification are narrow, largely eliding the body
of literature from psychology and game designer, and
through backing, demonstrate that these implementations
focus on reward-based game mechanisms as a means

2The six components of this model are described by Besnard and Hunter [6]:
1) claim, or the position being argued for; 2) fact, or items of information
specific to a context; 3) warrant, or relating facts to claims; 4) backing,
or justification for a warrant; 5) rebuttal, or exceptions to the claim; 6)
qualification, or specific limitations to the claim.

3Rebuttals are addressed as needed, and are interspersed through the paper.



to extrinsically motivate programmers to perform some
action (Section IV).

• As further backing, we apply the principles learned from
broad gamification to two programming environment
examples (Section V). The first example demonstrates
that novel insights can be gained in existing programming
tools by reconceptualizing them as games (Section V-A).
The second example demonstrates how the use of game
principles can be used to guide the design of new
programming environments (Section V-B).

• Finally, we offer implications and qualify our arguments
(Section VI). For example, we suggest that our current
reward-based approaches to gamification may be uninten-
tionally reducing the diversity and pool of programmers
who might otherwise be inclined to use our programming
environments.

II. PROGRAMMING ENVIRONMENTS AS SERIOUS GAMES

If programming environments can be conceptualized as
games, what type of game should they be? On one hand,
when we think of games, the notion of fun is typically what
comes to our mind. In nearly every interview with software
engineers who had experience with both game and non-game
software, programmers pointed to “fun” as one of the core
differences between requirements in games and other types
of software [7]. Lewis and Whitehead, in describing research
areas between software engineering and games, likewise noted,
“the one unique aspect of games, that seems to separate it
from traditional software, is the requirement for games to be
fun” [8].

On the other hand, programming environments are also
serious, sophisticated instruments for the construction of
software artifacts. Thus, opponents might reasonably claim
that the very notion of “fun” is antithetical to productivity in
programming environments.

Our approach to overcoming this potential impasse is
to qualify software engineering environments as a form of
serious games. In its essential form, serious games are games
that “do not have entertainment, enjoyment, or fun as their
primary purpose” [9]. As noted by Djaouti and colleagues,
this type of blending of the fun elements and serious elements
in an environment allow us to use the artistic medium of
traditional entertainment games to educate, inform, train, and
influence [10].

We can apply blending to programming environments by
shifting our perspectives on these environments and framing
them as a domain-specific serious games. Doing so provides
two benefits. First, this results is less of a gap to bridge between
programming environments and game environments. Second,
we can still leverage applicable game design elements from
both games and serious games and apply them in the context
of programming environments.

III. SERIOUS GAME DESIGN FRAMEWORK ASSESSMENT

If programming environments can be conceptualized as
serious games, then it suggests that these environments can

Fig. 1. Habitica is serious game designed to build good habits. It gamifies
a typical time-tracking application be reconceptualizing it in the form of a
role-playing game.

be evaluated through existing game design frameworks. Such
evaluations may be retrospective, enabling us to assess existing
tools through the lens of a game designer. Such evaluations may
also be generative, as design guidelines for new programming
environments.

In this paper, we utilize Mitgutsch and Alvarado’s Serious
Game Design Framework Assessment (SGDA) framework [4].
In contrast with with prior frameworks that primarily focus
on educational games [11], [12], SGDA incorporates not
only general game design elements, such as mechanics, but
also elements unique to serious games, such as purpose. To
illustrate the framework concretely, we describe the framework
elements through Habitica4 (Figure 1), an online time-tracking
application. As a serious game, Habitica positions itself in the
role-playing game (RPG) genre, in which players gain “a sense
of growing an ordinary person into a superhero with amazing
powers” [13]. The SGDA framework has six elements, and the
game elements are intended to be used cohesively to provide
a holistic game experience:

Purpose The purpose of the game determines the intended
impact on the players, and influences the consideration of
other elements within framework. In Habitica, the purpose
of the game is to motivate the player to form positive
habits and complete goals, such as flossing regularly
or submitting a VL/HCC paper by the deadline. The
remaining elements of the framework serve to support the
purpose of the game.

Content/Information This element refers to the data provided
to the player within the game. In Habitica, this content
includes player statistics, such as their level, health, and
experience. The content also includes their daily habits
and goals, such as “Study a master of the craft.”

Mechanics The mechanics of a game include not only the
methods by which the players in the game interact with
the environment, but also the rules of the game that define
the “possibility space” [4]. As such, the mechanics also
include any reward mechanisms, such as points or badges.

4https://habitica.com/



In Habitica, the mechanics of the game involve adding
tasks to the game, setting deadlines, and marking which
tasks are completed. The reward mechanics include in-
game items, “boss fights”, and “quests.”

Fiction/Narrative The element of narrative introduces the
context of fantasy, which includes the setting, story,
scenario, or problem or the game. In Habitica, the fantasy
element is provided within a medieval setting in which
mundane, real-life goals transform into heroic in-game
events, such as a vanquishing villainous dragons.

Aesthetics/Graphics Niedenthal provides a taxonomic defini-
tion specific to games by segmenting aesthetics into three
components [14]: 1) “the sensory phenomena that the
player encounters in the game,” such as visual or aural
stimulus, 2) “those aspects that are shared with other
art forms,” such as visual styles or use of colors, and
3) “an expression of the game experienced emotionally,”
such as through fear, pleasure, or frustration. In Habitica,
the game aesthetic uses retro, sprite-based graphics that
typified the graphical style of classical 8-bit Nintendo
RPGs, such as The Legend of Zelda [15].

Framing Framing associates the other elements of the game
framework in terms appropriate to the target audience, that
is, it captures the player literacy. A game that has poor
play literacy would make incorrect assumptions about the
type of player who plays the game, leading the player to
be confused or frustrated. Habitica progressively discloses
complexity: as “starter quests” are completed, and as the
player obtains additional experience, the game unlocks
additional quests.

Through the SGDA framework, we argue that Habitica uses
these game elements appropriately and cohesively and presents
a coherent, cohesive, serious game experience.

IV. THE CASE AGAINST NARROW GAMIFICATION IN
SOFTWARE ENGINEERING

Having presented the SGDA framework (Section III), we
postulate that gamification techniques as applied today are
primarily of the narrow form, and argue as such by examining
the current literature on blending programming environments
and games. We then consider the limitations and potentially
harmful implications of narrow, reward-based gamification,
using the underlying cognitive psychology and perspectives
from game designers.

A. Existing Approaches to Implementing Gamification

We summarize existing approaches and their purpose for
papers in which the authors explicitly characterized their work
as implementing gamification for programming environments.
For this task, we began with the literature review conducted
by Hamari and colleagues in 2014 [2]. We then conducted a
literature search of the past two years of ICSE, FSE, CHI, and
VL/HCC to identify more recent papers on gamification since
Hamari and colleagues’ original publication. We summarize
these papers in Table I, and classify their support for each of
the elements in the SGDA framework.

Fig. 2. The Blaze gamification system [16] uses points, levels, and leaderboards,
which are characteristic of narrow gamification.

TABLE I
OVERVIEW OF EXISTING SOFTWARE DEVELOPMENT ENVIRONMENTS

UNDER SGDA FRAMEWORK

Framework Element
Tool PUR AES FIC MEC FRA CON

Blaze [16]
Teamfeed [17]
Beehive [18]
OO Practices [19]
Stack Overflow [20]

VS Achievements
Free Hugs [21]
1 Circles indicate: — Element supported, — Element partially

supported, — Element not supported. Framework elements: Purpose
(PUR), Aesthetic (AES), Fiction (FIC), Mechanics (MEC), Framing (FRA),
Content (CON).

Reflecting on our own foray in gamification, we introduced
a system system called Blaze (see Figure 2) to motivate
programmers to use structured navigation tools when exploring
source code [16]. Thus, Blaze has a clear purpose. As a game
mechanic, Blaze uses rewards such as points and leaderboards to
notify the programmer about their use of these tools. However,
the system has only partial support for content. Although the
game notifies the programmer about points and levels, the
game lacks a clear association between how tool usage maps
to obtaining these rewards. Blaze has no discernible, gameful
aesthetic of its own; it merely uses the default components
that come with Visual Studio. Blaze also has no fictional or
fantasy element, and does not provide any framing. Blaze is
emblematic of narrow gamification: it relies primarily on a
single dimension of the SGDA framework, reward-based game
mechanics.

We conducted a similar analysis on the remaining gamifica-
tion papers, but for purposes of space, do not elaborate on their
details element-wise. Singer and Schneider motivated students
to make more frequent commits to version control through a
newsfeed (as used by social network games) of commits and a
leaderboard [17]. Farzan and colleagues implemented a point-
based reward system in their internal social networking system
at IBM to motivate users to contribute content [18]. Dubois
and Tamburrelli motivated students to use object-oriented



Fig. 3. The Visual Studio Achievements extension introduces playful elements
within the programmer’s environment. We unlocked the above achievements
during the process of creating this figure.

best practices that are expressible as metrics, such as test
coverage; these metrics are converted to scores and presented
as leaderboards [19].

When we expanded our search outside of programming
environments, a literature review of 24 empirical studies on
gamification revealed the same trend — leaderboards (42%),
points (38%), and achievements and badges (38%) dominate
the gamification landscape, across many disciplines [2]. At
least, software engineering researchers may have some small
comfort in knowing that we aren’t alone in our underuse of
broad gamification.

With that said, we did find two exceptions to this trend
that we think are worth highlighting as examples of broad
gamification that use multiple game elements. First, consider
the Visual Studio Achievements extension5, shown in Fig-
ure 3. By deliberate design, the extension offers a ludic, or
playful, space for the programmer — although not a full-
blown fantasy, these playful elements do add to the fictional
element by compelling players to perform unconventional
actions. To illustrate, the “Lonely” achievement is earned
when the programmer is coding on a Friday or Saturday night,
and the “Potty Mouth” achievement is unlocked when the
programmer uses five different curse words in a file. Visual
Studio Achievements provide adequate support for framing
by unlocking certain achievements when the programmer
obtains the simpler, pre-requisite achievements. Visual Studio
Achievements is intentionally purposeless, ‘add[ing] some
humor to the levity of coding” [22]. As such, it is more like a
game than a serious game.

As a second exception, consider the micro-gamification
environment Free Hugs [23], in which the authors sketch the
idea of an environment where programmers creates fictitious
alter egos within a development empire. The alter egos in this
empire evolve as programmers use best practices in the IDE.
The environment has the potential to provide a richer game

5http://channel9.msdn.com/achievements/visualstudio

experience, because it introduces additional game elements,
such as fiction, into its design.

B. Undermining Motivation: Challenges of Reward-based,
Narrow Gamification

So what’s the problem with narrow, reward-based game
mechanics? Cognitive psychologists Ryan and colleagues have
identified and explained the underlying motivational pull of
video games through self-determination theory, a theory of
intrinsic motivation “based on inherent satisfactions derived
from action” and one in which “most players do not derive
extra-game rewards or approval” [24].

In contrast to intrinsic motivation, extrinsic motivation is
“done in order to attain a separable outcome,” for example,
to comply with an external control or to pursue an external
reward [25]. Research in psychology consistently demonstrates
that external rewards undermine intrinsic motivation [26], [27],
[28]. For example, Deci and colleagues conducted an extensive
meta-analysis that showed that tangible rewards, such as gold
stars, honor roles, and other reward-focused incentive systems
have a substantial undermining effect on the intrinsic motivation
to learn [26].

This finding has been since been replicated in a variety
of software engineering contexts. Farzan and colleagues, in
their enterprise social networking system at IBM, found that
users who saw points contributed more content, though not
indefinitely, and that user contributions dropped precipitously
immediately after attaining certain levels [18]. Mamykina and
colleagues observed a similar type of behavior from some users
of the question and answer site StackOverflow6. Initially drawn
by the extrinsic motivation provided by points and badges, these
“shooting stars,” had a single, short period of high activity
followed by low activity after obtaining a reward. [29] And out
of their four user classifications, only the intrinsically motivated
group, community activists, converted to highly active, long-
term contributors. In addition, the reputation points system in
StackOverflow caused some users to provide faster but shorter
answers. This allowed them to gain reputation points more
quickly, but at the expense of readers, since detailed answers are
more informative [29]. External rewards can change behavior,
but sometimes in unexpected ways.

Game experts appear to have an intuitive understanding
of motivation and have found effective ways to incorporate
motivation in their games. Bissell, a games journalist, notes
that games don’t seem to suffer from motivation problems,
despite having tasks that resemble the tedium and repetition
that is sometimes present in programming activities. Other
game designers, such as Bogost, have also weighed in on
the discussions surrounding gamification. Bogost argues that
gamification as being applied is essentially a formulaic “just
add points” approach [30]. Robertson explains, “gamification
is in fact the process of taking the thing that is least essential to
games and representing it as the core of the experience” [31].
She continues, “gamification, as it stands, should actually be

6http://stackoverflow.com/



Fig. 4. The Elder Scrolls V: Skyrim provides quests for the player to complete.
The quests are broken down into manageable subgoals, and the completion of
these subgoals is explicitly marked as visual overlays on the interface.

called pointsification” [31]. Jadoga adds, “play, even within
the parameters of a design game and its constraints . . . is a
space of potential, one that is so often undone by the ludic
sterility of [points-based] gamification” [32]. Hamari goes even
further by suggesting that perhaps achievements should not be
integrated at all, but instead, that “achievement systems should
be viewed as games of their own” [33].

Yet, from our perspective, it appears programming envi-
ronments predominantly include the narrow, reward-based
mechanics of games, rather than applying broader game design
elements to support of the game’s purpose. Software engi-
neering researchers are well-intentioned and have a significant
interest in enhancing motivation — but leveraging the right
type of motivation is important.

V. RETHINKING PROGRAMMING TOOLS AS GAMES

Thus far, we’ve examined the SGDA framework and how
programming environments can be evaluated as serious games.
We critically examined how the existing uses of gamification
in software engineering narrowly focus on reward-based
mechanics, and how doing so limits game experiences.

In this section, we present two examples of how SGDA,
and thinking of programming environments as serious games,
can surmount the limitations of narrow gamification. The first
example demonstrates that novel insights can be gained retro-
spectively when evaluating existing programming environments
as serious games. The second example demonstrates that SGDA
can be used generatively, and without relying on explicit reward-
based mechanics.

A. Tests as Quests

Test-first development is an agile methodology through
which programmers first establish a set of test cases to
computationally describe a small increment of the specification
before coding the actual implementation [34]. Generally, tests
are added gradually and co-evolve with the implementation.

We think that the process of test-first development, when
blended with games, can be cast narratively as quest games.

(a) Programmer finds a defect.

(b) Programmer resolves the defect.

Fig. 5. In deep gamification, the unit testing tool NCrunch can be examined
as a quest game like Skyrim. NCrunch adds markers to the margin to indicate
the coverage for each line: not covered by tests (black circle), covered by tests
and pass (green circle), covered by tests and fail (red circle).

Aarseth defines a quest game as “a game with a concrete
and attainable goal, which supersedes performance or the
accumulation of points. Such goals can be nested (hierarchic),
concurrent, or serial, or a combination of the above” [35].
Aarseth’s framework offers three basic quest types: 1) place-
oriented, where the player must go from one place in the game
world to another, 2) time-oriented, where one must satisfy a
requirement during or within a certain time interval, 3) and
objective-oriented, where the task is to achieve a concrete
result. Quest types typically do not exist in isolation, but are
combined in various ways to create interesting challenges for
players.

Let us consider the game The Elder Scrolls V: Skyrim
(Skyrim) [36], an action role-playing game consisting of main
quests (typically required to complete the game), and side
quests (which are optional challenges for the player). Figure 4
shows one such side quest, in which the player is offered the
main goal of investigating a house fire. They can accomplish
the main goal by completing the three subgoals. Note that,
unlike unit tests, the full specification is often intentionally
elided for purposes of increasing dramatic tension in game.
In addition, it is sometimes possible to complete the main
goal without completing all of the subgoals. For example,
continuing our Skyrim quest explanation, the player might
directly choose to confront Hrogger without investigating the
burned house. Of course, programmers can do this too7, but
some organizations require that all tests pass before allowing
the code to be submitted.

Although not explicitly designed using game elements, and
lacking the game element of framing, we argue that NCrunch8,
an automated testing tool for Visual Studio, resembles a quest

7That is, they can skip subgoals, not necessarily confront people who set
houses on fire.

8http://www.ncrunch.net/



Fig. 6. Civilization V is a turn-based city-building strategy game. In the game,
players can elect to give worker units instructions at every turn of the game.
As an alternative, players can request that one or more worker units perform
automated improvements, leaving the computer to pick reasonable defaults
through its built-in recommendation system.

game — the purpose of which is to increase test coverage
of the project. As shown in Figure 5, its salient feature is
the aesthetic of dynamically updating visual overlays in the
margin, called markers, that indicate lines of the source code
are: 1) not covered by any tests (black circle), 2) covered by
tests and pass (green circle), and, 3) covered by tests and
fail (red circle). The markers act as affordances to let the
programmer know what needs or does not need to be fixed.
As in quests, a test suite represents the main goal, and the
individual markers represent subgoals. Some of these subgoals
may be optional. As a game mechanic, the programmer has the
agency to explicitly choose to ignore black circles, because they
look uninteresting compared with the more important failures
that they see in Figure 5a. By examining the failed lines against
the test specification (not shown in figure), the programmer sees
that he is accidentally adding to the m_balance, instead of
subtracting. Upon modifying the code, the system confirms the
programmer’s agency through immediate feedback, or content,
that updates the markers to green (see Figure 5b).9

Cockburn argues that many practices in agile methodologies
are better explained as games than as engineering [37]; we think
test-first development is a good starting point for exploring this
space. Erdogamus and colleagues already advocate a test-first
approach because they provide the programmer with instant
feedback, which informs the programmer of the correctness
and implementation of functionality and task-orientation [34].
But more importantly, they show that test-first development
helps programmers maintain focus and provides them with an
indicator of steady, measurable progress [34]. By thinking as
game designers, we are afforded a vocabulary that explains
why the interface provides these benefits to the programmer.

B. Progressive Complexity

Now that we’ve seen how thinking in terms of serious games
can help us to retrospectively understand existing environments,

9Another aesthetic, provided directly by Visual Studio, is the green
rectangular marker that indicates which lines of code have been changed
(see Figure 5b). This lets the programmer know which changes helped correct
the defect.

consider how we can constructively use game elements to
enhance the game experience in a programming environment.

Integrated development environments have a non-trivial
amount of features and customizable settings, yet programmers
need only a particular subset of these features at any given
time. Thus, there is a framing mismatch in the available options
and the requirements of the programmer. Game designers
would characterize this as an imbalance between material
affordances, the opportunities for action that are presented, and
the formal affordances, the motivation to pursue one particular
action out of all actions that are offered [38]. We propose that
programming tools could benefit from techniques used in games
to reduce the cognitive burden presented by the complexity of
the interface.

As an example of a game that manages progressive com-
plexity in an effective manner, consider the game Sid Meier’s
Civilization V (Civ V) [39], a turn-based city-building strategy
game, shown in Figure 6. In the game, the player must lead
a civilization from its inception, achieving one of a number
of different victory types. Each of these victory types requires
the player to commit to a subset of available game actions,
among them scientific research, world exploration, diplomacy,
and military conquest.

For example, early in the game, managing city internals,
such as allocating labor to produce specific resources, can
be automatically managed by the game (see Figure 6). As
a mechanic, the game is capable of performing reasonable
actions on the player’s behalf, leaving the player to focus on
the higher-level strategies of managing their civilization. Later
in the game, when resource management becomes critical for
success, players can fine-tune city production parameters to
achieve specific resource outputs.

On the contrary, consider the screenshot from the Build
Properties page of Microsoft Visual Studio10 in Figure 7a –
the purpose of which is to configure the build. Early in the
project, a programmer is likely to first add the project to
version-control, and second, specify the location of project
build-path binaries to be set outside of version-control tracked
folders. In all likelihood, the programmer does not care about
“conditional compilation symbols,” specifying “DEBUG and
TRACE constants,” or specifying “specific warnings” to treat as
errors, even though these options are shown to them in the page
settings. If instead the IDE was a game, the interface would
only show material affordances aligned with the intentions
(formal affordances) typically associated with this stage of
project development. A mockup of project settings supporting
progressive complexity for a code base that is in its early stages
of development is shown in Figure 7b. Here, only the options,
or content, that are likely to be useful to the programmer are
afforded to them.

Of course, we expect that the programmer will eventually
want more advanced features. Civ V manages this progressive
complexity through the technology tree, seen in Figure 8.
Branches in the technology tree will enable different available

10http://www.visualstudio.com/



(a) Current Build Properties page.

(b) Build Properties page incorporating progressive complexity.

Fig. 7. In Visual Studio, the Build Properties page contains an overwhelming
number of options. For many of these options, the programmer is likely to
be indifferent. As with games, the programmer should be able to trade-off
performance or configurability for simplicity.

Fig. 8. The technology tree within Civilization V. The technology tree enables
different in-game actions depending on the player’s intentions as they search
the tree space. This metaphor could be applied to programming, allowing
programmers to edit their environment to enable specific workflows.

in-game actions. At the game’s onset, generic technologies are
available for use, and as the player’s intentions grow in scope,
so do the branches of the technology tree. A similar approach
could be used in an IDE whereby the tools become available in

(a) (b)

Fig. 9. The Forest mobile application helps users put down their phone and
minimize phone-related distractions. In (a), the user sets a time period in
which they will not use their device. The duration of the timeout determines
the type of tree that is planted for the session. In (b), a tree is planted in
the forest for each successful session; an interrupted session is rendered as a
killed tree.

specific development contexts that programmers explicitly add.
As intentions change, they could select specific technologies
they want their IDE to accommodate.

VI. IMPLICATIONS

Our argument that gamification today is narrow, and that
more meaningful game experiences can be achieved through
broad gamification by conceptualizing programming environ-
ments as serious games, presents opportunities and challenges
for practitioners and researchers who wish to employ gamifi-
cation in their own work. We describe three key implications
that follow from our findings:

Promote fiction and narrative in gamification. As we
identified in Section IV, programming environments incorpo-
rating gamification have either ignored or found it difficult
to integrate immersive narrative elements into their design.
Although the nature of programming may limit our ability to
fully realize fantasy in programming contexts, we can perhaps
“rebuild” narrative bottom-up to offer the programmer some
level of narrative. Minimally, the narrative should provide the
player with a sense of a beginning-middle-end structure [40].
Furthermore, the narrative can be separated into its constituent
elements of story — that is, “What is told?” and the discourse
— that is, “How is it told?” [40].

Concretely, consider the mobile phone application, Forest11,
illustrated in Figure 9. Forest helps users put down their
phone and minimize phone-related distractions. It does so
by asking the user to specify an arbitrary amount of time,
which determines the type of tree that is planted in the game
(Figure 9a). If the user does not leave the application within
this time, a tree is planted in their forest; if the application is
interrupted, the tree is killed (Figure 9b).

We can describe Forest through a narrative lens, and therefore
a game design lens, using story and discourse. In the case of
Forest, the story is a lack of an event — the user should not
use the phone during the duration of the story. Progress within
the story is represented as the growth of the tree. The tree

11http://www.forestapp.cc/



begins life as a small seed, and if uninterrupted, eventually
grows to maturity. The discourse through which this story is
presented is a metaphor that represents time as a spatial forest.
Although the fantasy in this narrative is not extravagant, it is
effectiveness nevertheless.

Like Forest, which materializes, or reifies, abstract concepts
such as time into explicit beginning-middle-end structures, we
too can support programmers through narrative by artificially
introducing explicit beginning-middle-end structures into their
programming environments. For example, we could introduce
the forest metaphor and mechanics directly into an IDE,
allowing the programmer to select a time block for the tree
they wish to plant. The tree could to grow to maturity as
long as the programmer avoids distracting resources, such as
social websites, during the time block. As the programmer
accumulates successfully completed time blocks throughout
the work week, they would be rewarded with the generation
of a charming, procedurally-generated forest.

Frame programming environments tailored to program-
mer literacy. A second observation is that gamification today
does not appear to offer framing as a game design element. That
is, programming environments assume that all programmers
are interchangeable and come into the environment having the
same programmer literacy. As Gee demonstrates, good games
are “learning machines,” and operationalize this principle in
many ways, for example, by providing information “on demand”
and “just-in-time,” as well as through explicit customization,
which allows the player to directly specify their skill level.

Specifically, Desuvire and colleagues argue that upon turning
on the game, the player should have enough information to get
started in play, and that, players should not need a manual to
play the game [41]. One way to accomplish this is by providing
in-game, rather than out-of-game information. In one study,
Anderson and colleagues found that when features could not be
discovered easily through experimentation, providing tutorial
information as closely as possible to when that information is
needed increased play time by 16% and progress by 40% [42].

To understand how programming environments might apply
framing, let us take the scenario of teaching the programmer
to use the rename refactoring tool in their IDE. Using this tool,
the programmer can automatically and safely rename program
elements in their code, yet refactoring tools in generally are
rarely used [43]. One reason for this underuse may be that the
programmer is not aware that such a tool even exists.

To address this mismatch, let us considering reversing the
situation from Civ V’s automated workers (Figure 6), in
which the game automatically managed worker units until
it became necessary for the player to fine-tune them. Now,
the programmer will manually perform rename refactoring
actions as they are currently doing, and behind the scenes
we will implement a refactoring detector to identify if they
are performing a rename task by hand [44]. If the rename
task is a simple one, the programmer is likely to succeed
and nothing needs to be done. But consider a case when the
programmer attempts to perform a significantly more complex
rename refactoring — and fails to do, resulting in a compiler

error. If the environment is able to detect this scenario, it
would be a perfect time to make the programmer aware of the
automated rename refactoring tool: the information would be
presented as closely as possible at a time when the programmer
is likely to be frustrated and looking for help. Through the
use of framing, we are able to increase the likelihood that the
programmer will adopt the rename refactoring tool.

Incorporate multiple game elements to increase diver-
sity of users. A third observation is that existing software
engineering gamification approaches have a social component.
Yet, the majority of game frameworks — with the notable
exception of McGonigal [1] — do not emphasize the social
component as a first-class principle of game design. While
important, perhaps it is the case that software engineering
researchers are overemphasizing socialness as an effective
gamification technique. For example, Derex and Boyd found
that full social connectedness is not always better and that
“partially connected groups produce more diverse solutions, and
this diversity allows them to develop complex solutions that are
never produced in fully connected groups” [45]. Furthermore,
Bergeron found that too much social connectedness yields
a “paradox of organizational citizenship,” in which socially-
rewarded and publicly visible “good citizenship” actions come
at the expense of individual task performance [46].

Existing approaches also appear to use competitive, reward-
based game mechanics as their primary gamification approach.
However, research in game studies reveal significant age and
sex differences in video game play [47], [48]. For instance,
Lucas found that female respondents reported “less motivation
to play in social situations, and less orientation to game genres
featuring competition” [48].

This evidence may explain why men participate more than
women in communities such as a Stack Overflow, which are
more socially-oriented and reward-based [49]. By incorporating
a wider breadth of game elements in programming environ-
ments, tool designers can potentially increase the inclusiveness
for the kinds of programmers who would use their tools.

VII. CONCLUSION

The work in this paper encourages software engineering
researchers to re-examine their assumptions and biases about
the way in which they incorporate game elements into their
programming environments. We have argued that gamification
as implemented today is predominantly narrow, focused almost
exclusively on reward-based game mechanics — a single
dimension of the SGDA framework.

We argue that examining programming environments as
serious games serves as a starting point for investigating and
influencing the way in which we think of gamification today.
Through incorporating broader game elements, our thinking
about programming environments can potentially go well
beyond points, badges, and leaderboards. In turn, programming
environments can promote more immersive game experiences
that are better tailored to individual programmer literacy, and
more inclusive of programmer diversity.



REFERENCES

[1] J. McGonigal, Reality Is Broken; Why Games Make Us Better and How
They Can Change the World. Penguin Books, 2011.

[2] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work? – A
literature review of empirical studies on gamification,” in Hawaii
International Conference on System Sciences, Jan. 2014, pp. 3025–3034.

[3] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design
elements to gamefulness,” in MindTrek ’11, Sep. 2011, pp. 9–15.

[4] K. Mitgutsch and N. Alvarado, “Purposeful by design? A Serious Game
Design Assessment Framework,” in Foundations of Digital Games, May
2012, p. 121.

[5] S. Toulmin, The Uses of Argument. Cambridge University Press, 2003.
[6] P. Besnard and A. Hunter, Elements of Argumentation, 2008, vol. 1.
[7] E. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys, ankle

sprains, and keepers of quality: How is video game development
different from software development?” in ICSE, May 2014, pp. 1–11.

[8] C. Lewis and J. Whitehead, “The whats and the whys of games and
software engineering,” in GAS ’11, May 2011, pp. 1–4.

[9] D. R. Michael and S. L. Chen, Serious Games: Games That Educate,
Train, and Inform. Muska & Lipman/Premier-Trade, Jul. 2005.

[10] D. Djaouti, J. Alvarez, and J.-P. Jessel, “Classifying serious games: The
G/P/S model,” Handbook of Research on Improving Learning and
Motivation through Educational Games, pp. 118–136, 2011.

[11] B. Winn, “The design, play, and experience framework,” Handbook of
Research on Effective Electronic Gaming in Education, vol. 3, pp.
1010–1024, 2008.

[12] L. A. Annetta, R. Lamb, and M. Stone, “Assessing serious educational
games,” in Serious Educational Game Assessment. Springer, 2011, pp.
75–93.

[13] E. Adams, Fundamentals of Game Design. Pearson Education, 2013.
[14] S. Niedenthal, “What we talk about when we talk about game

aesthetics,” in DiGRA. DiGRA Online Library, 2009.
[15] Nintendo, The Legend of Zelda: A link to the Past, 1986.
[16] W. Snipes, A. R. Nair, and E. Murphy-Hill, “Experiences gamifying

developer adoption of practices and tools,” in ICSE SEIP, 2014.
[17] L. Singer and K. Schneider, “It was a bit of a race: Gamification of

version control,” in International Workshop on Games and Software
Engineering (GAS), Jun. 2012, pp. 5–8.

[18] R. Farzan, J. M. DiMicco, D. R. Millen, C. Dugan, W. Geyer, and E. A.
Brownholtz, “Results from deploying a participation incentive
mechanism within the enterprise,” in CHI, Apr. 2008, p. 563.

[19] D. J. Dubois and G. Tamburrelli, “Understanding gamification
mechanisms for software development,” in ESEC/FSE, Aug. 2013, pp.
659–662.

[20] B. Vasilescu, V. Filkov, and A. Serebrenik, “StackOverflow and GitHub:
Associations between Software Development and Crowdsourced
Knowledge,” in International Conference on Social Computing, Sep.
2013, pp. 188–195.

[21] T. Dong, M. Dontcheva, D. Joseph, K. Karahalios, M. Newman, and
M. Ackerman, “Discovery-based games for learning software,” in CHI

’12, may 2012, p. 2083.
[22] K. Januszewski. (2012, Jan) Visual Studio Achievements FAQ. [Online].

Available: http:
//channel9.msdn.com/Blogs/C9Team/Visual-Studio-Achievements-FAQ

[23] R. Minelli, A. Mocci, and M. Lanza, “Free hugs: Praising developers
for their actions,” pp. 555–558, May 2015.

[24] R. M. Ryan, C. S. Rigby, and A. Przybylski, “The motivational pull of
video games: A self-determination theory approach,” Motivation and
Emotion, vol. 30, no. 4, pp. 344–360, Nov. 2006.

[25] R. Ryan and E. Deci, “Intrinsic and extrinsic motivations: Classic
definitions and new directions,” Contemporary educational psychology,
vol. 25, no. 1, pp. 54–67, Jan. 2000.

[26] E. L. Deci, R. Koestner, and R. M. Ryan, “Extrinsic rewards and
intrinsic motivation in education: Reconsidered once again,” Review of
Educational Research, vol. 71, no. 1, pp. 1–27, Jan. 2001.

[27] E. L. Deci, “Effects of externally mediated rewards on intrinsic
motivation.” Journal of Personality and Social Psychology, vol. 18,
no. 1, pp. 105–115, 1971.

[28] E. S. Elliott and C. S. Dweck, “Goals: An approach to motivation and
achievement.” Journal of Personality and Social Psychology, vol. 54,
no. 1, pp. 5–12, Jan. 1988.

[29] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest Q&A site in the west,” in CHI, May
2011, p. 2857.

[30] I. Bogost. (2011, August) Gamification is Bullshit. [Online]. Available:
http://bogo.st/wm

[31] M. Robertson. (2010, August) Can’t play, won’t play. [Online].
Available: http://www.hideandseek.net/2010/10/06/cant-play-wont-play/

[32] P. Jagoda, “Gamification and other forms of play,” boundary 2, vol. 40,
no. 2, pp. 113–144, Jul. 2013.

[33] J. Hamari and V. Eranti, “Framework for designing and evaluating game
achievements,” in DiGRA, 2011.

[34] H. Erdogmus, M. Morisio, and M. Torchiano, “On the effectiveness of
the test-first approach to programming,” IEEE Transactions on Software
Engineering, vol. 31, no. 3, pp. 226–237, Mar. 2005.

[35] E. Aarseth, “From Hunt the Wumpus to EverQuest: Introduction to
Quest Theory,” Entertainment Computing - ICEC 2005, vol. 3711, pp.
496–506, 2005.

[36] B. Softworks, The Elder Scrolls V: Skyrim, 2011.
[37] A. Cockburn, Agile Software Development: The Game, 2nd ed.

Addison-Wesley, 2006.
[38] M. Mateas, “A preliminary poetics for interactive drama and games,”

Digital Creativity, vol. 12, no. 3, pp. 140–152, Sep. 2001.
[39] K. Games, Sid Meier’s Civilization V, 2010.
[40] S. Chatman, Story and Discourse: Narrative Structure in Fiction and

Film. Cornell University Press, 1978, vol. 1.
[41] H. Desurvire, M. Caplan, and J. A. Toth, “Using heuristics to evaluate

the playability of games,” in Extended abstracts - CHI ’04, Apr. 2004,
p. 1509.

[42] E. Andersen, E. O’Rourke, Y.-E. Liu, R. Snider, J. Lowdermilk,
D. Truong, S. Cooper, and Z. Popovic, “The impact of tutorials on
games of varying complexity,” in CHI ’12, May 2012, p. 59.

[43] E. Murphy-Hill, C. Parnin, and A. P. Black, “How We Refactor, and
How We Know It,” IEEE Transactions on Software Engineering,
vol. 38, no. 1, pp. 5–18, Jan. 2012.

[44] X. Ge and E. Murphy-Hill, “Manual refactoring changes with automated
refactoring validation,” in ICSE ’14, may 2014, pp. 1095–1105.

[45] M. Derex and R. Boyd, “Partial connectivity increases cultural
accumulation within groups,” Proceedings of the National Academy of
Sciences, vol. 113, no. 11, pp. 2982–2987, Feb. 2016.

[46] D. M. Bergeron, “The potential paradox of organizational citizenship
behavior: Good citizens at what cost?” Academy of Management
Review, vol. 32, no. 4, pp. 1078–1095, oct 2007. [Online]. Available:
http://amr.aom.org/content/32/4/1078.full

[47] B. S. Greenberg, J. Sherry, K. Lachlan, K. Lucas, and A. Holmstrom,
“Orientations to Video Games Among Gender and Age Groups,”
Simulation & Gaming, vol. 41, no. 2, pp. 238–259, jul 2008. [Online].
Available: http://sag.sagepub.com/content/41/2/238.short

[48] K. Lucas, “Sex differences in video game play: A communication-based
explanation,” Communication Research, vol. 31, no. 5, pp. 499–523,
Oct. 2004.

[49] B. Vasilescu, A. Capiluppi, and A. Serebrenik, “Gender, Representation
and Online Participation: A Quantitative Study of StackOverflow,” in
2012 International Conference on Social Informatics, Dec. 2012, pp.
332–338.


