
ABSTRACT

BARIK, TITUS. Error Messages as Rational Reconstructions. (Under the direction
of Emerson Murphy-Hill.)

Program analysis tools apply elegant algorithms—such as static analysis, model
checking, and type inference—on source code to help developers resolve compiler
errors, apply optimizations, identify security vulnerabilities, and reason about the
logic of the program. In integrated development environments, program analysis
tools provide feedback about their internal diagnostics to developers through error
messages, using a variety of textual and visual mechanisms, such as error listings,
tooltips, and source code underlined with red squiggles. The design of user-friendly
error messages is important because error messages are the primary communication
channel through which tools provide feedback to developers.

Despite the intended utility of these tools, the error messages these tools produce
are cryptic, frustrating, and generally unhelpful to developers as they attempt
to understand and resolve the messages. Existing approaches in programming
language research have attempted to surface the internal reasoning process of
program analysis tools and present these details to the developer to aid their
comprehension process. However, we argue that the tool-centric perspective of
simply revealing details in the error message about the tools’ internal algorithms
is insufficient: the fundamental problem is that computational tools do not reason
about the causes of an identified error in the same way as the developer who attempts
to understand and reconstruct why the tool produced that particular error.

The goal of this research is to investigate these misalignments through the
theoretical framework of rational reconstruction—a model for identifying rationales,
or reasons, for arriving a particular conclusion—to the domain of error messages in
program analysis tools. Essentially, a rational reconstruction of an error message
would present rationales to the developer from a human-centered perspective that
aligns with the developers’ reasoning process, irrespective of the underlying algo-
rithm or process used by the program analysis tool to identify the error. Through
rational reconstructions, we can identify how to design error messages that are
most useful for developers, rather than those that are most convenient for the tool.

The thesis of this dissertation is that difficulties interpreting error messages

produced by program analysis tools are a significant predictor of developers’ inabili-
ties to resolve defects, and that these difficulties in interpreting error messages can
be explained by framing error messages as insufficient rational reconstructions—in
both visual and textual output presentations. This dissertation advances knowledge
about developer comprehension during error message tasks and defends the claims
of this thesis through three studies, evaluated through the theoretical framework
of rational reconstruction:

1. To learn how developers use error messages during their own rational recon-
structions, we conducted an eye tracking study in which participants resolved
common defects within the Eclipse development environment. We found that
the difficulty of reading these messages is comparable to the difficulty of read-
ing source code, that difficulty reading error messages significantly predicts
participants’ task performance, and that participants allocate a substantial
portion of their total task to reading error messages (13%-25%).

2. To learn how developers construct and are aided by diagrammatic rational
reconstructions, or explanatory visualizations, we conducted a usability design
experiment in which developers diagrammatically annotated and explained
source code listings for compiler error messages. We found that explanatory
visualizations are used intuitively by developers in their own self-explanations
of error messages, and that these visualizations are significantly different from
baseline visualizations in how they explicate relationships between program
elements in the source code.

3. To learn how rational reconstructions aid developer comprehension in text
presentations, we conducted a study to analyze confusing error messages on
Stack Overflow against human-authored reconstructions of those error mes-
sages. We analyzed these answers through a form of rational reconstruction,
Toulmin’s argument model, and found that developers significantly preferred
error messages with proper argument structures over deficient arguments,
but will prefer deficient arguments if they provide a resolution to the problem.
We found that human-authored explanations converge to argument structures
that either offer a simple resolution, or employ a proper simple or extended
argument structure.

The dissertation concludes with implications and design guidelines for practi-
tioners who wish to improve the usability of error messages for program analysis
tools. To assess and operationalize these guidelines, we developed a proof-of-concept
compiler called Rational TypeScript—a modified Microsoft TypeScript compiler
that presents error messages as rational reconstructions. A focus group discussion
conducted with professional software developers suggested that Rational Type-
Script messages were more helpful than baseline TypeScript messages, particularly
with developers who only sporadically program with TypeScript. Although full-time
TypeScript developers generally preferred the brevity of baseline error messages for
routine errors, they nevertheless indicated that rational reconstructions would be
useful as a presentation option for error messages when working with unfamiliar
code.1

1Draft version: 20180329-01

© Copyright 2018 by Titus Barik

All Rights Reserved

Error Messages as Rational Reconstructions

by
Titus Barik

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2018

APPROVED BY:

Christopher Parnin James Lester

Jing Feng Shriram Krishnamurthi

Emerson Murphy-Hill
Chair of Advisory Committee

DEDICATION

In memory of Mark Lusher (1972–2015).
Then you will shine among them like stars in the sky.

ii

BIOGRAPHY

Titus Barik obtained a Bachelor of Science in Computer Engineering from the
Georgia Institute of Technology in 2004. In Atlanta, he spent several years working
in industry as a Project Engineer: in factory automation, process control systems,
and logistics. While working full-time, Titus obtained a Master of Engineering
degree from North Carolina State University in 2010. He obtained his Professional
Engineering (P.Eng) license in 2011.

Titus moved to Raleigh, North Carolina and returned to academia at North
Carolina State University in 2010 to pursue a PhD in Computer Science. During his
academic career, Titus interned at Google (2013 and 2014) and Microsoft Research
(2015). He also worked as a Research Scientist at ABB—from 2014 to 2016—to
improve developer productivity.

Titus has many research interests, evidenced through publications beyond his
core research areas of software engineering and human-computer interaction. He
has published in information visualization, cognitive modeling, computer science
education, and digital games research. Titus is particularly curious about the role
of programming as a form of play, self-discovery, and artistic expression.

The Earth of the Veda Priests
Source: “How the Earth Was Regarded in Old Times,”

Popular Science Monthly Volume 10 (1876)

iii

ACKNOWLEDGEMENTS

I am the architect of my own imprisonment.

iv

TABLE OF CONTENTS

List of Tables . xi

List of Figures . xii

List of Listings . xv

Chapter 1 My Thesis . 1

Chapter 2 Introduction . 2
2.1 Problem . 2
2.2 Examples . 2

2.2.1 Portable C Compiler . 3
2.2.2 GNU Compiler Collection . 4
2.2.3 Oracle Java Compiler (OpenJDK) 5
2.2.4 clang Compiler (LLVM) . 6
2.2.5 eslint for JavaScript . 9

2.3 Objectives and Significance . 12
2.4 Theoretical Framework . 14
2.5 Research Paradigm . 16

2.5.1 Epistemology . 16
2.5.2 Theoretical Perspective . 16
2.5.3 Methodology . 17
2.5.4 Methods . 17

2.6 How to Read the Dissertation . 17
2.7 Who Did What . 19
2.8 Contributions . 21

Chapter 3 Background . 24
3.1 Overview of Program Analysis Tools 24
3.2 Text Representations of Program Analysis 26

3.2.1 Output as Source Location and Template Diagnostic 26
3.2.2 Output as Extended Explanations (--explain) 31
3.2.3 Output as Type Errors . 35
3.2.4 Output as Examples and Counterexamples 39

3.3 Visual Representations of Program Analysis 42
3.4 Errors Developers Make . 45
3.5 Design Guidelines for Error Messages 46

Chapter 4 Do Developers Read Compiler Error Messages? 49
4.1 Abstract . 49

v

4.2 Introduction . 50
4.3 Motivating Example . 51
4.4 Methodology . 53

4.4.1 Research Questions . 53
4.4.2 Study Design . 56
4.4.3 Procedure . 57
4.4.4 Data Collection and Cleaning 59

4.5 Analysis . 61
4.5.1 RQ1: How effective and efficient are developers at resolving

error messages for different categories of errors? 61
4.5.2 RQ2: Do developers read error messages? 61
4.5.3 RQ3: Are compiler errors difficult to resolve because of the

error message? . 62
4.6 Verifiability . 63
4.7 Results . 64

4.7.1 RQ1: How effective and efficient are developers at resolving
error messages for different categories of errors? 64

4.7.2 RQ2: Do developers read error messages? 66
4.7.3 RQ3: Are compiler errors difficult to resolve because of the

error message? . 69
4.8 Discussion . 69
4.9 Limitations . 72
4.10 Related Work . 73
4.11 Conclusion . 74
4.12 Acknowledgments . 75

Chapter 5 How Do Developers Visualize Compiler Error Messages? . 76
5.1 Abstract . 76
5.2 Introduction . 77
5.3 Motivating Example . 79
5.4 Pilot Study . 80
5.5 Explanatory Visualizations of Error Messages 82
5.6 Methodology . 84

5.6.1 Research Questions . 85
5.6.2 Participants . 86
5.6.3 Selection Criteria for Mockups 86
5.6.4 Mockup Construction Procedure 88
5.6.5 Investigator Training . 89
5.6.6 Experimental Procedure . 89

5.7 Results . 93
5.7.1 RQ1: Visualizations Lead to More Correct Explanations . . . 93

vi

5.7.2 RQ2: Availability of Explanatory Visual Annotations Promotes
More Frequent Use of Annotations During Self-Explanation . 94

5.7.3 RQ3: Explanatory Visualizations Reveal Hidden Dependencies 97
5.7.4 RQ4: Higher Rated Explanations Lead to Better Mental Mod-

els, and Better Recall Correctness 98
5.8 Threats to Validity . 99
5.9 Related Work . 100
5.10 Future Work . 100
5.11 Conclusion . 101

Chapter 6 How Should Compilers Explain Problems to Developers? . 102
6.1 Abstract . 102
6.2 Introduction . 103
6.3 Background on Explanations . 105
6.4 Methodology . 107

6.4.1 Research Questions . 107
6.4.2 Phase I: Study Design for Comparative Evaluation 109
6.4.3 Phase II: Study Design for Stack Overflow 110

6.5 Analysis . 113
6.5.1 RQ1: Are compiler errors presented as explanations helpful to

developers? . 113
6.5.2 RQ2: How is structure of explanations in Stack Overflow dif-

ferent from compiler error messages? 114
6.5.3 RQ3: How is the content of explanations in Stack Overflow

different from compiler error messages? 115
6.6 Results . 116

6.6.1 RQ1: Are compiler errors presented as explanations helpful to
developers? . 116

6.6.2 RQ2: How is structure of explanations in Stack Overflow dif-
ferent from compiler error messages? 117

6.6.3 RQ3: How is the content of explanations in Stack Overflow
different from compiler error messages? 118

6.7 Limitations . 122
6.8 Related Work . 124

6.8.1 Design Criteria and Guidelines 124
6.8.2 Barriers to Error Message Comprehension 125

6.9 Design Principles . 125
6.10 Conclusion . 127

Chapter 7 Related Work . 128
7.1 Program Comprehension in Debugging 128

7.1.1 Plans . 129

vii

7.1.2 Beacons . 129
7.1.3 Information Foraging Theory 130
7.1.4 Relation to Rational Reconstruction 130

7.2 Human Factors in Error and Warning Design 130
7.3 Expert Systems . 132
7.4 Preventing Errors with Structure Editors 134
7.5 Error Messages for Novices . 135

7.5.1 Error Message Types and Distributions 135
7.5.2 Mini-Languages . 136
7.5.3 Enhancing Compiler Error Messages 138

Chapter 8 Conclusion . 141
8.1 Error: Expected Declaration or Statement at End of Input 141
8.2 Design Guidelines . 142
8.3 Toward Engineering a Compiler . 144

8.3.1 Approach . 144
8.3.2 Example: Duplicate Function Implementation 145
8.3.3 Formative Evaluation . 146

8.4 Future Work . 147
8.5 Epilogue . 149

Bibliography . 151

Appendices . 194
Appendix A What Do We Know About Presenting Human-Friendly

Output from Program Analysis Tools? 195
A.1 Abstract . 195
A.2 Introduction . 196
A.3 Methodology . 197

A.3.1 What is a Scoping Review? 197
A.3.2 Execution of SALSA Framework 198
A.3.3 Limitations . 198

A.4 Taxonomy of Presentation . 199
A.4.1 Alignment . 200
A.4.2 Clustering and Classification 201
A.4.3 Comparing . 201
A.4.4 Example . 202
A.4.5 Interactivity . 203
A.4.6 Localizing . 204
A.4.7 Ranking . 205
A.4.8 Reduction . 205
A.4.9 Tracing . 206

viii

A.5 Discussion . 207
A.6 Conclusions . 208
A.7 Acknowledgments . 208

Appendix B An Interaction-First Approach for Helping Developers
Comprehend and Resolve Error Notifications 209

B.1 Abstract . 209
B.2 Introduction . 209
B.3 Related Work . 210
B.4 Our Approach . 211

B.4.1 First Principles: Interaction Framework 211
B.4.2 Formalizing Translations: Taxonomies 212

B.5 Emerging Results . 215
B.6 Challenges . 217
B.7 Conclusions . 217
B.8 Acknowledgments . 217

Appendix C Study Materials for “Do Developers Read Compiler Error
Messages?” (Chapter 4) . 218

C.1 Interview Protocol . 218
C.1.1 Outline . 218
C.1.2 Pre-arrival Steps . 218
C.1.3 Arrival Steps . 219
C.1.4 Instructions for Participant 219
C.1.5 Post-study questionnaire 220
C.1.6 Closing . 220

C.2 Tasks . 221
C.2.1 Task 1: SUBLIST . 222
C.2.2 Task 2: NODECACHE . 223
C.2.3 Task 3: IMPORT . 225
C.2.4 Task 4: QUEUEGET . 227
C.2.5 Task 5: SETADD . 228
C.2.6 Task 6: KEYSETKV . 229
C.2.7 Task 7: CLAZZ . 230
C.2.8 Task 8: NEXT . 231
C.2.9 Task 9: READOBJSTATIC . 233
C.2.10 Task 10: SWITCH . 234

C.3 Post-study Questionnaire . 235
Appendix D Study Materials for “How Do Developers Visualize Com-

piler Error Messages?” (Chapter 5) 236
D.1 Interview Protocol . 236

D.1.1 Pre-tasks . 236
D.1.2 Task 1 . 236

ix

D.1.3 Questionnaire . 237
D.1.4 Task 2 . 237
D.1.5 Wrap-up . 238

D.2 Questionnaire . 238
D.3 Visual Markings Cheatsheet . 240
D.4 Dimensions Survey for All Six Tasks 240
D.5 Pages . 242

D.5.1 Explanatory Visualizations 242
D.5.2 Baseline Visualizations . 249
D.5.3 Printed . 256

Appendix E Study Materials for “How Should Compilers Explain Prob-
lems to Developers?” (Chapter 6) 264

E.1 Survey . 264
E.1.1 Demographic Information 264
E.1.2 E1 . 265
E.1.3 E2 . 265
E.1.4 E3 . 266
E.1.5 E4 . 266
E.1.6 E5 . 267
E.1.7 Stack Overflow . 267

Appendix F Error Message Design Guidelines 269
Appendix G Error Message Samples . 274

G.1 Template Diagnostic . 274
G.2 Python . 274

G.2.1 Eclipse Compiler for Java 275
G.2.2 Infer . 276
G.2.3 Dafny . 276

G.3 Extended Explanations . 277
G.3.1 Error Prone . 277
G.3.2 Rust . 278

G.4 Type Errors . 279
G.4.1 elm . 279
G.4.2 Helium . 280

G.5 Examples and Counterexamples 280
G.5.1 CBMC . 280
G.5.2 Java Pathfinder . 285
G.5.3 Valgrind . 287
G.5.4 Frama-C . 288

Appendix H Rational TypeScript . 291
Appendix I Sudoku Puzzle . 295

x

LIST OF TABLES

Table 4.1 Participant Compiler Error Tasks 55
Table 4.2 Overview of Task Performance 64
Table 4.3 Participant Fixations to Areas of Interest 67

Table 5.1 Frequency of Visual Annotations in Pilot 81
Table 5.2 Visual Annotation Legend . 83
Table 5.3 Participant Explanation and Recall Tasks 87
Table 5.4 Number of Features by Task and Group 95
Table 5.5 Cognitive Dimensions Questionnaire Responses 96

Table 6.1 OpenJDK and Jikes Error Message Descriptions 106
Table 6.2 Compiler Errors and Warnings Count by Tag 111
Table 6.3 OpenJDK and Jikes Error Message Preferences 116
Table 6.4 Argument Layout Components for Error Messages 119

Table 8.1 Participants in Focus Group . 147

Table A.1 Taxonomy of Presentation . 199

Table B.1 A Partial Taxonomy of Developer Resolution Tasks 215

Table F.1 Chronological Summary of Guidelines for Designing Error Mes-
sages . 269

xi

LIST OF FIGURES

Figure 2.1 For this error, the bare eslint error message is appropriate
when the messages is presented in the context of the IDE. . . 11

Figure 2.2 The theoretical framework for rational reconstruction. 14
Figure 2.3 A roadmap of the dissertation, organized as self-contained (at

least to the extent reasonably possible) chapters. 18

Figure 3.1 A sample model checking pipeline. 39
Figure 3.2 Modern IDEs have converged on affordances for presenting

error messages to developers. 43
Figure 3.3 NCrunch and JetBrains dotCover are concurrent unit testing

and code coverage tools that integrates with Visual Studio.
Shown here are two methods for displaying code coverage infor-
mation: (a) in NCrunch, as highlighting markers in the margin,
or (b) in JetBrains dotCover, as colored backgrounds on the
source. Green means that tests pass, red indicates that at least
one test that covers the statement fails, and black or gray shows
uncovered code. 44

Figure 4.1 The time required for developer to commit to a solution that is
correct or incorrect. Nearly all tasks (exceptions, T8 and T10)
have high variance in resolution time to arrive, irrespective of
correctness. 65

Figure 4.2 Comparison of fixation time distributions for silent reading of
English passages, reading source in the editor, and reading of
error messages. 66

Figure 4.3 In (a), histogram of correct and incorrect task solutions by
number of revisits on error message areas of interest. In (b),
nominal logistic model of the probability of applying a correct
solution number by revisits on error message areas of inter-
est. As revisits to error messages increase, the probability of
successfully resolving a compiler error decreases. 68

Figure 4.4 Emerging error reporting systems like LLVM scan-build pro-
vide stark contrast to those of conventional IDEs. Here, scan-
build presents error messages for a potential memory leak as a
sequence of steps alongside the source code to which the error
applies. 71

xii

Figure 5.1 A comparison of a potentially uninitialized variable compiler er-
ror through (a) baseline visualizations, the dominant paradigm
as found in IDEs today, (b) our explanatory visualizations, and
(c) the textual error message. 78

Figure 5.2 We presented participants with a command prompt in which
they had the compile command available to them. The limited
interaction modality forces participants to rely solely on their
own memory to successfully complete the task. 92

Figure 5.3 Explanation rating by group. The treatment group (T) provided
significantly higher rated explanations than the control group
(C). 93

Figure 5.4 Annotations by group, filled with usage across tasks. The dis-
tribution of annotations used by the control (C) and treatment
groups (T) were not identified as being significantly different,
but the treatment group used annotations significantly more
often. 95

Figure 5.5 A contrast between visual explanations offered by (a) control
group participant with explanation rating of Fail, and (b) treat-
ment group participant with explanation rating of Excellent.
. 97

Figure 5.6 Task by explanation rating. Each of the six tasks are broken by
explanation rating (1 = Fail, 2 = Poor, 3 = Good, 4 = Excellent)
from the first phase of the experiment. For each explanation
rating, the frequency of correct and incorrect recall tasks from
the second phase of the experiment is indicated by filling in
the bars. Higher rated explanations lead to significantly better
recall correctness. 98

Figure 6.1 A prototypical Toulmin’s model of argumentation for (a) simple
argumentation layout, and (b) extended argument layout. The
possible need for auxiliary steps to convince the other party
yields the extended argument layout. 105

Figure 6.2 A compiler error message from Java, annotated with argumen-
tation theory constructs. This particular message contains all
of the basic argumentation constructs to satisfy Toulmin’s ar-
gument: (C) = Claim, (bc W) = implied “because” Warrant, (G)
= Grounds. It also includes an extended construct, (B) = Backing.108

Figure 6.3 Identified argument layouts for compiler error messages (as
found in Stack Overflow questions). Counts are indicated in
parentheses. 113

Figure 6.4 Identified argument layouts for Stack Overflow accepted an-
swers. Counts are indicated in parentheses. 114

xiii

Figure A.1 The interaction framework. 196

Figure B.1 The interaction framework, instantiated for IDEs. 211
Figure B.2 A partial taxonomy for categorizing notifications by presentation.213
Figure B.3 A prototype IDE for notifications and resolutions. The prototype

leverages the notification and resolution taxonomies to reuse
visualization components. The resolver is a single component,
and generates appropriate resolutions using the resolution
taxonomy. The text with a red, dashed border is generated code
added by the system to help explain the error. 214

Figure C.1 Notifications sheet provided to participants to familiarize them
with all notification sources in the Eclipse IDE. 220

xiv

LIST OF LISTINGS

Listing C.1 Injected fault in LazyList.java. 222
Listing C.2 Partial source listing for LazyList.java (in IDE). 222
Listing C.3 Injected fault in AbstractLinkedList.java. 223
Listing C.4 Partial source listing for CursorableLinkedList.java (in IDE).223
Listing C.5 Partial source listing for NodeCachingLinkedList.java (in IDE).223
Listing C.6 Injected fault in AbstractLinkedMap.java. 225
Listing C.7 Partial source listing for AbstractLinkedMap.java (in IDE). . 225
Listing C.8 Injected fault in PredicatedQueue.java. 227
Listing C.9 Partial source listing for PredicatedQueue.java (in IDE). . . 227
Listing C.10 Injected fault in TransformedSet.java. 228
Listing C.11 Partial source listing for TransformedSet.java (in IDE). . . . 228
Listing C.12 Injected fault in FixedSizeMap.java. 229
Listing C.13 Partial source listing for FixedSizeMap.java (in IDE). 229
Listing C.14 Injected fault in MultiValueMap.java. 230
Listing C.15 Partial source listing for MultiValueMap.java (in IDE). . . . 230
Listing C.16 Injected fault in EntrySetMapIterator.java. 231
Listing C.17 Partial source listing for EntrySetMapIterator.java (in IDE). 231
Listing C.18 Injected fault in UnmodifiableQueue.java. 233
Listing C.19 Partial source listing for UnmodifiableQueue.java (in IDE). . 233
Listing C.20 Injected fault in Flat3Map.java. 234
Listing C.21 Partial source listing for Flat3Map.java (in IDE). 234

Listing D.1 Screen listing for Apple.java (explanatory visualization). . . 243
Listing D.2 Screen listing for Brick.java (explanatory visualization) . . 244
Listing D.3 Screen listing for Kite.java (explanatory visualization) . . . 245
Listing D.4 Screen listing for Melon.java (explanatory visualization) . . 246
Listing D.5 Screen listing for Trumpet.java (explanatory visualization) . 247
Listing D.6 Screen listing for Zebra.java (explanatory visualization) . . 248
Listing D.7 Screen listing for Apple.java (baseline visualization). 250
Listing D.8 Screen listing for Brick.java (baseline visualization). 251
Listing D.9 Screen listing for Kite.java (baseline visualization). 252

xv

Listing D.10 Screen listing for Melon.java (baseline visualization). 253
Listing D.11 Screen listing for Trumpet.java (baseline visualization). . . . 254
Listing D.12 Screen listing for Zebra.java (baseline visualization). 255
Listing D.13 Participant worksheet for Apple.java. 257
Listing D.14 Participant worksheet for Brick.java. 258
Listing D.15 Participant worksheet for Kite.java. 259
Listing D.16 Participant worksheet for Melon.java. 260
Listing D.17 Participant worksheet for Trumpet.java. 261
Listing D.18 Participant worksheet for Zebra.java. 263

xvi

1 | My Thesis

People spend all their time making
nice things and then other people
come along and break them.

The Doctor

Difficulties interpreting error messages produced by program analysis tools are a
significant predictor of developers’ inabilities to resolve defects: difficulties in
interpreting error messages can be explained by framing error messages as
insufficient rational reconstructions, in both visual and textual presentations.1

1Supporting documentation attached.

1

2 | Introduction

Our lives are different to anybody
else’s. That’s the exciting thing.
Nobody in the universe can do what
we’re doing.

The Doctor

2.1 Problem
Program analysis tools are intended to help developers identify problems in their
source code: they pinpoint unsafe or undesirable runtime behavior, enforce confor-
mance to programming language specifications, and flag stylistic issues that hinder
the readability of the code. These tools could be immensely useful for developers
because they identify problems that are subtle to spot through manual inspection.
Unfortunately, research has found that the output program of analysis tools—error
messages—are confusing, unconstructive, or incomprehensible. As a result, develop-
ers spend unnecessary effort in comprehending and resolving the defect identified
by the tool or simply abandon otherwise useful tools because they can’t understand
the error messages.

What makes these error message so confusing for developers?

2.2 Examples
Program analysis tools communicate these problems to developers through error
messages, using various text and visual representations. But rather than attempt to

2

characterize precisely what an error message is (we’ll do that in Chapter 3), let’s look
at concrete examples of difficult to comprehend error messages, through program
analysis tools in both text and visual medium. I’ve organized these examples from
the more familiar error messages—such as those produced by program analysis in
compilers and bug-pattern tools—to the more elaborate error messages produced
by program analysis tools that employ formal methods, such as automated theorem
provers. I’ve selected examples for which I found some third-party confirmation
that the error message from the program analysis tool is confusing: from examples
in research papers, bug reports, or mailing list and forum discussions.

2.2.1 Portable C Compiler
We’ll start the PCC compiler from 1979, in which a developer attempts to writes
the venerable “Hello, world!” program. Here’s the source code for this program:

1 #include <stdio.h>
2

3 int main() {
4 printf("Hello, world!\n")
5 }

Despite the simplicity, this program is useful for sanity checking: seeing the
words “Hello, world!” appear on the screen means that the basic libraries are in the
right place, and that the source code can compile, execute, and successfully send
output to a console.

However, this source listing contains an error: the rules of the C programming
specification require that all statements end with a semicolon (;), and the code is
missing one at the end of line 4. The program analysis within the compiler identifies
this error and outputs an error message:

hello.c, line 5: syntax error
hello.c, line 5: cannot recover from earlier errors: goodbye!
error: /usr/libexec/ccom terminated with status 1

It turns out this error message isn’t technically wrong, but it is misleading. For
instance, it claims that the error is on line 5, but it seems that the error should
actually be reported for line 4. Regardless, the error doesn’t provide any reasons for
how it came to this conclusion: it leaves it to developer to identify what causes the
syntax error. PCC then unhelpfully exits with the message goodbye!, followed with
a termination status that is only useful to the operating system.

3

Is it fair to use a compiler written in the 1970s to illustrate confusing error
messages? Probably not. But is good baseline for error messages. Despite its his-
torical interest, the error message has the minimal components of modern error
messages: A location indicating the problem—hello.c, line 5, and a description
of the problem. And many of the design decisions within PCC continue to influence
modern program analysis tools.

2.2.2 GNU Compiler Collection
Let’s now look at gcc, a modern C compiler that is part of the GNU Compiler
Collection. Here’s the error message for the same “Hello, world!” program in gcc:
hello.c: In function ‘main’:
hello.c:5:1: error: expected ‘;’ before ‘}’ token
}
^

The gcc compiler is an improvement over pcc: rather than a vague syntax error

it does tell us the the semicolon is the actual token that is missing. The program
analysis tool also adds a bit of color to the error message, and some context about
the source code in which the error appears (lines 3 and 4).

Still, the error message is disorienting from the developers’ perspective, because
it emits a location that follows the problem, rather than the location that immedi-
ately preceeds it. The easiest way to illustrate this problem is to contrast gcc with a
compiler that does this correctly, at least in this case.

Here’s the output from clang, part of LLVM:
hello.c:4:28: error: expected ';' after expression

printf("Hello, world!\n")
^
;

1 error generated.

The problem is now apparent, and also matches the way developers would think
the problem: “I’m missing a semicolon at the end of line 4”, rather than forcing us
to mentally realign our thinking process, “I’m missing a semicolon at immediately
before the brace on line 5, but it would be strange to add a semi-colon at the start of
the line, so it must be even before that. The compiler must actually mean the end of
line 4.”

Syntax problems like these are nuisances for expert developers—even with the
original error from the 1970s pcc compiler—but it’s more work than we should

4

have to do. For novices, however, error messages like these are paralyzing. The
reasoning of the compiler, strictly applied, can lead to idiosyncractic but nevertheless
conformant fixes like this one:

1 #include <stdio.h>
2

3 int main() {
4 printf("Hello, world!\n")
5 ;}

2.2.3 Oracle Java Compiler (OpenJDK)
The following is a source listing in Java:

1 class Toy {
2 Toy() throws Exception { }
3 }
4

5 class Kite extends Toy {
6 }

The source listing results in following error from the OpenJDK compiler:

Kite.java:5: error: unreported exception Exception in default constructor
class Kite extends Toy {
^
1 error

This error message was reported as a bug in JDK-4071337: “misleading error
message when superclass constructor has throws clause.” The report argues that
the error message is possible to understand only if you already know the solution
to the error.

Let’s construct a rationale for what could cause this error message. First, we
note that the error message involves a default constructor, but no such constructor
explicitly appears in Kite class. This is probably why the bug marker ^ points to the
class itself: default constructors are implicit and therefore there is no constructor
we can actually point to directly. Let’s change the source code to add this constructor
explicitly, and hope that it compels the program analysis to reveal more of its
rationale:

1 class Toy {
2 Toy() throws Exception { }
3 }

5

4

5 class Kite extends Toy {
6 Kite() { }
7 }

We compile again. Not only does the new error message point to a different
location, the message now reveals more information about the problem.

Kite2.java:6: error: unreported exception Exception;
must be caught or declared to be thrown

Kite() { }
^

1 error

Thus, we add a throws Exception in response to this explanation:

1 class Toy {
2 Toy() throws Exception { }
3 }
4

5 class Kite extends Toy {
6 Kite() throws Exception { }
7 }

This last attempt is accepted by the compiler, and now we can retrospectively
find reasons for why. But why did we have to explicitly create a default contructor?
Don’t these get created automatically if we don’t write one ourselves? It turns out
that according to the Java Language Specification 9 (8.8.9):

It is a compile-time error if a default constructor is implicitly declared
but the superclass does not have an accessible constructor that takes no
arguments and has no throws clause.

Thus, in the case when the default constructor in the superclass has a throws
clause, the compiler is forbidden from automatically generating a default constructor
on behalf of the developer.

2.2.4 clang Compiler (LLVM)
Let us now look an source listing in C++, named, ptrcopy.cpp, in which we’ll use
the clang compiler from LLVM:

6

1 #include <iostream>
2 #include <memory>
3 #include <vector>
4

5 int main() {
6 std::vector<std::unique_ptr<int>> foo;
7 std::vector<std::unique_ptr<int>> bar = foo;
8 }

The intent of this program is presumably to do some sort of copying, from
the contents of bar to the contents of foo. But attempting to do this generates an
unwieldily compiler error:

1 In file included from ptrcopy.cpp:2:
2 In file included from /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../../ c

../include/c++/7.2.0/memory:64:↪→

3 /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../../../include/c++/7.2.0/ c
bits/stl_construct.h:75:38: error: call to deleted constructor
of

↪→

↪→

4 'std::unique_ptr<int, std::default_delete<int> >'
5 { ::new(static_cast<void*>(__p)) _T1(std::forward<_Args>(__args)...); }
6 ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
7 /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../../../include/c++/7.2.0/ c

bits/stl_uninitialized.h:83:8: note: in instantiation of function
template specialization

↪→

↪→

8 'std::_Construct<std::unique_ptr<int, std::default_delete<int> >,
const std::unique_ptr<int, std::default_delete<int> > &>'
requested here

↪→

↪→

9 std::_Construct(std::__addressof(*__cur), *__first);
10 ^
11 /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../../../include/c++/7.2.0/ c

bits/stl_uninitialized.h:134:2: note: in instantiation of function
template specialization

↪→

↪→

12 'std::__uninitialized_copy<false>::__uninit_copy<__gnu_cxx:: c
__normal_iterator<const std::unique_ptr<int,
std::default_delete<int> > *,

↪→

↪→

13 std::vector<std::unique_ptr<int, std::default_delete<int> >,
std::allocator<std::unique_ptr<int, std::default_delete<int> > > >
>, std::unique_ptr<int,

↪→

↪→

14 std::default_delete<int> > *>' requested here
15 __uninit_copy(__first, __last, __result);
16 ^
17 /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../../../include/c++/7.2.0/ c

bits/stl_uninitialized.h:289:19: note: in instantiation of function
template specialization

↪→

↪→

18 'std::uninitialized_copy<__gnu_cxx::__normal_iterator<const
std::unique_ptr<int, std::default_delete<int> > *,
std::vector<std::unique_ptr<int,

↪→

↪→

7

19 std::default_delete<int> >, std::allocator<std::unique_ptr<int,
std::default_delete<int> > > > >, std::unique_ptr<int,
std::default_delete<int> > *>' requested here

↪→

↪→

20 { return std::uninitialized_copy(__first, __last, __result); }
21 ^
22 /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../../../include/c++/7.2.0/ c

bits/stl_vector.h:331:9: note: in instantiation of function template
specialization

↪→

↪→

23 'std::__uninitialized_copy_a<__gnu_cxx::__normal_iterator<const
std::unique_ptr<int, std::default_delete<int> > *,
std::vector<std::unique_ptr<int,

↪→

↪→

24 std::default_delete<int> >, std::allocator<std::unique_ptr<int,
std::default_delete<int> > > > >, std::unique_ptr<int,
std::default_delete<int> > *,

↪→

↪→

25 std::unique_ptr<int, std::default_delete<int> > >' requested here
26 std::__uninitialized_copy_a(__x.begin(), __x.end(),
27 ^
28 ptrcopy.cpp:7:43: note: in instantiation of member function

'std::vector<std::unique_ptr<int, std::default_delete<int> >,
std::allocator<std::unique_ptr<int,

↪→

↪→

29 std::default_delete<int> > > >::vector' requested here
30 std::vector<std::unique_ptr<int>> bar = foo;
31 ^
32 /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../../../include/c++/7.2.0/ c

bits/unique_ptr.h:388:7: note: 'unique_ptr' has been explicitly marked
deleted here

↪→

↪→

33 unique_ptr(const unique_ptr&) = delete;
34 ^
35 1 error generated.

Squinting at this error message, we may be able to derive clues to help us
reconstruct an explanation for what the actual problem might be. For example,
we can scan the error message to see that the files of interest are memory (Line
2), stl_construct.h (Line 3), stl_uninitialized.h (Line 7, Line 11, and Line 17),
stl_vector (Line 22), and the source listing we wrote, ptrcopy.cpp (Line 28). Since
the only file the developer has actually touched is ptrcopy.cpp, we can infer that the
error locations are presented backwards: something happens deep inside memory,
and this problem bubbles up through the various C++ files until we arrive back
at the cause in ptrcopy. Although it’s true that the problem doesn’t occur, strictly
speaking, until we reach memory, it’s not very helpful to have a problem identified
within a library that we didn’t even write.

What if the problem analysis instead presented an error message from the
perspective of the developer, rather than the perspective of the compiler? Here’s an
example of what such a message might look like:

8

ptrcopy.cpp: cannot construct 'bar' from 'foo':
foo's template type is non-copyable

std::vector<std::unique_ptr<int>> bar = foo;
^

I think this version of the error message is an interesting contrast for several
reasons.1 First, it pinpoints a location that the developer wrote. Second, it argues
for a presentation that is in many ways less precise than the original LLVM error
message, yet much easier to read quickly. Third, even with this loss of precision,
it’s obvious what the problem is: unique_ptr is not copyable, and so it can only be
moved. Thus, trying to assign a vector of unique_ptr to another vector would mean
that somewhere in the vector source code the unique pointer would necessarily need
to be copied.

2.2.5 eslint for JavaScript
ESLint is a pluggable bug-finding utility for JavaScript. By pluggable, we mean: 1)
that developers can add custom bug-findings rules to extend the capability of the
tool, and 2) the tool is intended to be bundled and used within order products, such
as integrated development environments and build systems. Thus, the tool supports
multiple output formats for presentation. Our goal in this section is to illustrate
that sometimes the “medium is the message” [243]. That is to say, whether an error
message is appropriate depends not only on message content how the error message
is situated within the broader environment.

Let’s look at an example of this. Consider what happens when we apply ESLint
to the following JavaScript file:

1 const who = 'Titus';
2 console.log('Hello, ' + who + '!');

Depending on the default formatter, this causes ESLint emits the following error
message:

hello.js: line 2, col 13, Error - Unexpected string concatenation.
(prefer-template)↪→

The solution to this error is to use a template literal:
1A Stack Overflow refers to this version of the error message as their “ideal er-

ror message” to explain the problem: https://stackoverflow.com/questions/8779521/

tools-to-generate-higher-quality-error-messages-for-template-based-code

9

https://stackoverflow.com/questions/8779521/tools-to-generate-higher-quality-error-messages-for-template-based-code
https://stackoverflow.com/questions/8779521/tools-to-generate-higher-quality-error-messages-for-template-based-code

1 const who = 'Titus';
2 console.log(`Hello, ${who}!`);

In contrast to the error messages from OpenJDK, GCC, LLVM. the error message
from ESLint almost seems like a regression to an earlier era of compilers. Unlike
either of these tools (Section 2.2.3), the ESLint error message does not provide
a contextual code snippet. Unlike GCC and LLVM, ESLint does not colorize the
output. And prefer-template seems like an internal error code, which doesn’t help
the developer.

If we were solely targeting a console environment, we might consider a relatively
simple improvement to this error message that adds a rationale for the error:

× [eslint] Unexpected string concatenation {prefer-template} (2, 13)
Why? Template strings give you a readable, concise syntax

with proper newlines and string interpolation features.
(see: airbnb.io/javascript/#es6-template-literals)

Given the rationale for the error, we see that the reason ESLint recommends this
change is because the Airbnb JavaScript standard considers template strings to
be more readable. An extended explanation is offered through a link, and gives
examples of converting string concatenation to template literals.

Although ESLint supports console output as a last resort, ESLint is really
intended to be used as program analysis building block to be incorporated within
other programming and build environments. To illustrate this, let’s consider against
the default formatter, but this time rendered within Visual Studio Code (Figure 2.1
on the following page). In Figure 2.1a, we see that ESLint presents its error message
as a tooltip when the developer hovers over the red wavy underline. Moreover, the
developer can double-click the error message in the problems pane to directly
navigate to Line 2 of hello.js. With the single-line affordances in the problems
pane, it now makes sense to present a terse error messages that the developer can
use to quickly navigate to the relevant code context. Similarly, the somewhat cryptic
(prefer-template) text in the default error message now becomes an interactive
affordance that allows the developer to automatically repair the code in their IDE
(Figure 2.1b). Finally, it’s now clear that providing a contextual code snippet within
the error message itself would be redundant, given that we expect the errors to
presented in the IDE.

10

(a) eslint identifies problem, in Visual Studio Code.

(b) eslint suggested fix for problem, in Visual Studio Code.

Figure 2.1 For this error, the bare eslint error message is appropriate when the messages
is presented in the context of the IDE.

11

2.3 Objectives and Significance
The error message examples I’ve selected from Section 2.2 illustrate several obser-
vations about error messages and how developers comprehend them:

1. Error messages are routine. The selected examples are everyday messages
that confound developers. They don’t require developers to have knowledge of
esoteric language concepts, nor are these error messages instances of extraor-
dinary circumstances.

2. Error messages aren’t false positives. False positives are a known prob-
lem with program analysis tools, especially static analysis tools which use
approximations in order to determine whether a problem exists. But none of
the selected examples were false positives, and all them indicated an actual
problem in the code. This suggests that developers have difficulties with error
messages even when they are revealing an actual problem in the code.

3. Developers are intermediate-experts. This isn’t just a problem for
novices. The persona we assumed in the examples is that of a developer
who is an intermediate-expert in the programming language. They are cer-
tainly not novices who are just learning to use languages and program analysis
environments.

4. There isn’t an obvious way to automatically repair the program. Even
small programs have a combinatorially-large design space for program trans-
formations that would remove the compiler error message. To illustrate, an
alternate way to make the “Hello, world!” syntactically valid for the exam-
ples in Section 2.2.1 and Section 2.2.2 would be to simply remove the printf

statement entirely. Such a fix seems incredulous if the intention of the devel-
oper is to print a string to the console, but perfectly logical if the developer
intended “Hello, world!” to only act as a starting point for the program they ac-
tually intend to implement. Good automatic fixes are useful as accelerators for
developers, but they don’t remove the need to understand the error message.

5. Error messages are an insufficient construction of the problem. The
error messages present only the symptom of the problem, and leave it to the
developer to come up with the rationale for why the problem occurs. We saw
this in the unreported exception example for Java in Section 2.2.3, in which

12

the developer needed to construct a long chain of reasons to identify the cause
of the error.

6. Error messages are rational, but only from the perspective of the
compiler. Let’s turn again to the source listing for the “Hello, world!” ex-
ample from Section 2.2.2, but this time we will re-format the program listing
like so:

int main(){printf("Hello, world!")}

Some compilers remove insignificant whitespace, or trivia, because they are
unnecessary in the program analysis pipeline, resulting a program that ap-
pears to the tool like the above. From the perspective of the compiler, the
error message expected ';' before '}' token is now perfectly rationale if we
reorient ourselves to the perspective of how the compiler thinks about the
situation. But developers shouldn’t have to be compiler authors to benefit from
error messages in program analysis tools.

The first three observations eliminate specific factors as being the cause of
developer difficulties with error messages: developers experience difficulties even
in cases where the error messages are routine, when they aren’t false positives,
and even in cases where the developers are comfortable with their programming
languages and tools. The fourth observation indicates that error messages are
useful to developers for verification, even when tools suggest automatic fixes. But
it is the fifth and sixth observations that motivates a theory to investigate: these
two observations highlight a misalignment between the way program analysis tools
present error messages to developers and the way in which developers think as they
attempt to comprehend the problem.

Error messages in program analysis tools are problematic for developers to com-
prehend and resolve (Chapter 3). The objective of this research posits and evaluates
a novel framework that applies rational reconstruction theory to error messages as
an explanation for why error messages are difficult for developers to comprehend.
We formalize this theoretical framework in Section 2.4 on the next page. The signif-
icance of this research is that it makes error messages more useful for developers,
because these error messages align with the way in which developers strategize and
reason about problems in their code. The research advances a systematic, theoretical
lens to investigate error messages in program analysis tools.

13

Source Listing Tool Error Message Developer
(Josh)

Interlocutor
(Emmie)

Figure 2.2 The theoretical framework for rational reconstruction.

2.4 Theoretical Framework
Example. Consider a scenario in which a developer, Josh, encounters a confusing
error message. They aren’t able to comprehend the error message, so they turn
to a colleague, Emmie, for assistance. Much like we did for the examples in Sec-
tion 2.2, Emmie explains the error message by offering reasons and justifications
to demonstrate the problem is actually a problem. We can illustrate this scenario
as the model in Figure 2.2, with Emmie as the interlocutor—a participant in the
discourse.

What did Emmie do differently from the error message in the program analysis
tool that allowed Josh to understand the problem? Generally, how was the human-
human interaction different from the human-computer interaction, and can these
differences explain why error messages in program analysis tools are confusing for
developers?

Definitions. The theory I apply to investigate developer difficulties with error
messages is rational reconstruction [236]. Rationales are the set of reasons for some-
thing: here, that something is the error message produced by the program analysis
tool. If the error message is deficient and does not provide sufficient rationale, Josh
must reconstruct the rationale for the error message himself and come to the same
conclusion as the conclusion of the error message.

The process of identifying these rationale is rational reconstruction. Within this
theory, rationales come in two forms [57, 236, 241]: 1) as a justification-explanation
(called an argument), in which the rationale functions as evidence that supports
the conclusion; and 2) a trace-explanations (sometimes referred without qualifier
as simply an explanation), in which the rationale functions as a cause for the
conclusion.

14

Utility. Rational reconstruction is a useful theoretical framework to apply to
error messages, for four reasons:

1. Rational reconstruction is a process centered around ordinary hu-
man dialogue. Having origins in philosophy and linguistics, rational recon-
struction applies a human-centered lens as a means to construct intuitive, yet
logical explanations intended for human consumption—such as the exchanges
between Emmie and Josh. But are human-human interactions a ground truth
for human-computer interactions? The influential theory of computer as social
actors suggests that it is: people treat computers and respond to computers
as if they were real people [261]. And subsequent research has argued that
it is often valuable to for computational agents to mimic how people behave
in human-human interactions and approximate them as human-computer
interactions [31, 107, 247].

2. Rational reconstructions are not historical reconstructions. They ad-
mit orthogonal explanations of the problem, and the research implication of
this as they we may consider the presentation of an error message as indepen-
dent from how the tool internally functions. Emmie does not need to know the
internals of the program analysis tool in order to provide a sufficient example
to Josh for why the error message is emitted. In Chapter 8, we exploit this
property to instrument a compiler that produces rational reconstructions as
error messages.

3. Rational reconstruction has been applied with some success to other
areas of software engineering. For example, the design process from Par-
nas and Clements [278] proposes that software design documentation should
appear as if it were designed by a precise requirements process, even though
we do not actually design products in that way. In other words, the presentation
of software design process is a rational reconstruction.

4. There is formative evidence that rational reconstructions would be
useful to developers. For example, Dean [89], notes that “a message whose
meaning has to be explained does not communicate—it fails as a message.” Ad-
ditional related work that explanation is a fruitful direction for error message
investigation is found in Section 6.3.

15

2.5 Research Paradigm
The research paradigm governs the philosophical assumptions and beliefs for how
we conduct research and interpret research findings [77]. In this dissertation, I
employ a pragmatic research paradigm, which I describe through the four basic
questions of the research process [79]:

1. What epistemology informs the theoretical perspective?
2. What theoretical perspective lies behind the methodology in question?
3. What methodology governs our choice and use of methods?
4. What methods do we propose?

2.5.1 Epistemology
The epistemology of the research in this dissertation is pragmatic. It is helpful here
to define the epistemology of pragmatism against two epistemological extremes:
positivism and constructivism [249]. In positivism, there is one and only one ob-
jective truth, and this truth can be uncovered through objective analysis, such as
in quantitative methods. In constructivism, theories are social constructs: there is
no objective truth and theories are interpretations of subjective inquiries. Pragma-
tism sidesteps this debate entirely by making no epistemological stance: truth is
whatever seems to work for a particular situation [132].

2.5.2 Theoretical Perspective
Pragmatic research places emphasis on identifying the research problem, and
then selecting appropriate research tools or instruments to study the problem [105].
Because of the lack of epistemological commitment, the output of pragmatic research
are in the form of solution-focused guidelines or interventions to understand or
attack the nature of the problem. Within this perspective, theories are problem-
solving tools to help understand why a particular problem occurs and what steps we
can take to correct the situation. Theories are also self-correcting as new evidence
emerges. A central idea of pragmatism is human inquiry: that we can advance
understanding through observing how people work in their day-to-day lives, seeing
what works, and identifying what doesn’t [185].

16

2.5.3 Methodology
I use mixed-methods in my studies, applying both quantitative and qualitative
methodology, both when appropriate and when convenient. Therefore, I reject the
incompatibility thesis, which argues that integrating qualitative and quantitative
research is incompatible epistemologically [95].

2.5.4 Methods
I used an assortment of research methods in this dissertation. In Chapter 4, I
conducted a usability study of error messages within the Eclipse, supported by
eye tracking instrumentation. I used established eye tracking measures, such as
fixation duration, to understand comprehension difficulties developers have with
reading error messages. In Chapter 5, I applied a think-aloud protocol and observed
how developers constructed explanatory visualizations for error messages. I used a
memorization/recall task technique from Shneiderman [336] to assess developer
comprehension. In Chapter 6, I conducted a comparative study between two Java
compilers to understand developer preferences for different structures of error mes-
sages explanations. I qualitatively investigated Stack Overflow posts related to error
messages, and analyzed these posts abductively through the lens of argumentation
theory—a form of rational reconstruction.

2.6 How to Read the Dissertation
This dissertation is organized into self-contained chapters (Figure 2.3 on the follow-
ing page) that combine to tell a coherent story about rational reconstructions.

Chapters 4 to 6 are the principal studies which provide evidence to support the
thesis statement, and each of these studies considers different aspects of rational
reconstruction. Chapter 4 characterizes difficulties developers confront as they
comprehend and resolve error messages within the Eclipse integrated development
environment; these findings serve to baseline error messages as rational reconstruc-
tions. Chapter 5 studies rational reconstructions as diagrammatic explanations for
defects in source code. Chapter 6 studies rational reconstructions as text explana-
tions, using questions and answers from Stack Overflow to understand situations
where developers find error messages from program analysis to be insufficient, yet
accept a human-authored explanation from a Stack Overflow participant.

17

Thesis
(Chapter 1)

Related work and
novelty of thesis

(Chapter 3)

What do we
know about
presenting

human-friendly
output from

program anal-
ysis tools?

(Appendix A)

Conclusion
(Chapter 8)

Systematized
literature review

Scoping
literature review

Do developers
read compiler

error messages?
(Chapter 4)

How do developers
visualize compiler
error messages?

(Chapter 5)

How should
compilers explain

problems to
developers?
(Chapter 6)

Interaction-
first approach
for design of

error messages
(Appendix B)

User study with
eye tracking

Think-aloud study
with recall task

Empirical study
of social Q&A site

Framework
applied to domain

Developer failures
when resolving

defects identified
by program

analysis tools
can be attributed
to the difficulty
of interpreting

tool output.

Representational
mismatches

between program
analysis output
and developer

self-explanation
models for
diagrams.

Representational
mismatches

between program
analysis output
and developer

self-explanation
models for text.

Studies to Support Thesis

Figure 2.3 A roadmap of the dissertation, organized as self-contained (at least to the
extent reasonably possible) chapters.

The remaining chapters in the dissertation scaffold the thesis statement. Chap-
ter 2 (you’re reading this now) identifies and provides context for research problem,
articulates the objectives and significance of the work, and proposes the theoretical
framework through which I investigate error messages. The background presented

18

in Chapter 3 situates the thesis ontogenically in terms of the other research; the
chapter also familiarizes the reader with the research area of program analysis
error messages. The related work in Chapter 7 defends the novelty of the thesis;
the chapter demonstrates how the work in this dissertation is ontologically distinct
from neighboring research disciplines, such as artificial intelligence and human
factors. In Chapter 8, we revisit the key contributions of this dissertation. The
chapter interprets the findings from the studies and explicates them as operational
guidelines. These guidelines are operationalized and evaluated through a prototype
compiler implemented in TypeScript.

The appendices provide supplemental material may be of interest to the reader,
but this material is not necessary to support the central claims of the thesis. The
scoping review in Appendix A identifies rational reconstruction as a problem of
alignment, and contributes taxonomy of other design dimensions that are important
for the design of human-friendly error messages. This appendix may be of interest to
researchers who desire to bridge the research communities of human-computer in-
teraction and programming languages. Appendix B presents several new ideas and
emerging results which bootstrapped the work in this dissertation. Appendices C
to E compile the materials from the user studies. Appendix F synthesizes existing
guidelines for error messages from the research literature. Appendix G catalogues
an assortment of error messages from program analysis tool from academia and
industry. Appendix H describes the implementation details of the TypeScript proto-
type. Appendix I contains a delightful Sudoku puzzle. The puzzle is not essential to
supporting the thesis.

2.7 Who Did What
I am the lead author of all content presented within this dissertation. As lead
author, I made substantial contributions to all aspects of the work, which include
designing the experiments, collecting experimental data, performing data analysis,
interpreting the data, and drafting and revising the manuscripts for submission to
academic venues. Consequently, I take full responsibility for all aspects regarding
the accountability and integrity of the work.

With that said, this dissertation would not have been possible without the
assistance of several other researchers. In the interest of responsible authorship, I
report their contributions to this dissertation:

• Jim Witschey, Brittany Johnson, Emerson Murphy-Hill, and Sarah Heckman

19

are authors of an early, unpublished, draft: “A Taxonomy for Program Analysis
Notifications.” The goal of this work was to provide a controlled vocabulary to
unify phrasing in error messages. This formative publication not only helped
to frame my early thoughts towards this thesis—particularly in terms of
presenting error messages to developers (Appendix B.4.2). In this new ideas
paper, Witschey provided significant assistance in proofreading the work, and
with direction from myself, authored one of the figures (Figure B.3).
The studies within this dissertation contributed to the second iteration of the
grant (awarded, NSF 1714538), which I co-wrote with Emerson Murphy-Hill
and Sarah Heckman.

• Chris Parnin and Emerson Murphy-Hill are co-authors for my scoping review
(Appendix A). Through various exchanges, Parnin and I discussed the motiva-
tion and framing for the introduction (Appendix A.2)—to interpret PL papers
through an HCI lens. Murphy-Hill and I had several exchanges during the
design of the paper on how this work could serve towards a comprehensive
literature review.

• Kevin Lubick, Justin Smith, Elisabeth Holmes, Jing Feng, Emerson Murphy-
Hill, and Chris Parnin are co-authors on my eye tracking study (Chapter 4).
Lubick and I both conducted studies with the participants, with each of us
conducting roughly half the studies. I identified the categories of error mes-
sages to be used for the study, and the software libraries in which to inject
these errors. Lubick injected the error messages into this software library, and
verified that the error messages would display properly to the participants.
He also ran several early pilot studies on my behalf to identify potential issues
with the study design.
Smith continued to support this work after Lubick transitioned to other
projects. Smith helped substantially with the data cleaning pipeline to correct
calibration errors in eye tracking data; he also rendered two of the figures in
the paper (Figure 4.1 and Figure 4.2). Smith and I pair-wrote the introduc-
tion (Section 4.2) and motivating example (Section 4.3) sections of the paper.
Holmes spent an entire summer manually tagging the participant videos, with
limited success. Her efforts in this area led me to investigate automated and
scalable techniques for tagging video data (Section 4.4), which I eventually
applied to this study. Feng provided her expertise in working with professional
eye tracking equipment. Jess Cherayil, a summer undergraduate research

20

student, contributed code towards area of interest detection for frames within
participant videos.

• Kevin Lubick, Samuel Christie, and Emerson Murphy-Hill are co-authors on
my think-aloud study on how developers visualize error messages (Chapter 5).
Lubick ran approximately half of the participants for the study, and helped
to annotate the participant data. Christie analyzed the data from the pilot
study, and reported the frequency of annotations participants used (Table 5.1).
Murphy-Hill provided suggestions on making sure the story about visualiza-
tion would appeal to the VISSOFT community, recommended some related
work, and suggested the title for the paper.

• Denae Ford, Chris Parnin, and Emerson Murphy-Hill are co-authors on my
study on using Stack Overflow questions and answers as argument structure
for error messages (Chapter 6). Ford and I had many early discussions on how
to classify Stack Overflow answers before arriving at argument theory. In the
paper, Ford wrote the query to compute and describe Table 6.2. Ford also quali-
tatively coded half of the data—across multiple programming languages—and
labeled Stack Overflow responses in terms of argument structure. Parnin and
Murphy-Hill provided feedback on drafts.

2.8 Contributions
This dissertation advances knowledge through several contributions, and defends
the claims of the thesis presented in Chapter 1. I have repeated the thesis in full
below:

Difficulties interpreting error messages produced by program analysis
tools are a significant predictor of developers’ inabilities to resolve defects:
difficulties in interpreting error messages can be explained by framing
error messages as insufficient rational reconstructions, in both visual
and textual presentations.

To defend the claim that “developer failures when resolving defects identified
by program analysis tools can be attributed to the difficulty of interpreting tool
output,” I offer evidence through the study in Chapter 4. The study finds that:

21

• Participants read error messages; unfortunately, the difficulty of reading error
messages is comparable to the difficulty of reading source code—a cognitively
demanding task.

• Participant difficulty with reading error messages is a significant predictor
of task correctness (p < .0001), and contributes to the overall difficulty of
resolving a compiler error (R2 = 0.16).

• Across different categories of errors, participants allocate 13%–25% of their fix-
ations to error messages in the IDE, a substantial proportion when considering
the brevity of most compiler error messages compared to source code.

To defend the claim that “difficulties in interpreting tool output are explain-
able through representational mismatches between program analysis output and
developer self-explanation models for both diagrammatic and textual output repre-
sentations,“ I offer evidence through two studies. For diagrammatic representations,
this evidence is offered through the study in Chapter 5, in which we compare proto-
type explanatory diagrammatic visualizations of error messages overlaid on source
code with baseline visualizations used in IDEs today. The study finds that:

• Explanatory visualizations yield more correct self-explanations than the base-
line visualizations used in IDEs today.

• These annotations are used intuitively by developers in their own explana-
tions of error messages, even when explanatory visualizations have not been
provided to them.

• Participants identified that explanatory visualizations revealed hidden depen-
dencies, that is, the relationships between different program elements, in a
significantly different way than those of baseline visualizations in IDEs.

In addition, the study contributes a foundational set of composable, visual anno-
tations that aid developers in better comprehending error messages.

To defend the claim for textual output representations, defense of the thesis is
offered through evidence from the study in Chapter 6. Through the study, we find
that:

• Developers prefer error messages with proper argument structures over defi-
cient arguments, but will prefer deficient arguments if they provide a resolution
to the problem.

22

• Human-authored explanations converge to argument structures that either
offer a simple resolution, or to proper arguments that minimally provide a
claim, ground, and warrant.

23

3 | Background

A straight line may be the shortest
distance between two points, but it
is by no means the most interesting.

The Doctor

3.1 Overview of Program Analysis Tools
Program analysis tools refer to a broad class of software intended to help developers,
with applications across software architecture, program comprehension, program
evolution, testing, software versioning, and verification [34]. This dissertation
focuses on a particular class of program analysis tools, source code analysis, that
identifies defects within source code [34]:

Source code analysis is the process of extracting information about a
program from its source code or artifacts (e.g., from Java byte code or
execution traces) generated from the source code using automatic tools.
Source code is any static, textual, human readable, fully executable
description of a computer program that can be compiled automatically
into an executable form. To support dynamic analysis the description
can include documents needed to execute or compile the program, such
as program inputs.

We can further elaborate program analysis tools through examining charac-
teristics of these tools, across two implementation dimensions found in existing
literature [55, 113, 135, 320].

24

The first dimension is when the program analysis is performed. In static program
analysis, tools examine the source code—either directly or as an abstraction of the
source code—and identify defects in the code without executing the program (see
survey on static analysis tools by Gosain and Sharma [136]). In dynamic analysis,
tools instrument or otherwise inspect the runtime and examine the flow of execution
to identify defects [55] (see survey on dynamic analysis tools, also by Gosain and
Sharma [135]). Static and dynamic analysis can also be applied synergistically to
strengthen program analysis [113]. An as example of hybrid analysis, Check ’n’ Crash
combines static theorem proving with dynamic test execution to eliminate spurious
warnings and improve the ease-of-comprehension of error messages through the
production of Java counterexamples [80].

The second dimension is where the program analysis is performed. For example,
FindBugs is a stand-alone static analysis tool for Java that supplements the error
messages provided by the Java compiler [14]. In contrast, LLVM embeds program
analysis tools directly within the compilation pipeline; Lattner and Adve [205]
demonstrate that this type of “lifelong program analysis” can enable identifica-
tion of certain defects that would not be possible to find otherwise, such as with
interprocedural static leak detection.

Unfortunately, neither of these implementation dimensions is appropriate for
understanding developer difficulties from the output of these program analysis tools.
That is, whether the information for the same problem is obtained using static,
dynamic, or hybrid-analysis is an implementation detail. For example, both LLVM
(static) and Valgrind (dynamic) can report uninitialized variables, but the type
of analysis should not drive how the error message is presented to the developer.
Likewise, where the analysis happens is also an implementation detail.

For these reasons, I’ve instead opted to organize program analysis through the
way in which it presents its output to the developer. In Section 3.2, I synthesize the
literature for text representations of program analysis output. In Section 3.3, I do
the same for emerging visual representations of program analysis output. For a
systematic investigation of program analysis output, Appendix A contains a scoping
literature review of PLDI papers on program analysis.

The last two sections provide additional background and justification for the
thesis. Section 3.4 summarizes the existing literature on empirical distributions
of program analysis errors. Section 3.5 reviews existing design guidelines towards
presenting human-friendly error messages.

25

3.2 Text Representations of Program Analysis

3.2.1 Output as Source Location and Template Diagnostic
The familiar error message scheme within program analysis tools consists of a loca-
tion indicating where the problem occurs, a human-authored description indicting
what has gone wrong, and some additional information—such as the severity of the
problem, an error code, resolution hints, and code context—to help the developer
correct the problem.

In this section, we’ll use the following source listings:

1 The Java implementation:

1 class Brick {
2 void m(int i, double d) { }
3 void m(double d, int m) { }
4

5 {
6 m(1, 2);
7 }
8 }

2 The C# implementation:

1 namespace Program {
2 class Brick {
3 void m(int i, double d) { }
4 void m(double d, int m) { }
5

6 static int Main(string[] args) {
7 var b = new Brick();
8 b.m(1, 2);
9 return 0;

10 }
11 }
12 }

3 The C++ implementation:

1 class Brick {
2 void m(int i, double d) { }
3 void m(double d, int m) { }
4 };
5

26

6 int main() {
7 Brick b;
8 b.m(1, 2);
9 return 0;

10 }

In all three implementations—Java, C#, and C++—we have introduced an am-
biguous method error: despite the different type signatures, program analysis
cannot disambiguate which of two candidate implementations to invoke given a call
of method m(1, 2). One possible fix is to explicitly indicate the type of the argument
as m((int)1, (double)2) (in Java) or b.m((int)1, (double)2) (in C# and C+).

For Java error messages, we use the OpenJDK compiler and the Eclipse compiler.
For C#, we use Roslyn and Mono. For C++, we use LLVM and GCC. The choice of
program analysis tools illustrates the diversity in how toolsmiths choose to present
error messages for what is conceptually the same problem. The application of source
implementations to their corresponding tools yields the following error messages
during compilation:

1 OpenJDK (Java):

1 Brick.java:6: error: reference to m is ambiguous
2 m(1, 2);
3 ^
4 both method m(int,double) in Brick and method m(double,int) in Brick

match↪→

5 1 error

2 Eclipse (Java)

1 ----------
2 Brick.java (at line 6)
3 m(1, 2);
4 ^
5 The method m(int, double) is ambiguous for the type Brick
6 ----------
7 1 problem (1 error)

3 Roslyn (C#)

1 Brick.cs(8,9): error CS0121: The call is ambiguous between the
following methods or properties: 'Brick.m(int, double)' and
'Brick.m(double, int)'

↪→

↪→

4 Mono (C#)

27

1 Brick.cs(8,9): error CS0121: The call is ambiguous between the
following methods or properties: `Program.Brick.m(int, double)' and
`Program.Brick.m(double, int)'

↪→

↪→

2 Brick.cs(3,12): (Location of the symbol related to previous error)
3 Brick.cs(4,12): (Location of the symbol related to previous error)
4 Compilation failed: 1 error(s), 0 warnings

5 GCC (C++)

1 Brick.cpp: In function ‘int main()’:
2 Brick.cpp:8:13: error: call of overloaded ‘m(int, int)’ is ambiguous
3 b.m(1, 2);
4 ^
5 Brick.cpp:2:10: note: candidate: void Brick::m(int, double)
6 void m(int i, double d) { }
7 ^
8 Brick.cpp:3:10: note: candidate: void Brick::m(double, int)
9 void m(double d, int m) { }

10 ^

6 LLVM (C++)

1 Brick.cpp:8:7: error: call to member function 'm' is ambiguous
2 b.m(1, 2);
3 ~~^
4 Brick.cpp:2:10: note: candidate function
5 void m(int i, double d) { }
6 ^
7 Brick.cpp:3:10: note: candidate function
8 void m(double d, int m) { }
9 ^

10 1 error generated.

There are several differences in the reporting from these tools in location, de-
scription of the problem, supporting context, and formatting. OpenJDK, Eclipse,
and Roslyn indicate the location of the invocation, but not the locations of the can-
didate methods. Furthermore, the Eclipse error message also does not indicate to
what methods the invocation is ambiguous. This is in contrast to GCC, LLVM, and
Mono—which report both the call, candidates, and the locations for each. However,
GCC and LLVM report a different column position for the error: GCC indicates
the problem at the end of method call (Line 8, Column 13) while LLVM indicates
the problem at the name, b.m. There are other small variations in how the line and
columns are presented to the developer.

28

OpenJDK, Eclipse, GCC, and LLVM inject snippets directly from the source code
into the error report to provide context to the developer; Roslyn and Mono do not.
I also found it interesting that Mono seems to indicate that it does not know if m
is a method of property. Finally, GCC and LLVM colorize the output of the error
messages for expressiveness; the LLVM authors reasonably argue that colors make
it easier to distinguish the different elements of the error message [223].

The messages I have just described are output from a template diagnostic.
Templates are string literals that allow expressions to be embedded, or interpolated,
within them. For example, in OpenJDK, the error description string is found in
compiler.properties:
0: name, 1: symbol kind, 2: symbol, 3: symbol, 4: symbol kind, 5: symbol,

6: symbol↪→

compiler.err.ref.ambiguous=\
reference to {0} is ambiguous\n\
both {1} {2} in {3} and {4} {5} in {6} match

The parameters that can be interpolated are indicated as 0, 1, 2, and so on. The
Roslyn implementation uses a similar interpolation scheme, through an XML file
called CSharpResources.resx:
<data name="ERR_AmbigCall" xml:space="preserve">

<value>The call is ambiguous between the following methods or
properties: '{0}' and '{1}'</value>↪→

</data>

The Roslyn implementation supports only two parameters, which is evidenced in
the presented in the error message.

The template string and associated metadata are bundled up as diagnostic
objects and passed to a formatter within the program analysis tool. The formatter
augments the template string with the metadata information, such as the loca-
tion; the formatter also colorizes the output, and includes pertinent source code
snippets—if those capabilities are available in the formatter implementation.

We’ll end this section by describing a dastardly form of template messages
that routinely frustrates both novice and expert developers alike—the neglected
“battle fields of syntax errors” [201]. A syntax error occurs when program analysis
encountered an unexpected token, for example, from unintentionally misplaced
semicolons, extra or missing braces, or a case statement without an enclosing
switch [4]. In particular, one frustration of syntax error messages is that program
analysis tools report the location of the syntax problem far removed from the actual
cause of the syntax error [54]. For example, consider the following Racket program,
which implements factorial:

29

1 #lang racket
2

3 (define (factorial n)
4 (if (= n 0) 1
5 (* n (factorial (- n 1))))

This program implements the correct behavior, but has a syntax error due to a
missing closing parenthesis. Racket reports this syntax error to the developer on
Line 3:

factorial.rkt:3:0: read: expected a `)' to close `('

The error is actually correct in that there is no corresponding closing parenthesis
for the opening parenthesis beginning with Line 3. However, to actually resolve the
defect, the developer must add a closing parenthesis to the end of Line 5:

5 (* n (factorial (- n 1)))))

There have been many research efforts to improve syntax errors —extensively
covered in various literature reviews [38, 90, 91]— that historically have occurred in
tandem with the construction of even the earliest compilers in the 1950s. Hammond
and Rayward-Smith [146] describe some of the early syntactic error recovery and
repairs schemes, and characterizes the trade-offs in implementing the different
schemes. For instance, in panic mode, one of the earliest and simplest error recovery
techniques, the parser deletes incoming tokens until the parser discovers a token
that enables it to continue processing the source code. Although this approach is
easy to implement, Hammond and Rayward-Smith [146] report that results in
cryptic and unhelpful error messages because of the lack of information available at
the time of the error message; the approach also leads to spurious error messages.
Subsequent researchers approaches have therefore focused on: 1) error detection,
or reducing the difference between the location where the error is detected and
the point where the error actually occurs, and 2) error correction, on providing
the developer with one or more candidate repairs that transform the incorrect
input into a syntactically correct one [90, 91]. In contrast to techniques attempt
to mathematically define notions of minimizing error distance, Campbell, Hindle,
and Amaral [54] train a natural language model to improving this error reporting
by arguing that humans read code as they read natural language; follow-up work
by Santos, Campbell, Patel, and colleagues [324] offers additional evidence that
language models can successfully locate and fix syntax errors in human-written
code without formal parsing.

30

Still other approaches have investigated reducing the burden for compiler de-
signers to author more useful error messages. For example, Jeffery [176] describes a
tool called Merr—meta error generator—that allows compiler designers to associate
hand-authored diagnostic messages with syntax errors by example. From this speci-
fication of errors and the associated message, Merr identifies the relevant parse
states and input token, and inserts an error function into the parse to produce the
error message at the appropriate point. Pottier [297] improves upon the approach by
Jeffery [176] by enabling the parser to automatically build the collection of erroneous
statements, rather than having the compiler author provide the examples manually.
Though useful, both approaches still require a compiler designer to hand-author an
accompanying error message to incorporate this diagnostic information.

3.2.2 Output as Extended Explanations (--explain)
Program analysis tools can provide supplemental channels for extended explana-
tions about an error message, as an alternative to the concise, line-oriented error
messages presentations from Section 3.2.1. Johnson, Song, Murphy-Hill, and col-
leagues [183] reported that concise error messages in program analysis tools do
not provide enough information. However, the authors reported that developers did
not want to sift through volumes output to identify the problem. A supplemental
mechanism for providing extended explanations can reconcile these conflicting re-
quirements. Extended explanations can also aid understanding when the developer
doesn’t know about the concepts in the message [253], and allows them to selectively
investigate unfamiliar error messages with a longer, more verbose explanation [254].

To illustrate how extended explanations are useful in practice, let’s look at a
simplified build pipeline using Bazel [25]—an open source release of the build
system used internally at Google. Bazel includes a program analysis tool called
Error Prone [114] that identifies defects in Java code. The build pipeline is guided
by a BUILD file which specifies the targets, or instructions to the build system:
java_library(

name = "shortset",
srcs = ["ShortSet.java"],

)

In this scenario, we have only one build target named shortset, and this build target
needs to compile only a single Java, ShortSet.java. Here’s the Java file:

1 import java.util.Set;
2 import java.util.HashSet;

31

3

4 public class ShortSet {
5 public static void main (String[] args) {
6 Set<Short> s = new HashSet<>();
7 for (short i = 0; i < 100; i++) {
8 s.add(i);
9 s.remove(i - 1);

10 }
11

12 System.out.println(s.size());
13 }
14 }

Building the shortset target with Bazel results the following output, which includes
the error message:

1 INFO: Analysed target //:shortset (0 packages loaded).
2 INFO: Found 1 target...
3 ERROR: /BUILD:1:1: Building libshortset.jar (1 source file) failed (Exit 1)
4 ShortSet.java:9: error: [CollectionIncompatibleType] Argument 'i - 1'
5 should not be passed to this method; its type int is not compatible with
6 its collection's type argument Short
7 s.remove(i - 1);
8 ^
9 (see http://errorprone.info/bugpattern/CollectionIncompatibleType)

10 Target //:shortset failed to build
11 Use --verbose_failures to see the command lines of failed build steps.
12 INFO: Elapsed time: 0.582s, Critical Path: 0.29s
13 FAILED: Build did NOT complete successfully

The error message is embedded within other build output, and begins at Line 3
and ends at Line 9. The error message in the build outputs offers a claim for the
problem, but does not provide a rationale for why this is a problem. However, the
error message points to external documentation that explains extensively the reason
for this message, why remove is unlikely to actually remove the element, and why the
type system in Java alone is not available to detect this problem.1 Delegating this
explanation to an external source reduces the verbosity of the build output, while
still allowing the developer to access additional explanation about the message. If
the developer is already familiar with the error message, they may not need the
extended explanation at all. From this perspective, Error Prone is a modernized
implementation of early expert systems, such as the expert system COBOL for
debugging programming debugging by Litecky [221]. In Litecky’s implementation,

1http://errorprone.info/bugpattern/CollectionIncompatibleType

32

http://errorprone.info/bugpattern/CollectionIncompatibleType

the developer could take a cryptic error code such as 3A13 (period missing after VALUE
clause) and query the error code against a database to obtain a detailed explanation,
as well as advice for how to address the problem (for a detailed review of expert
systems, see Section 7.3 on page 132.

A limitation of the approach used by Error Prone is that the extended explanation
is detached to the context of the developers’ code. Here is a snippet of the extended
explanation:

In a generic collection type, query methods such as Map.get(Object)

and Collection.remove(Object) accept a parameter that identifies a
potential element to look for in that collection. This check reports cases
where this element cannot be present because its type and the collection’s
generic element type are “incompatible.” A typical example:

Set<Long> values = ...
if (values.contains(1)) { ... }

This code looks reasonable, but there’s a problem: The Set contains
Long instances, but the argument to contains is an Integer .

In other words, the developer must evaluate an example different from the code
they have actually written in order to understand the explanation. Even if the
developer understands the extended explanation through the example, they may
still not understand how the problem applies to their own code.

To mitigate this challenge, the Dotty compiler provide an --explain flag that
can provide an explanation that is contextual to the code that the developer has
actually written [253]. For instance, consider the following Dotty code snippet (the
Dotty language is a superset of Scala):

1 try {
2 foo()
3 }

By default, this code snippet generates the following error message from the Dotty
compiler:
-- [E002] Syntax Warning: scala.test -----------------------------------
1 | try {

| ^
| A try without catch or finally is equivalent to putting
| its body in a block; no exceptions are handled.

2 | foo()
3 | }

33

Like the Rust [254] and Elm [70] programming language communities, usability
of error messages and tools are one of the design goals of Dotty. So, this error
message is already pretty good: it describes the location of the error in the context of
the code, describes what the try mechanism would do in this context, and provides
a rationale for why this is a problem. Nevertheless, perhaps it is the case that the
developer is new to the language and does not understand what the try construct
actually does. They can then pass the --explain flag to Dotty to obtain the extended
explanation:

1 Explanation
2 ===========
3 A try expression should be followed by some mechanism to handle any exceptions
4 thrown. Typically a catch expression follows the try and pattern matches
5 on any expected exceptions. For example:
6

7 import scala.util.control.NonFatal
8

9 try {
10 foo()
11 } catch {
12 case NonFatal(e) => ???
13 }
14

15 It is also possible to follow a try immediately by a finally - letting the
16 exception propagate - but still allowing for some clean up in finally:
17

18 try {
19 foo()
20 } finally {
21 // perform your cleanup here!
22 }
23

24 It is recommended to use the NonFatal extractor to catch all exceptions as it
25 correctly handles transfer functions like return.

Unlike the extended explanation from Error Prone, the explanation from Dotty
is situated using code the developer has written. This is easily seen from the use
of foo (Line 10 and Line 19). The current implementation of this in Dotty is fairly
rudimentary, and only slight more elaborate than the template error messages we
have discussed:

abstract class EmptyCatchOrFinallyBlock(tryBody: untpd.Tree,
errNo: ErrorMessageID)(implicit ctx: Context)

extends Message(EmptyCatchOrFinallyBlockID) {
val explanation = {

34

val tryString = tryBody match {
case Block(Nil, untpd.EmptyTree) => "{}"
case _ => tryBody.show

}

...

Essentially, Dotty grabs the code block from the source code, stores it in intermediate
variables like tryString, and then injects these variables throughout the extended
explanation. But we could imagine more elaborate implementations of this idea,
including the manipulation of the natural language portion of the explanation based
on the code context.

Recognizing that developers frequently turn to other information sources such
as the web to help with errors or debugging problems, there are several other re-
search implements for generating context-relevant, extended explanations. The
implementation of Tutoron by Head, Appachu, Hearst, and colleagues [154] detects
explainable code in a web page, parses it, and generates in-situ natural language ex-
planations and demonstrations of code. Their qualitative study found that Tutoron-
generated explanations can reduce the need for reference documentation in code
modification tasks. The HelpMeOut system for novice students collects examples
of code changes that fix errors, and then suggests these examples as solutions
to others [152]. The tools Prompter [296], Seahawk [295], and SurfClipse [305].
automatically retrieve pertinent Stack Overflow explanations and present them
within the IDE. These availability of these tools also suggest that developers find
the human-authored explanations on Stack Overflow to be useful; we investigate
these Stack Overflow explanations through an empirical study in Chapter 6.

3.2.3 Output as Type Errors
We consider type systems as a form of program analysis tool for reasoning about
programs, with the most obvious benefit of type systems being that they help detect
errors. In statically-typed systems, the type of every expression is known at compile
time. For example, consider some simple Haskell expressions, prefixed with a :t

command that tells us the type of an expression:

:t True
:t 'a'

As expected, :t True is True :: Bool, or a boolean true or false value. Similarly, the
result of :t 'a' is 'a' :: Char, or character.

35

Let’s consider a function called map: this is a function that basically takes a list
and applies a function every element in the result. The result of map is a new list.
Here’s a canonical implementation of this function:

map _ [] = []
map f (x:xs) = f x : map f xs

Haskell can tell us the type of map, through :t map:

map :: (t -> a) -> [t] -> [a]

The type signature tells us that map takes a function that takes a t and returns an a,
and a list of t’s. Finally, it and returns a list of a. Note that in the above examples
we did not specify the type of the expressions explicitly, although we could have
easily done so:

:t True :: Bool
:t 'a' :: Char

map :: (t -> a) -> [t] -> [a]
map _ [] = []
map f (x:xs) = f x : map f xs

Instead, Haskell is able infer that the type was a character or boolean through type
inference algorithm: a process of reconstructing missing type information through
how it is used in the program [33, 82, 104, 288]. During program analysis, type
checking verifies that the types are sound. If a violation is found, this results in a
type error message. Let’s induce a type error through the following Haskell snippet:

True && 1

Since the logical conjunction of a boolean to a number is incompatible in Haskell,
this expectedly returns an error message in the form of a type error:

<interactive>:25:9: error:
• No instance for (Num Bool) arising from the literal ‘1’
• In the second argument of ‘(&&)’, namely ‘1’

In the expression: True && 1
In an equation for ‘it’: it = True && 1

Even this simple example illustrates a double-edged sword regarding type error
messages. For compiler designers, unlike the human-authored messages in Sec-
tion 3.2.1, the type checker absorbs the bulk of the work as it proceeds through its

36

standard type inference, and the program analysis can mechanically produce the
problem. For the developer, however, this style of output means they must often have
a precise understanding of the type inference algorithm in order to comprehend the
error message [359]. Worse, relying on type inference as the solely mechanism for
inducing error messages can lead to cryptic and counterintuitive error messages,
even for simple problems. Considering the following example:

print 5

This program prints 5. What about this one:

print -5

Unless you’re an experienced Haskell developer, you might be surprised to discover
that this results in the following error message:

<interactive>:26:1: error:
• Non type-variable argument in the constraint: Num (a -> IO ())

(Use FlexibleContexts to permit this)
• When checking the inferred type

it :: forall a. (Show a, Num (a -> IO ())) => a -> IO ()

The Haskell error is pedantically correct, but framing the error messages in terms
of a type system is ultimately uninformative for the developer. The problem becomes
self-evident only if when we realize that - itself a function, masquerading as a unary
negation:

print (- 5)

Aha! The fix is to write print (-5).
Although we’ve thus far only examined Haskell, error messages such as the

above are endemic to programming languages that rely on type systems as the
vehicle through which to construct error messages to developers. The problems
of inscrutable type errors are well known, and the impact of these cryptic type
error messages is articulated by Charguéraud [58]. First, cryptic type errors are a
major obstacle to learning functional languages, and require the developer to also
understand the underlying inference algorithm being applied. Second, he notes that
it is tempting to report all error messages through the type inference machinery,
but this strategy can quickly lead to verbose and incomprehensible messages. Third,
even if the program analysis could produce a short error messages, the type checker
must still make a decision on which of many possible locations to actually report

37

in order to reduce the verbosity of the error. Fourth and finally, type inference
algorithms suffer from well-known biases—such as left-right bias [239]—in which
the type checker will systematically report type conflicts near the end of the program.
Thus, the point at which type inference fails may not be the point at which the
developer has made a mistake.

There are several research directions to making type errors more helpful for
developers. For example, one possibility might be to generate hand-author ad-hoc
error messages for common situations, as with template diagnostics. Helium [157],
a user-friendly compiler for learning Haskell, employs this approach: it uses a wide
range of heuristics to generate hints that supplement the type inference machinery.
Similarly, the approach in Objective Caml, is to “patch” the compiler [58]: the
compiler considers the first top-level definition that fails to type-check and attempts
to type-check it against a set of carefully-crafted secondary heuristics to identify if
the tool can present an alternative error message. If so, this message is presented;
otherwise, the default type error is presented to the developer. Their implementation
covers the commonly used features of the Objective Caml programming language.
In effect, Objective Caml presents a carefully-crafted rational reconstruction of
original type error.

To provide user-friendly type error messages, Wu, Campora III, and Chen [403]
apply machine learning: they use the type error from the compiler and associated
features of the source code to identify a more-precise offending location of the
problem, and suggests fixes that would resolve the ill-typed program. Lerner, Flower,
Grossman, and colleagues [212] pursue an approach in which the type-checker itself
does not produce the final error message. Instead, the type checker is used as
an oracle for a search procedure that finds similar programs that do type check.
McAdam [238] also suggests a fix-oriented approach to presenting error messages;
he presents an algorithm based on modulo isomorphism that is applied when type
inference fails. The resulting error messages are then in the form of a suggested
change. For example, for the source listing:
val oneToThreeStrings = map ([1, 2, 3], Int.toString) ;

The Moscow ML compiler would normally report:
! Toplevel input:
! val oneToThreeStrings = map ([1, 2, 3], Int.toString) ;
! ˆˆˆ
! Type clash: expression of type
! (’a -> ’b) -> ’a list -> ’b list
! cannot have type
! ’c * ’d -> ’a list -> ’b list

38

Source
Listing

Source
Abstraction

Specification Model
Checker Yes

No Counter-
example

Figure 3.1 A sample model checking pipeline.

Instead, McAdam [238] reports the message as follows:

Try changing
map ([1, 2, 3], Int.toString)

To
map Int.toString [1, 2, 3]

Other approaches to improving type error messages include exposing type con-
straint information and making this information available to the error message
reporter [225], using data flow reasoning to explain type errors [129], various mod-
ifications to the underlying type inference algorithm to provide a record of the
specific reasoning steps, called type explanations, which lead to a program variable
having a specific type [26, 104, 111, 362, 386], interactively approaches to querying
types [348, 361], pinpointing the actual location of the problem [155, 156, 239, 304,
329, 383, 406].

3.2.4 Output as Examples and Counterexamples
Software model checkers are program analysis tools that formally verify a property
of the software [68, 81]. The principle of model checking is that, given a finite state-
transition graph of a system (that is, the software model) and a formal specification,
model checking systematically checks whether the specification holds in the state-
transition graph [67]. Essentially, the model checker exhaustively explores this finite
state-transition graph. If the model checker does not find a violation of the property,
the model checker has proved that the model satisfies the specification. Otherwise,

39

the model checker reports a diagnostic counterexample or trace that violates the
specification. These diagnostic counterexamples can be presented on their own as a
component of an error message explanation.

There are a variety of model checking tools for the domain of software engi-
neering, include SLAM [16], SPIN [163], BLAST [159], Bandera [75], and Java
PathFinder [379] (for extensive literature reviews on model checkers, see [251]
and [177]). Concretely, let us illustrate model checking with CBMC [69]—a model
checker for C and C++ programs—applied to the diagram in Figure 3.1.2 For this
example, we’ll use the following source listing, written in C:

1 void f(int a, int b, int c) {
2 int temp;
3 if (a > b) {temp = a; a = b; b = temp;}
4 if (b > c) {temp = b; b = c; c = temp;}
5 if (a < b) {temp = a; a = b; b = temp;}
6

7 assert (a <= b && b <= c);
8 }

The intention of this function is that after executing the if statements in Lines
3-5, the values of the variables will be swapped such that a <= b and b <= c at
Line 7. This specification is embedded within the source listing using an assert

statement (Line 7), and the assert does not otherwise affect the behavior of the
source listing.

Does our program satisfy this specification? Because this program is artificially
trivial, we can manually identify a counterexample and test that it violates the
specification. For example, when a = 1, b = 1, and c = 0, the resulting values will be
a = 1 and b = 0 at Line 7. Of course, the CBMC program analysis tool also detects
that the source listing violates the specification, and emits the following snippet
(the full result is found in Appendix G.5.1 on page 280):

State 17 file file.c line 1 thread 0
--

INPUT a: 124955 (00000000000000011110100000011011)

State 19 file file.c line 1 thread 0
--

INPUT b: 256027 (00000000000000111110100000011011)

2The term model is ambiguous and has multiple meaning depending on the literature: it can
refer to the source code, the source abstraction, the source abstraction and specification, or examples
produced by the model checker. To avoid ambiguities with the term model, we will instead use the
terms in Figure 3.1.

40

State 21 file file.c line 1 thread 0
--

INPUT c: 124954 (00000000000000011110100000011010)

Violated property:
file file.c line 7 function f
assertion a <= b && b <= c
a <= b && b <= c

** 1 of 1 failed (1 iteration)
VERIFICATION FAILED

Model checkers are useful because they produce concrete instances as evidence
of a problem. However, the counterexamples they produce, as we saw in the case
of CBMC, are arbitrary. As with the type errors in Section 3.2.3, the presented
counterexample reflects what was found by through the execution of the internal
algorithm, and not what is necessarily the best example to present to the developer.

This has led to principles approaches to presenting output to users of model
checking tools. For example, tools like Aluminum [265] and Razor [321] provide a
minimal example to the user: an example that contain no more information than
is necessary. Danas, Nelson, Harrison, and colleagues [83] investigate principled
techniques for evaluating model checking output through user studies; for example,
they evaluate whether counterexample minimization helps users.

Beer, Ben-David, Chockler, and colleagues [29] apply the idea of causality to
formally define a set of causes for the failure of the specification on the given coun-
terexample trace; these causes are marked as red dots and presented to the user as a
visual explanation of the failure. Amalgam [264] allow the developer to interrogate
the model checker and ask—through “why?” and “why not?” questions—about the
counterexamples they provided.

Several approaches use multiple counterexamples to facilitate understanding,
or supplement the counterexample with additional information. Groce and Visser
[141] argues that although model checking is effective at finding subtle errors,
these errors can be difficult to understand from only a single counterexample. They
propose an automated technique for finding multiple counterexamples for an error,
as well as traces that do not produce an error. Next, they analyze these executions to
produce a more succinct description of the key elements of the error. Similarly, Ball,
Naik, Rajamani, and colleagues [15] present an algorithm that exploits the existence
of correct traces in order to localize the error cause in an error trace, report a single
error trace per error cause, and generate multiple error traces having independent

41

causes. Wang, Yang, Ivančić, and colleagues [387] propose a technique in which
developers are able to zoom into potential software defects by analyzing a single
concrete counterexample. Gurfinkel and Chechik [143] annotate counterexamples
with additional proof steps: they argue that this approach does not sacrifice any of
the advantages of traditional counterexamples, yet allows the user to understand
the counterexample better.

Finally, Hoskote, Kam, Ho, and colleagues [167] introduce the idea of model
checker coverage, similar to that of code coverage; they propose a coverage metric to
estimate the completeness of a set of properties verified by model checking.

3.3 Visual Representations of Program Analysis
Thus far, we have presented error messages predominantly through terminal, text-
only interfaces. In addition to terminals, many software developers utilize a modern
integrated development environments (IDE) such as Eclipse [106], Visual Stu-
dio [380], and IntelliJ [170], as a core part of their development process [357]. These
environments are intended to increase developer productivity by bringing together
multiple tools and making these tools accessible within a unified experience [84].

Unsurprisingly, error messages from program analysis tools are also made acces-
sible within these environments: the diagnostic objects (as discussed in Section 3.2.1
on page 26) are unbundled and rendered them through appropriate interface ele-
ments in the IDE. Consider the Visual Studio IDE in Figure 3.2a on the following
page, with a project file containing an call to an ambiguous method. The IDE
presents the error messages to the developer through several interface elements.
The Error List window at the bottom of the IDE displays the current error messages
in the project. Within this window, errors are searched, sorted, and filtered. The
diagnostic object is unbundled—and its components, such as the description, file,
and line number, are presented as individual columns in the table. Within the source
code editor, a red wavy underline is present under the corresponding source code
that generates an error message. The developer can hover over the wavy underline
to reveal a tooltip containing the error message description. In addition, the margin
contains visual indicators that provide an overview of where problems are in the
current file; unit testing tools extensions such as NCrunch [263] and dotCover [102],
leverage the margin indicators, as well as source code highlighting, to indicate unit
test coverage (Figure 3.3).

The Eclipse IDE in Figure 3.2b on the next page uses similar affordances as

42

(a) Visual Studio

(b) Eclipse .
Figure 3.2 Modern IDEs have converged on affordances for presenting error messages to
developers.

43

(a) Highlighting markers (b) Colored backgrounds

Figure 3.3 NCrunch and JetBrains dotCover are concurrent unit testing and code
coverage tools that integrates with Visual Studio. Shown here are two methods for
displaying code coverage information: (a) in NCrunch, as highlighting markers in the
margin, or (b) in JetBrains dotCover, as colored backgrounds on the source. Green means
that tests pass, red indicates that at least one test that covers the statement fails, and
black or gray shows uncovered code.

Visual Studio, and the popular IDEs such as Atom, Xcode, and Sublime Text, appear
to have converged on how they present errors to developers.

Several research tools explore diagrammatic, box-and-arrow representations
of error messages. For example, the Refactoring Annotations tool by Murphy-Hill
and Black [256] displays diagrammatic control flow and data flow information and
overlay this information on the source code; through these annotations, developers
understand the causes of refactoring errors significantly faster and more accurately
than standard Eclipse error messages. The study on visual compiler error messages
in Chapter 5 is influenced by refactoring annotations. MrSpidey is a user-friendly in-
teractive static debugger for scheme [121]; the tool assists developers in pinpointing
run-time errors, and uses arrows overlaid on the source code to explicate portions
of the value flow graph to the developer. A relatively recent implementation of
MrSpidey can found in its spiritual successor, DrRacket [303]. Whyline renders
arrows between related elements in source code files, and fades the rest of the code;
the tool also automatically arranges windows when arrows span multiple files [198].

The Rust Enhanced [319] extension for Sublime Text inlines error message
information through the phantoms. Phantoms are like tooltips, but the supplemental
information is directly embedded within the text view and remains persistent. Lieber,

44

Brandt, and Miller [218] found that developers adopt debugging strategies that are
unique to this form of always-on information, such as navigation through the code.

Representations of error messages also present information alongside the source
editor. Risley and Smedley [311] implement a visualization for compiler errors in
Java; they contribute a visual syntax that renders diagrammatic representations
for incorrect assignments, type checking, and exceptions. The Stench Blossom tool
is an ambient visualization composed of semi-circles on the right-hand side of the
editor pane; each sector, calls a petal, corresponds to a category of errors [255]. The
tool is tailored for situations where there may be multiple, simultaneous issues
within the code—and where identified issues would require the experience of the
developer to judge whether the issue actually needs to be addressed. The study
finds that ambient visualizations help developers make more informed judgements
about the code they have written.

Other bells and whistles for communicating errors to developers, such as dash-
boards and e-mail notifications, are described in the dissertation by Johnson [180].

3.4 Errors Developers Make
A single programming language implementation, such as Java or C#, contains
several thousand possible static analysis anomalies. Given finite resources, it’s
therefore prudent to characterize the space of error messages that developers
actually receive in order to effectively target tool improvements.

To understand this space, Seo and colleagues conducted an empirical case study
at Google of 26.6 million builds produced over nine months by thousands of de-
velopers [330]. The authors found that nearly 30% of builds at Google fail due
to a static analysis error, and that the median resolution time for each error is
12 minutes [330]. Surprisingly, the costly errors that developers make are rather
mundane, relating to basic issues such as dependencies, type mismatches, syntax,
and semantic errors.

For novice developers, that is, students using Java in the BlueJ IDE3, the situa-
tion is even worse—through telemetry of over 37 million compilation events, Altdmri
and Brown identified that nearly 48% of all compilations fail [6]. Similar to the
errors made by experts made by developers at Google, novices also had primarily
syntax errors, type errors, and other semantics errors. For some reason, it appears
that experience alone isn’t making these errors go away.

3http://bluej.org/

45

http://bluej.org/

Using a Python corpus of 1.6 million code submissions, of which 640,000 resulted
in an error (approximately 40%), and re-examining the BlueJ dataset, Pritchard
model-fit the distribution of these error messages and found that they empirically
resemble a Zipf-Mandelbrot distribution [299]. Such power law distributions have
a small set of values that dominate the distribution, followed by a long tail that
rapidly diminishes. Although Seo and colleagues did not model-fit the distributions
(their paper, Figure 7), a visual inspection of Java suggests that a similar power-law
effect is present [330].

The triangulation of these multiple data sources indicates several consistent
features about anomalies across programming languages. First, the dominant errors,
both in terms of cost and frequency, are relatively consistent irrespective of developer
experience. This is interesting in that a single error explanation representation
is likely to benefit a spectrum of developer experiences. Second, the power-law
distribution suggests that addressing even a small number of dominant errors
could substantially benefit developer experiences with static analysis anomalies.
Third and finally, the categories of errors messages are rather mundane: as a
tool implementation, this means that improvements to such errors (for example,
displaying all relevant program elements) can be feasibly tackled using conventional
AST parsing and analysis techniques.

3.5 Design Guidelines for Error Messages
Design guidelines are rules that a designer can follow to increase the usability of
the tool [100]. Researchers have contributed design guidelines to the domain of
errors messages, here we present these contributions as a brief chronology:

1967 Moulton and Muller [252] construct guidelines and apply them to the design
of DITRAN, a diagnostic compiler for FORTRAN. The DITRAN compiler is
a compile-and-go batch processing systems, but the authors suggest that
the design guidelines could be applied to interactive environments. Many
of these early design guidelines—such as describing errors in terms of the
source language, and ideally suggesting corrections—are found in modern
program analysis tools.

1974 Horning [165] investigates error messages from the perspective of commu-
nication: as conversations with the compiler that are initiated by the user,
with feedback from the compiler. Horning proposes characteristics which

46

good error messages will exhibit. However, Horning does not conduct any
evaluations to assess these characteristics, such as good error messages
being “restrained and polite.”

1982 Dean [89] argues for design guidelines that emphasize humans goals, such
as helping people correct errors as easily as they make them, and giving
people control over the messages they receive.

Shneiderman [338] conducted controlled experiments with novice devel-
opers and had them repair COBOL Programs. The developers repaired
programs under different error messages presentations, including 1) a ?

for the message, 2) a brief error message, 3) standard system messages,
and 4) improved messages. These initial experiments led Shneiderman to
recommend design guidelines for error messages, such as having a positive
tone, being specific and addressing the problem in the user’s terms, and
placing the user in control of the situation.

1983 Brown [48] proposes design guidelines which take advantage of high-
resolution displays and windowing—such as print several lines of source
code alongside the error message, and using color to identify the offending
program elements.

1986 Kantorowitz and Laor [188] observe that current compilers produce in some
situations wrong error messages that mislead the developer and harm
their confidence in the system. They propose error messages guidelines
that follow from a prime requirement to avoid inaccurate messages.

1989 Shaw [335] criticizes the formal, intimidating, and vague error messages
in the APL. Shaw [335] suggests some overall directions to reduce the
feeling of frustration and alienation with error messages. The contributed
design guidelines are expected to produce error messages that are more
revealing, and more user-friendly.

1990 The National Cryptologic School [262] contends that designers and pro-
grammers of error messages do not take into account that error messages
are designed for a person, and that human beings are not perfect. They
propose eight guidelines designed to increase productivity and developer
satisfaction.

47

2010 Traver [370] offers a human-computer interaction perspective on compiler
error messages. Through a systematic literature review, Traver contributes
a set of desirable characteristics of messages in compilers. The guidelines
are derived from examples of compiler errors and the author’s experience
as a developer, and are congruent to those identified by Horning [165].

2012 Murphy-Hill and Black [256] propose guidelines for presenting error mes-
sages related to refactoring. They implement an alternative to textual
error messages through a Refactoring Annotations plugin for the Eclipse
environment. Refactoring annotations are diagrammatically overlaid on
program text. The authors contribute guidelines derived from comparing
textual error messages against refactoring annotations.

2013 Murphy-Hill, Barik, and Black [255] develop an ambient visualization
tool for a category of error messages called code smells. Code smells are
a form of recommendations that are intended to help developers create
high-quality artifacts, but may turn out to be bad advice. The authors expli-
cate the usability characteristics of the tool through design guidelines. In
comparison to refactoring annotations [256], guidelines such as partiality,
availability, and unobtrusiveness are tailored for ambient presentations of
error messages.

2015 Sadowski, Gogh, Jaspan, and colleagues [320] present Tricoder, a pro-
gram analysis platform used at Google for building data-driven ecosystems
around program analysis. The authors apply their experiences and philoso-
phies regarding program analysis to four design guidelines that inform
when and how to incorporate new error messages into Tricoder. Like Kan-
torowitz and Laor [188], they suggest that program analysis tools minimize
errors messages that are false positives.

The full set of guidelines can be found in Appendix F. In Section 8.2 on page 142,
we contribute design guidelines derived from the studies on rational reconstruction
in this dissertation.

48

4 | Do Developers Read
Compiler Error Messages?

Don’t blink. Blink and you’re dead.

The Doctor

4.1 Abstract
In integrated development environments, developers receive compiler error mes-
sages through a variety of textual and visual mechanisms, such as popups and wavy
red underlines. Although error messages are the primary means of communicating
defects to developers, researchers have a limited understanding on how developers
actually use these messages to resolve defects. To understand how developers use
error messages, we conducted an eye tracking study with 56 participants from
undergraduate and graduate software engineering courses at our university. The
participants attempted to resolve common, yet problematic defects in a Java code
base within the Eclipse development environment. We found that: 1) participants
read error messages and the difficulty of reading these messages is comparable
to the difficulty of reading source code, 2) difficulty reading error messages sig-
nificantly predicts participants’ task performance, and 3) participants allocate a
substantial portion of their total task to reading error messages (13%–25%). The
results of our study offer empirical justification for the need to improve compiler
error messages for developers.1

1This chapter was previously published in: T. Barik, J. Smith, K. Lubick, and colleagues, “Do
developers read compiler error messages?” In Proceedings of the 39th International Conference on

49

4.2 Introduction
Compilers are notorious for producing cryptic and uninformative messages [64, 183,
330, 370]. For example, a missing symbol, type mismatch, or incorrect dependency
can create situations where error messages can produce misleading or hard to
digest information [299]. Unfortunately, compiler errors happen frequently: Seo
and colleagues empirically obtained build failures from over 26 million builds at
Google [330], and found that over a quarter of builds fail due to compiler errors.

To improve how developers receive notifications about errors in their code, mod-
ern integrated development environments (IDEs), such as Eclipse, have incorporated
several design elements to support better understandability and expressiveness of
error notifications. Wavy red lines, for example, are a popular means for highlighting
errors in code and revealing the potential causes associated with an error.

However, there has been limited research on understanding how developers
perceive and comprehend error messages through the various ways in which they
are presented, for novice and expert developers alike. For example, Denny and col-
leagues speculated that improvements to error messages were unsuccessful because
their students didn’t read them [93]. Marceau and colleagues proposed a Read-
Understand-Formulate theory, but were unable to confirm whether participants
actually read the messages; they suggested the use of eye tracking to provide this
missing evidence [230]. In industry, Seo and colleagues provided a distribution of
“costly” compiler errors introduced by their expert developers, but their methodology
cannot explain why these errors are costly [330]. In short, we have limited insights
into how developers process, or attend to error messages, during the comprehension
and resolution of defects.

To understand if developers read error messages, we conducted an eye tracking
study with 56 developers, recruited from undergraduate and graduate software
engineering courses at our university, as they resolved common, yet problematic
error message defects in an IDE. We collected pixel-level coordinates and times
for developers’ sustained eye gazes, called fixations. We then triangulated these
fixations against screen recordings of their interactions in the IDE.

The results of our study provide empirical justification for the need to improve
compiler error messages. Specifically, we find that:

• Participants read error messages; unfortunately, the difficulty of reading error
messages is comparable to the difficulty of reading source code—a cognitively

Software Engineering, ser. ICSE ’17, Buenos Aires, Argentina: IEEE Press, 2017, pp. 575–585.

50

demanding task.

• Participant difficulty with reading error messages is a significant predictor
of task correctness (p < .0001), and contributes to the overall difficulty of
resolving a compiler error (R2 = 0.16).

• Across different categories of errors, participants allocate 13%–25% of their fix-
ations to error messages in the IDE, a substantial proportion when considering
the brevity of most compiler error messages compared to source code.

4.3 Motivating Example
To illustrate how error messages can become costly for developers to resolve, consider
a hypothetical developer, Barry. Barry recently joined a large software company,
and needs to implement some missing functionality within a data structures library.
Being relatively new to the library, he messages his colleague for some help in
getting started. He eventually receives a reply from his colleague with a short code
snippet.

Barry copies and pastes this snippet into his source editor, and is surprised
that the IDE produces an error. He focuses his attention, that is, visually fixates, on
the error text in the problems pane at the bottom of his screen:

He silently reads the message about the sublist method, and then double-clicks
the error in the problems pane. This redirects the IDE to the source editor, and
Barry confirms that the error is related to the code that he just added. In the margin
of the source editor, he now notices a light bulb icon, which he hovers over to produce
an error popup:

51

Unfortunately, the popup is less helpful than he expected because it repeats
the message he has already seen in the problems pane. Moreover, the error popup
text is obscuring the method signature which is where he believes the problem is
actually located.

Next, he notices the
:::
red

::::::
wavy

::::::::::::
underline, which in Eclipse indicates the presence

of an error. Barry hovers over the underline, releaving a Quick Fix popup. Unlike the
error popup, the Quick Fix popup provides possible “fixes” that change the source
code, in addition to the error message. He spends several seconds attending to both
the error message and evaluating it against the proposed fixes. His gaze momentarily
leaves the popup as his attention is drawn to the @Override annotation in the source
code. He then revisits the popup because the fourth option also references this
annotation:

Barry knows the @Override annotation is used to inform the compiler that the
current method should override a method in a parent class. To see if this is true, he
navigates to the class declaration, and control-clicks on the parent class:

He inspects the outline pane, which summarizes all of the methods in the class,
and confirms that the parent class contains only unrelated methods like writeObject:

52

He’s now convinced that his colleague may have inadvertently included the
@Override annotation, which happens to not be applicable to his solution. He returns
to the original class one last time, and applies the “Remove ‘@Override’ annotation”
fix. Eclipse rebuilds the project and he checks the problems pane one last time to
see that the error is no longer present.

If you were Barry, would you have done anything differently? If not, you’re not all
that different from the participants in our own study, where 53 of the 55 participants
adopted a similar comprehension and resolution strategy.

Unfortunately, this fix turns out to be incorrect. The actual problem is that the
sublist method declaration is misspelled and should have been called subList, with
a capitalized L. Barry might have discovered this misspelling had he navigated one
more step up in the class hierarchy, to the grandparent class:

Worse, this scenario is not isolated to Barry. For example, the highest-rated
post on StackOverflow for the @Override annotation error suggests that it commonly
occurs in situations where method names have been misspelled.2

Did Barry simply not pay enough attention to the error message? On close
inspection, the error message does in fact mention supertype methods, though
not explicitly by name. Or could it also be the case that the error message leads
developers to prioritize certain solutions spaces for their code over others?

4.4 Methodology

4.4.1 Research Questions
In this study, we investigate the following research questions, and offer our rationale
for each:

RQ1. How effective and efficient are developers at resolving error mes-
sages for different categories of errors? We ask this research question to assess
the representativeness of our experimental tasks with respect to the costly error
messages identified by Seo and colleagues [330], where costly is defined as frequency

2http://stackoverflow.com/questions/94361/when-do-you-use-javas-override-annotation-and-why

53

http://stackoverflow.com/questions/94361/when-do-you-use-javas-override-annotation-and-why

of the error times the median resolution time. Additionally, the results of this re-
search question provide descriptive statistics to identify if some categories of defects
are more difficult to resolve than others.

RQ2. Do developers read error messages? Although IDEs present error
messages intended to be used by developers, the extent to which developers read
these messages in their resolution process is an open question. Without answering
this question, toolsmiths who are attempting to improve error messages may be
misapplying their efforts. For instance, a developer might use the problems pane
not to actually read the error message, but instead because they know that double-
clicking an error message in the pane is a convenient way to jump to the offending
location in the source code.

RQ3. Are compiler errors difficult to resolve because of the error mes-
sage? Resolving compiler errors within the IDE requires developers to perform a
combination of activities, such as navigating to files and making edits to source
code. One hypothesis is that certain compiler errors are difficult to resolve not
because the error message itself is cryptic, but because the task requires intricate
code modifications in order to address the defect. Alternatively, it may be the case
that the resolution requires only a simple code change to correct the defect, but a
confusing error message hampers the developer from discovering the required code
change. In short, we want to understand the extent to which poor error messages
are harmful to the developer.

54

Table 4.1 Participant Compiler Error Tasks

Task Error Message1 Package Category Defect Introduced

T1 The method sublist(int, int) of type LazyList<E> must

override or implement a supertype method

List Semantic Renamed sublist to subList, breaking existing
@Override annotation.

T2 The type CursorableLinkedList<E> must implement the

inherited abstract method List<E>.isEmpty()

The type NodeCachingLinkedList<E> must implement the

inherited abstract method List<E>.isEmpty()

List Semantic Deleted isEmpty method from abstract parent
class.

T3 The import org.apache.commons.collections3 cannot be

resolved (... repeated 50 times)

Map Dependency Changed version of collections4 to non-
existent collections3 library in import state-
ments.

T4 The method get() is undefined for the type Queue<E> Queue Dependency Renamed method invocation from element() to
non-existent get().

T5 The method add(E) in the type Collection<E> is not

applicable for the arguments (int, capture#8-of ? extends

E)

Set Type mismatch Added additional argument of 0 to add method
call.

T6 Type mismatch: cannot convert from Set<Map.Entry<K,V>> to

Set<Map.Entry<V,K>>

Type mismatch: cannot convert from Set<Map.Entry<V,K>> to

Set<Map.Entry<K,V>>

Map Type mismatch Swapped key and value in dictionary from
Entry<K,V> to Entry<V,K>.

T7 Unhandled exception type InstantiationException Map Other Changed less specific exception Exception to
IllegalAccessException, which is not thrown
by the code.

T8 Duplicate method next() in type EntrySetMapIterator<K,V>

Duplicate method next() in type EntrySetMapIterator<K,V>

Iterators Other Copied and pasted next method to create dupli-
cate method.

T9 Cannot make a static reference to the non-static type E Queue Semantic Added static modifier to readObject method.

T10 Syntax error on token "default", : expected after this

token

Map Syntax Removed : from default: in switch statement.

1 For each error message, we compile the defective version of the code under Open JDK to replicate the compiler-internal error message key from the Seo
and colleagues study at Google [330]. The Eclipse version of this message is shown to the participants.

55

4.4.2 Study Design
Participants. We recruited 56 students from undergraduate and graduate courses
in software engineering courses at our university. Through a post-experiment ques-
tionnaire, participants reported an average of 1.4 years (sd = 1.3) of professional
software engineering experience, that is, experience obtained from working as a
developer within a company.

Siegmund recommends self-estimation questions as a good indicator for judging
programming experience, especially when participants are students [343]. Follow-
ing this guidance, we asked participants about their familiarity with Eclipse and
their knowledge of the Java programming language. Participants self-rated their
familiarity with the Eclipse development environment with a median rating of
“Familiar with Eclipse (3),” using a 4-point Likert-type item scale ranging from
“Not familiar with Eclipse (1)” to “Very familiar with Eclipse (4).” Participants
self-rated their knowledge of the Java programming language with a median rating
of “Knowledgeable about Java (3),” using a 4-point Likert-type item scale ranging
from “Not knowledgeable about Java (1)” to “Very knowledgeable about Java (4).”
Participants also self-reported demographic data. Participants reported a mean
age of 24 years (sd = 6), 46 reported their gender as male, and 10 reported their
gender as female.

All participants conducted the experiment in one of two eye tracking labs on
campus, and both labs contained identical equipment. Participants received ex-
tra credit for participating in the study. The first and third authors of the paper
conducted the study.

Tasks. We derived tasks in our eye tracking experiment from prior work con-
ducted by Seo and colleagues, where they empirically obtained build failures from
over 26 million builds at Google [330]. From this data, they identified costly error
messages that occurred frequently in practice and were time consuming for de-
velopers to resolve. To constrain the study to under one hour, we selected the top
errors from each category of costly error messages, for a total of ten error messages
(Table 4.1). Through an informal pilot study with two other lab members, we found
that developers resolved each defect in under five minutes.

However, we did not have access to the actual source code which generated
the errors in the Google study. As a substitute, we used the Apache Commons
Collections3 library and manually injected faults into this library to generate error
messages.

3http://commons.apache.org/proper/commons-collections/

56

http://commons.apache.org/proper/commons-collections/

We chose Apache Commons Collections for several complementary reasons. First,
it provides a library of data structures, such as lists, sets, and dictionaries, that
are likely to be familiar to even first or second year students. Using such a library
also allowed us to isolate the effects of developer difficulties in understanding error
messages from that of unfamiliar code. Second, the library is open source, mature,
and moderately-sized in terms of lines of code. Third, the library provides unit tests
that can be used as a ground truth for the expected behavior of the code.

For each error, we introduced the error message into the Apache code through
operations that could reasonably occur in actual development practices. For example,
the @Override misspelling described in the motivating example (Section 4.3) was
applied based on comments on StackOverflow.

Tools and Apparatus. Participants used a Windows 8 machine with a 24-inch
monitor, having a resolution of 1920x1080 pixels. The computer was connected to a
GazePoint GP3 [130] eye tracking instrument, and this instrument was positioned
directly below the monitor. GP3 software and drivers were installed on the computer
to collect both the screen recording of the desktop environment and to synchronize
the time of the recordings with the eye tracking instrument. Participants used an
external keyboard and mouse to interact with the computer. The experimenters also
installed custom scripts on the machine so that they could remotely load participant
tasks.

We choose the Eclipse IDE [106] for this study because its presentation of errors,
for example, through the problems pane and Quick Fix popups, are characteristic
of the way errors are presented in other modern IDEs such as IntelliJ [170] and
Visual Studio [380]. A default Eclipse installation was deployed on the machine,
with minimal customizations. Specifically, we disabled Eclipse themes and turned
off rounded edges on windows to facilitate subsequent detection during the data
cleaning phase of the research.

4.4.3 Procedure
Onboarding. All participants signed a consent form before participating in the
study.4 Using a script, the experimenter verbally instructed participants with the
details of the study. Participants were informed that they would be identifying and
resolving ten source code defects, to be presented as compiler error messages in
their IDE. Participants were given five minutes per task. If the participants finished

4North Carolina State University IRB 5372, “Evaluating text and visual notifications in integrated
development environments during debugging tasks.”

57

early, they were asked to alert the experimenter and proceed to the next task. After
two minutes, participants were also provided the option to discontinue the task.

We asked participants to provide a reasonable solution for the defect that they
felt best captured the intention of the code. For example, although deleting all the
files in the project might remove the compiler defect, it would be highly unlikely
that this is an intended resolution. We told participants they were not expected to
successfully fix all the defects, and that some defects might be more difficult than
others.

Because of limitations with the eye tracking equipment, we asked participants
to leave the Eclipse window full-screen. We also asked them to not use any resources
(such as a web browser) outside of the Eclipse, because doing so would confound
external information with error messages in the IDE. However, we permitted partic-
ipants to use any of the features available within Eclipse, as long as these features
did not change any of the Eclipse preferences or install any new Eclipse packages.

Finally, we provided the participants with a notifications sheet, which detailed
all of the locations where error message information could appear in the IDE.

Calibration. The eye tracker must be calibrated for each participant. To avoid
repeating the calibration, we requested participants to adjust their seating to a
position that would feel comfortable for the duration of the study. We conducted
a 9-point calibration using the software provided by the eye tracker, in which
participants must fixate on circles that appear at different locations on the screen.
To confirm that the calibration had successful applied, we conducted a stimuli task
in the Eclipse environment. For this task, we asked the participant to navigate to
the About dialog box within the Help menu, and read the version number of Eclipse.
We also asked them to read a provided warning message in the problems pane of
the IDE. Together, these tasks established a baseline for calibration.

Experiment. To control for learning effects, participants sequentially received
one of ten tasks in randomized order. Participant were not allowed to revisit previous
tasks, nor were they allowed to ask questions to the experimenter. Participants
received no feedback on the correctness of their solution. On average our participants
took approximately 45 minutes to complete the study. Following the experiment,
participants completed a post-questionnaire about basic demographic information
and experience.

58

4.4.4 Data Collection and Cleaning
Data collection. For each participant and task, we collected screen recordings in
video format (at 10 frames per second) and a time-indexed data file containing all
eye movements recorded by the eye tracking instrument.

Data cleaning of titles. We used the OpenCV computer vision library [273] to
process videos on a frame-by-frame basis. To obtain the currently opened source
file, we used the Tesseract OCR engine to identify the titlebar for each frame [351].
Due to errors in OCR translation, we performed two data cleaning steps on the title.
First, we cropped each frame to only the title bar and scaled it by a factor of three
to artificially increase the font size. Second, we modified Tesseract to recognize only
alphanumeric characters, dash (-), period (.), and forward slash (/).

After Tesseract processing, several OCR errors remained. Thus, we applied a
Gestalt pattern matching algorithm [307] to match the OCR’d title against the
known set of all Java files in the Apache Commons Collection library.5 We manually
added the strings, Java - Eclipse, which appears in the title when no file is open,
as well as several classes from the java.util package to this processing step. The
output of this step a list of the title associated with each frame.

Data cleaning of areas of interest. Areas of interest (AOIs) are labeled, two-
dimensional rectangular regions of the screen that represent a logical component
within the interface. In our experiment, we first characterized four areas of interest
that are typically always present on the screen: 1) the explorer pane, which appears
on the left-side of the screen and allows the developer to navigate the project files, 2)
the outline pane, which appears on the right-hand side of the screen and contains
a list of methods for the current class, 3) the problems pane, at the bottom of the
screen and contains a list of the identified errors and warnings in the project, and 4)
the source editor, which appears in the center of the screen and contains the source
code.

We characterized two additional areas of interest that transiently displayed error
messages: 1) the error popup, which appears when the developer hovers over the
icon in the margin of the source editor, and 2) the Quick Fix popup, which appears
when the developer hovers over the red wavy underline on program elements in the
source code, or when they activate the Quick Fix feature explicitly.

To support automatic detection of each of the six areas of interest, we imple-
mented several techniques. For fixed-sized AOIs, such as the popups, we extracted
isolated screen captures of each popup and saved them as templates. For dynamically-

5In Python, this algorithm is available as get_closest_match.

59

sized AOIs, we extracted the boundaries of the essential features of the elements,
and then performed a calculation to dynamically compute its bounding rectangle.
For example, to identify the source editor, we internally match against three sub-
templates: the top-left tab, the top-right minimize button, and a thin horizontal line
that delimits the source code from any panes below it.

At this point, we have computationally usable templates that represent mean-
ingful areas of interest, and we need to identify where these templates occur within
video frames. To do this, we used a template matching algorithm provided by
OpenCV. This algorithm essentially takes a given template, and slides it over the
entire frame. For every overlap, the algorithm computes a normalized score be-
tween 0.0 and 1.0, where 0.0 represents the least likely match, and 1.0 represents
a perfect match. Through trial-and-error, we found that a threshold of 0.95 yields
accurate detection of AOIs. Because this is a computationally demanding operation,
we down-sampled both the templates and the video frames to 50% of their original
size to reduce the number of pixels needing to be processed at each frame. We then
up-scaled the identified pixel locations to map them to the original video locations.
The output of this procedure is a data file containing the identified AOIs for each
video frame and the bounding box of that AOI.

Data cleaning of fixations. The eye tracking instrument internally has a
proprietary algorithm for differentiating fixations, or sustained eye gazes, from other
types of rapid eye movement that naturally occurs as people process information.
However, the instrument has systematic measurement error in that the fixations
locations are misaligned by a constant factor. Thus, for each of the participants’
tasks, we used the stimuli task as a baseline to determine the initial horizontal and
vertical offset. For the remaining tasks, we adjusted the baseline as necessary.

After performing offset adjustment, we used the GazePoint software to extract a
list of fixations. For each record in the list, the record contains the time it began, its
duration, and its coordinates.6

6In the GazePoint software, this corresponds to the FPOGS, FPOD, FPOGX and FPOGY columns.

60

4.5 Analysis

4.5.1 RQ1: How effective and efficient are developers at re-
solving error messages for different categories of er-
rors?

We calculated the effectiveness for each task by using correctness as a proxy for
effectiveness. For us to consider a solution to be correct, the solution must pass all
of the unit tests in the Apache Commons Collections library after removal of the
compiler error. Otherwise, the solution is considered incorrect. Next, we cataloged
and binned the incorrect solutions observed for each task, with the intuition that if
unsuccessful participants make the same types of mistakes, there is some common
underlying cause.

We calculated efficiency from two time-derived metrics: time to complete task,
and participant effort. For time to complete task, we extracted the start and end
times from the videos using the icon in the problems pane label as a trigger, using
transitions of the icon from errors to no errors to indicate task boundaries. Tasks
for which no end transition was found were marked as a timeout. Participants who
declined to continue the task and did not resolve the defect were also assumed to
timeout.

For participant effort, we calculated a metric called response time effort [398].
Intuitively, if incorrect solutions are achieved in significantly less time than correct
solutions, then it would suggest that participants are not expending sufficient effort
to reasonably resolve a compiler error message. That is, the participant may simply
be careless, irrespective of the quality of the compiler error message or the difficulty
of the task. We performed a two-tailed t-test between task times, excluding timeouts,
under correct and incorrect solution conditions to gauge response time effort.

4.5.2 RQ2: Do developers read error messages?
Determining if developers are reading error messages through overt experimental
designs is surprisingly tricky. For example, asking participants to think aloud as
they resolve error message tasks adds a cognitive burden that has been found to
negatively impact task performance [145]. Directly questioning the participant at
the end of each task can introduce social-desirability and prime the participants’
behavior for subsequent tasks [393], thus causing them to read error messages

61

more carefully than they otherwise would have. Moreover, visual attention is a
largely subconscious process; participants in visual attention tasks, such as reading,
only have a rudimentary awareness of how they allocate their attention [151].
The use of eye tracking to answer this research question mitigates these issues,
but introduces one of its own: eye tracking data is noisy. For example, routine,
involuntary movements such as rubbing eyes and adjusting hair can block the eye
tracking camera, introducing spurious data points. Our analysis techniques are
constrained to those that are robust in the presence of noise.

Previous eye tracking work by Rayner modeled “reading” as distribution times
of fixations under a variety of visual stimuli [308]. Rayner characterized the distri-
bution times of fixations under different reading conditions, such as silent and oral
reading. Through a meta-analysis, Rayner found that the mean fixation time of a
distribution increases with the difficulty of the text.

For fixations within the source code and error message AOIs, we replicated this
analysis, postulating that developers must read at least the source code in order to
resolve a compiler error message as a baseline.

We then characterized the distribution of source code, error messages, and
silent reading (provided by Rayner [308]) through a symmetric Kullback-Leibler
(KL) divergence, for each of pair of distributions. Essentially, KL divergence is
an information-based measure of disparity: the larger the value of the divergence
between two distributions, the more information is “lost” when one distribution is
used to model the second distribution [187].

Finally, to understand how developers allocate their attention to error messages
against other areas of interest, for each task, we computed across participants the
percentage of fixations for the areas of interest in the task.

4.5.3 RQ3: Are compiler errors difficult to resolve because of
the error message?

Although Seo and colleagues identified a distribution of costly error messages [330],
this does not automatically imply that the reason the error message is costly to
resolve is due to the error message itself. For example, an error message about a
mismatched brace may be easy to comprehend for the developer, yet costly to resolve
because the developer must spend most of their effort in the source code editor to
identify where to add or remove a brace. In answering this research question, our
goal is specifically to understand the extent to which difficulties with reading error
messages can be attributed to task performance difficulties.

62

To understand if compiler errors are difficult to resolve because of the error
message, we used the eye tracking measure of revisits, that is, leaving an area of
interest and then subsequently returning to it, as a measure of reading difficulty.
In prior work, Jacobson and Dodwell identified the relationship that increasing
fixation revisits to an area of text is a measure of increased reading difficulty for
that area [173].

To answer this question, we computed a nominal logistic model between cor-
rectness and revisits to error messages. The output of the model is a probability of
correctness against the number of visits, over a distribution of tasks.

To evaluate the model, we computed the Nagelkerke’s coefficient of determination,
R2 [258]. Of course, there are many variables that influence whether or not a
developer will be successful at resolving a compiler error, such as previous knowledge,
experience, and familiarity with the code [182]. Consequently, we expect that the
coefficient of determination will be low, because reading difficulty is only a second-
order variable for these other factors. Fortunately, reading difficulty latently encodes
many of these variables: if a developer has little experience with a particular error
message, this lack of experience should manifest itself through how they read the
error message.

We also evaluated the model using a likelihood-ratio Chi-square test (G2) com-
puted between a full model, using the number of revisits as a predictor variable,
against a reduced or intercept-only model, fit without any predictor variables. If
the addition of a predictor variable is identified by the test as significant (α < 0.05),
then the predictor variable significantly improves the fit of the model.

4.6 Verifiability
To support replication of our findings, we have provided several materials on our
website.7 The website contains the videos of each of the participants’ tasks. Addi-
tionally, we provide a data file containing all gazes for the tasks, and a cleaned data
file containing only the fixations for the tasks. To support verification, we provide
annotated diagnostic videos of participants’ tasks that display rendered rectangles
on identified areas of interest as the video plays. Finally, we provide data files from
the output of our data cleaning process.

7http://go.barik.net/gazerbeams

63

http://go.barik.net/gazerbeams

Table 4.2 Overview of Task Performance

Correct Incorrect Timeout
Task n % n % nbins

1 n %
T1 2 4% 47 85% 2 6 11%
T2 1 2% 49 91% 1 4 7%
T3 30 55% 0 0% 0 25 45%
T4 36 65% 10 18% 3 9 16%
T5 49 89% 5 9% 2 1 2%
T6 55 100% 0 0% 0 0 0%
T7 22 40% 23 42% 1 10 18%
T8 48 87% 5 9% 1 2 4%
T9 28 51% 2 4% 2 25 45%
T10 50 91% 5 9% 3 0 0%

1 nbins indicates the number of observed incorrect so-
lution types for each task, that is, the cardinality of
the incorrect solution set.

4.7 Results

4.7.1 RQ1: How effective and efficient are developers at re-
solving error messages for different categories of er-
rors?

Table 4.2 summarizes the solution the developer makes based on our correctness
criteria. For every task, at least one participant made a code change congruent with
the correct solution, which indicates that it is at least possible to make a correct
fix for every task given the information in the error messages. The distribution
of correct and incorrect solutions are clearly skewed for many of the tasks. For
example, only two participants generated correct solutions for T1, and only one
participant generated a correct solution for T2. And for tasks T5, T6, T8, and T10,
nearly all or all participants arrived at the correct solution.

The nbins columns in Table 4.2 indicates, for every incorrect solution, the types of
solutions provided by the participants. For example, consider T1, the problem Barry
faced in our motivating example (Section 4.3). Recall that the correct solution to

64

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Task Number

0

50

100

150

200

250

300

350
Ti

m
e

to
Co

m
pl

et
e

(s
ec

)

Incorrect Correct

Figure 4.1 The time required for developer to commit to a solution that is correct or
incorrect. Nearly all tasks (exceptions, T8 and T10) have high variance in resolution time to
arrive, irrespective of correctness.

this problem is to rename the sublist method to subList. Participants provided two
incorrect solutions to this problem. They either removed the @Override annotation,
which suppresses the error but does not resolve the defect, or they created a stub
sublist method in the parent class, without recognizing the existing similarly-
named method. Across all tasks, participants converged to a small set of incorrect
solutions.

Figure 4.1 illustrates a violin plot of the time required for developers to apply
a resolution for both correct and incorrect solutions. The dashed lines indicate
quartile boundaries for each task. For incorrect solutions, timeouts are excluded
from the plot. Like Seo and colleagues, we also found large variation in the time
required to arrive at a solution for nearly all tasks [330]. For some tasks, however,
such as T8 and T10, most participants were able to correctly resolve the defect, and
with relatively tight variation in time to resolution. As Seo and colleagues defined
costly in terms of both frequency of occurrence and median time to resolution [330],
it is likely these errors are costly because they are arise frequently as a nuisance
for developers, not because they are particularly difficult to resolve.

For response time effort, a t-test identified a significant difference in resolution
time between correct and incorrect solutions (t(20.24) = 2.86, p = 0.0045), with
incorrect solutions requiring an additional mean time of 20 seconds (sd = 7) over the

65

0.000

0.002

0.004

0 250 500 750 1000
Fixation Duration (ms)

D
en

si
ty

of
Fi

xa
tio

ns

Distribution
Silent Reading
Error Messages
Editor

Figure 4.2 Comparison of fixation time distributions for silent reading of English
passages, reading source in the editor, and reading of error messages.

correct solution. The results of this test provide support that participants provided
sufficient effort in attempting to solve the task, and rejects the hypothesis that
participants chose an incorrect solution because it most quickly resolved the defect.

4.7.2 RQ2: Do developers read error messages?
Figure 4.2 illustrates the distribution of known silent reading durations against the
distribution of fixation times for error message areas of interest in our tasks. For
visualization purposes, the distributions are normalized as a probability density
function. That is, the probability of a random fixation to fall within a particular
region is the area under the curve for that region.

The mean fixation time for reading in the source code editor is 394ms (sd = 240,
nfix = 81098). In comparison, previous work found that silent reading of English
passages of text yield mean fixation times of 275ms (sd = 75), and that for reading
and typing English passages yield a mean fixation time of 400ms (sd not provided
in original study by Rayner) [308]. Thus, reading source code is much more difficult
than reading a general English passage, and marginally less difficult than the
activity of typing while reading.

We compute the KL divergence between the source editor distribution and
error message distribution (DKL = 0.059), source editor distribution and silent
reading distribution (DKL = 3.38), and error message distribution and silent reading
distribution (DKL = 2.37). From the relatively small KL divergence between the

66

Table 4.3 Participant Fixations to Areas of Interest

Task
Area of Interest T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Source editor

66% 66% 74% 79% 68% 65% 78% 68% 80% 65%

Error areas
23% 23% 15% 14% 23% 25% 15% 17% 13% 20%

Navigation areas
10% 11% 11% 6% 9% 11% 7% 15% 7% 15%

Error Areas Breakdown1

Error popup
1% 0.5% – 0.4% 0.7% 2% 0.5% 1% 1% 2%

Problems pane
12% 19% 15% 11% 16% 17% 9% 14% 11% 16%

Quick Fix popup
10% 3% – 3% 6% 5% 6% 1% 1% 2%

Navigation Breakdown
Explorer pane

10% 8% 10% 5% 8% 11% 6% 12% 5% 14%

Outline pane
1% 3% 1% 1% 1% 1% 1% 3% 1% 1%

1 To understand reading, the error areas breakdown aggregates
areas of interest to those that provide the text of the error
message.

source editor distribution and the error message distribution, we conclude that
error message reading is comparable to source code reading (u = 419ms, sd = 270,
nfix = 18573), and unlikely to be a different activity than reading.

Another perspective on understanding whether developers read error messages is
to examine how they allocate their fixations across different areas of interest during
the task (Table 4.3). Across tasks, we found that participants spent 65%–80% of
their fixations in the source editor, with 13%–25% of their fixations on error message
areas of interest. Most participants use the error message information in either the
problems pane and Quick Fix popup; the error popup is rarely used.

67

Incorrect
Correct

0 10 20 30 40 50 60

0
10
20
30

0
10
20
30

Number of Revisits to Error Message

Fr
eq

ue
nc

y

(a)

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60
Number of Revisits to Error Message

p(
C

or
re

ct
So

lu
tio

n)

(b)

Figure 4.3 In (a), histogram of correct and incorrect task solutions by number of revisits on
error message areas of interest. In (b), nominal logistic model of the probability of applying
a correct solution number by revisits on error message areas of interest. As revisits to error
messages increase, the probability of successfully resolving a compiler error decreases.

Both the KL divergence analysis and the allocation of fixations to the task
support that developers are reading messages.

68

4.7.3 RQ3: Are compiler errors difficult to resolve because of
the error message?

A Chi-squared test reveals a statistically significant difference between the number
of revisits and the outcome of correctness over a distribution of tasks (df = 1, G2 =

60.9, p < .0001). This suggests that the number of revisits, a proxy measure for
reading difficulty [173], is a significant predictor variable for the task difficulty.
However, Nagelkerke’s coefficient of determination for the logistic fit is low (R2 =

0.16), which implies that reading difficulty is only one of many factors that contribute
to the overall difficulty of a task.

Figure 4.3 presents this statistical result more intuitively. From Figure 4.3a, we
can see that as the number of revisits increases, the distribution of correct solutions
rapidly diminishes. We also see a long-tail of incorrect solutions. Figure 4.3b plots
a nominal logistic model for the number of revisits to error messages against the
probability of the developer applying a correct solution for the task. The probability
of a correct solution also diminishes as revisits increase. Thus, task difficulty is
attributable to the reading difficulty of error messages.

4.8 Discussion
From the results of our research questions, we identify three problem areas in
current development environments, and offer suggestions for toolsmiths towards
addressing these problems.

Error messages are not situationally-aware (RQ1). Although our tasks
covered the distribution of costly errors, the way in which the defects themselves can
manifest is situationally-dependent. For example, consider T2, in which through a
merge the method isEmpty() has inadvertently been deleted from the parent class,
AbstractLinkedList<E>. The children of this class are CursorableLinkedList<E> and
NodeCachingLinkedList<E>.

This causes the compiler to emit two error messages:
The type CursorableLinkedList<E> must implement the

inherited abstract method List<E>.isEmpty()

The type NodeCachingLinkedList<E> must implement the

inherited abstract method List<E>.isEmpty()

69

For this message, it is not surprising that developers would be led to believe that
they should implement the isEmpty() method in both classes. Indeed, all participants
except for one came to this incorrect conclusion (Table 4.1, nbin = 1).

Instead, consider if the compiler had presented the following alternative message:
The type AbstractLinkedList<E> must implement the

inherited abstract method List<E>.isEmpty()

Given the fact that our participants took cue from the error messages in the first
error message set, it is plausible that participants would have arrived at the correct
solution, adding the missing method to the AbstractLinkedList<E> class, if they had
instead been presented with the second error message. Unfortunately, it’s difficult
for the compiler to know which of these messages would be more appropriate to
present to developer without having situational information, such as recent edit
history.

Compiler designers may want to consider incorporating situational awareness
into their choice of presentation to aid developers in more accurately identifying
and resolving the root cause of a defect.

Error messages appear to take the form of natural language, yet are as
difficult to read as source code (RQ2). Although we expected error message
mean fixations to be somewhat higher than silent reading due to more technical
language, we were surprised to find that error messages were not only significantly
more difficult to read than the silent reading of natural language, they were also
slightly more difficult to read than even the source code.

To postulate why this might be, let’s return to Table 4.1. Consider an error
message as in T4, which reads:
The method get() is undefined for the type Queue<E>

Even for relatively short error messages like this one, participants spent 14% of
their time in the total task with fixations across essentially nine “words.” Prior
research in language cognition for bilingual sentence reading has found that switch-
ing languages is associated with a cognitive processing cost [248]. Similarly, one
explanation for the apparent difficulty of reading error messages is that error mes-
sages consist of both natural language (“is undefined for”) and code (“Queue<E>”),
but are not entirely either. Consequently, developers must context-switch between
two different modalities of reading to fully capture the information presented in an
error message, leading to increased reading difficulty.

A second explanation for why error messages are comparable in difficulty to
reading source code is because reading error messages requires the developer to

70

���������� ���

��	
��������
����������������������	��
�����������	������������������ �!"#$����
�����!���� �%��	&'��(��% ���

) * +,--+./012340/.5678-97.3:.6:67632.;3290<

= * >3220/.,9:176-:.?-6:704.6@.3:.9:6:676326A0/.?-6:704.;3290

B >3226:C.+70@7+<

D9C.E9FF34G

H620I ��J�
��J������JK�
���L
J�����
���JM
�
���%J����
��������
���	�J�����J
N���	
�����

O34:6:CI 	��
P#QP��	���P#P
��		
�P��������P�����
�P��P��P��������	�R
�P�����
�PL�	�

S::-7370/.E-9410.>-/0

T UVWXYZ[\Z]̂Y_

` YYUVWXY]abVV̂]UVWX̂c

d YYbVV]̂cYeefghijkflmjnopqjfrqpjosifptfmjpjpophupvsw

x y

z Y

{ W|ZY}~W|]̂_

� YYZ[\Z]̂c

� y

Figure 4.4 Emerging error reporting systems like LLVM scan-build provide stark contrast
to those of conventional IDEs. Here, scan-build presents error messages for a potential
memory leak as a sequence of steps alongside the source code to which the error applies.

also switch between the error message and the source code in order to understand
the full context of the task. For example, a developer might read “The method get()”
and then suspend their reading of the error message to determine in the source
editor the calling context of this method and figure out why and whether it should
be called. In this case, error presentation approaches such as those found in LLVM
scan-build [66] may prove beneficial to developers (Figure 4.4). Unlike conventional
error messages, which decouple the error message from the code context, scan-build
presents the error as a sequence of steps that the developer can follow alongside in
the context of the code to which the error message applies.

Tools fail developers in the presence of compiler errors (RQ3). While
difficult error messages are a significant predictor of correctness, the low R2 from
RQ3 suggests that other factors exist which affect the difficulty of a resolution task.
For example, in addition to reading error messages, participants in our study also
had fixations within navigation areas of interest for 6%–15% of the total task.

In observing the participant videos for these tasks, we found several instances
where participants attempted to use tools that fail in the presence of a compiler
error message during navigation-related tasks. As one example, a participant in T8

71

attempted to navigate to the appropriate method through a usage of that method.
Although the Eclipse IDE would reveal both locations, it makes no special effort to
distinguish the two methods, leading to potential visual disorientation within their
IDE [8]:

In T8, yet another participant was aware of a tool within the IDE to facilitate
comparison between two methods, but they could not recall how to invoke it. This
example illustrates how tools that support understanding of a defect may be just as
important as tools that provide a resolution. But unlike Quick Fix popups, which
appear automatically, comprehension tools such as Compare With must be invoked
manually by the developer. Analogous to Quick Fix popups, perhaps toolsmiths
should offer “Quick Understanding” popups, which recommend appropriate tools,
such as Compare With, that are known to be helpful in understanding a particular
compiler error. Our own work in defect resolutions provides a starting point for auto-
matically bringing relevant tools to the developer to help with comprehension [17].

4.9 Limitations
Although we derived our errors based on frequency and difficulty of resolution from
a prior Google study [330], we could not ensure that we used the similar phrasing
in our replication of error messages. Google uses a proprietary version of OpenJDK
with custom messages not available to the general public. We also do not have access
to the source code that generated these errors. As a result, the messages we use in
Eclipse are not identical to those previously studied. Instead, in our study design,
we seeded errors that approximate the scenario described by the original message.

We only investigated ten error messages with our participants. However, research
by Seo and colleagues found that improving even the 25 of the top errors would
cover over 90% of all the errors ever encountered at Google. A similar result has
since been replicated for novice developers in Java [299]. Furthermore, we sampled
error messages across multiple categories of defects to increase generalizability.

One construct validity issue is the accuracy of the eye tracker. We used a com-
modity eye tracking instrument which has a lower sample rate than professional

72

eye tracking equipment. For example, our eye tracker did not perform well with
participants with glasses, and was also sensitive to lighting conditions. The com-
modity eye tracker also limited our analysis to larger areas of interest; we were
unable to perform line or word level analysis, which would be useful for further
understanding parts of the text developers actually read. We had to discard 51 tasks
due to equipment malfunction during participant sessions. An additional 79 tasks
were dropped because reasonable eye tracking data was not obtainable from the
participant data, even after manual offset correction.

A threat to external validity is that we used student developers in place of full-
time professional developers. Although many of our participants had professional
experience, these participants may not fully represent industry developers in all
situations [323]. For example, it is possible that senior developers with extensive
experience of their own code base would arrive at a correct solution for some tasks
irrespective of the information in the message (RQ1). Although our participants
rarely used error popups in their IDE (RQ2), we might expect that senior developers,
again having familiarity with their code base, would utilize these on-demand infor-
mation sources more frequently than the always-available problems pane. Developer
effectiveness for a task and its relationship to error message revisit frequency may
be less pronounced when participants have a broader range of developer experience
than those in our own study (RQ3). Thus, we should be careful in generalizing our
findings to all developers.

Lastly, our analysis is also limited to insights that can be obtained through
eye tracking measures. A future study in which participants perform a gaze-cued,
retrospective think-aloud on their own recordings could yield additional insights on
participant behavior [112].

4.10 Related Work
To our knowledge, this study is the first to use eye tracking to explain how developers
make use of error message information to resolve defects within the IDE. In this
section, we discuss related work from eye tracking studies in debugging and defect
understanding. Rodeghero and colleagues used eye tracking to understand how
developers summarize code; the results of their experiment were used to improve
algorithms that automatically summarize code [315]. Romero and colleagues used
eye tracking to understand how developers found defects in source code under
different representations of the source code, such as diagrams [317]. Uwano and

73

colleagues asked developers to perform code review tasks, during which participants
had to locate defects in the code [373]. The authors identified common scan patterns
in subjects’ eye movements. In a partial replication of Uwano’s study, Sharif and
colleagues found differences between experts’ and novices’ scan patterns while
locating defects [333]. Bednarik and Tukiainen found that repetitive patterns of
visual attention were associated with lower performance [28]. In our study, we also
found that revisits to error message information is statistically significant with
the probability of correctness. Like other research attempting to find patterns in
debugging activities, Hejmady and Narayanan found visual pattern differences
based on programming experience and familiarity with the IDE [158]. Busjahn and
colleagues were interested in how novices read source code; from eye tracking, they
found that experts read code less linearly than novices [51]. In our own work, we
are interested, for example, in whether developers read error messages at all.

Outside of eye tracking, other studies are related to our investigation of com-
prehension and resolution of error messages. Researchers de Alwis and Murphy
proposed a theory of visual momentum, identifying factors that may lead developers
to become disoriented when exploring programs in the IDE [8]. Lawrence and col-
leagues present an information foraging theory on how developers debug code. They
examined programmers’ verbalizations and found that their debugging approaches
more often concerned scent-following than hypotheses [208]. However, the use of
verbalization has been found to affect the performance and decisions participants
make on tasks [73].

4.11 Conclusion
In this work, we conducted a study using eye tracking as a means to investigate
if developers read error messages within the Eclipse IDE. Through distribution
comparisons between source code, error messages, and prior work on silent reading,
we found support that developers are reading error messages, but also found that
the difficulty of reading error messages is comparable to reading source code—a
cognitively demanding task. By examining developer fixations, we found that devel-
opers spend a substantial amount of time on error message areas of interest, despite
the fact that most tasks had only a single error message present. An analysis of
revisit times as a proxy for reading difficulty suggests that difficulty in solving a
task can be attributed to difficulties in reading the error message.

The results of this study reveal several problematic areas in the way development

74

environments today present compiler error messages to developers, and identify
opportunities for toolsmiths to address these problems. The contribution of our work
is that it offers an empirical justification for improving compiler error messages for
developers. Stated simply: error messages matter.

4.12 Acknowledgments
This material is based upon work supported by the National Science Foundation
under grant number 1217700 and 1318323. Computational resources for this study
were provided through an AWS in Education Research grant from Amazon.

75

5 | How Do Developers Visualize
Compiler Error Messages?

Never ignore coincidence. Unless, of
course, you’re busy. In which case,
always ignore coincidence.

The Doctor

5.1 Abstract
Self-explanation is one cognitive strategy through which developers comprehend
error notifications. Self-explanation, when left solely to developers, can result in
a significant loss of productivity because humans are imperfect and bounded in
their cognitive abilities. We argue that modern IDEs offer limited visual affordances
for aiding developers with self-explanation, because compilers do not reveal their
reasoning about the causes of errors to the developer.

The contribution of our paper is a foundational set of visual annotations that aid
developers in better comprehending error messages when compilers expose their
internal reasoning. We demonstrate through a user study of 28 undergraduate
Software Engineering students that our annotations align with the way in which
developers self-explain error notifications. We show that these annotations allow
developers to give significantly better self-explanations when compared against
today’s dominant visualization paradigm, and that better self-explanations yield
better mental models of notifications.

76

The results of our work suggest that the diagrammatic techniques developers
use to explain problems can serve as an effective foundation for how IDEs should
visually communicate to developers.1

5.2 Introduction
Modern integrated development environments (IDEs), such as Eclipse, IntelliJ,

and Visual Studio, offer a number of visualizations to assist developers in more
effectively identifying and comprehending compiler error notifications. For example,
in addition to the full error message text found in a console output or dedicated
error window, such notifications may include an indicator in one or more margins
along with a red wavy underline visualization overlaid on the source text to indicate
a relevant location of the error.

Many developers consider these error notifications to be cryptic and confus-
ing [370]. We postulate one of the reasons error notifications are confusing is
because compilers do not reveal the reasoning used to determine that the error
exists.

More explicitly, in order to generate an error notification, the compiler begins
with the source code, collects information during its compilation, uses that infor-
mation to identify that a problem exists, and notifies the developer of the problem
through the IDE. Yet, for developers to comprehend the notification, they must
mentally duplicate this process through self-explanation [279] in essentially reverse
order—starting with the error notification, the developer must identify what they
think the problem might be from the IDE’s presentation, mentally collect all of
the program components related to this problem, and finally identify the area or
areas of source code necessary to correct the particular defect. This self-explanation
process, when left solely to the developer, can result in a significant loss of produc-
tivity because humans are imperfect and bounded in knowledge, attention, and
expertise [197]. Much of this self-explanation process may be completely unnecessary
since the reasoning process that resulted in the error notification was already known
to the compiler.2

1This chapter was previously published in: T. Barik, K. Lubick, S. Christie, and colleagues, “How
developers visualize compiler messages: A foundational approach to notification construction,” in
2014 Second IEEE Working Conference on Software Visualization, Sep. 2014, pp. 87–96.

2As Bret Victor points out his talk “Inventing on Principle” (CUSEC 2012): “If we’re writing our
code on a computer, why are we simulating what a computer would do in our head? Why doesn’t the
computer just do it, and show us?”

77

1 class Melon {
2

::::::
final

:::::
int

::
i;

3
4 Melon(boolean b) {
5 if (b)
6 i = 3;
7 }
8 }

(a) Baseline visualization

1 class Melon {
2 final int i;
3
4 Melon(boolean b) {
5 if (b)
6 i = 3;
7 }
8 }

1 2

i = 3 i = ?

b = true b = false

(b) Explanatory visualization

Melon.java:7: error:

variable i might not have been initialized

}

^

1 error

(c) Error message text

Figure 5.1 A comparison of a potentially uninitialized variable compiler error through (a)
baseline visualizations, the dominant paradigm as found in IDEs today, (b) our explanatory
visualizations, and (c) the textual error message.

Visualizations in IDEs, such as red wavy underlines and margin indicators,
take the perspective that compilers are opaque black boxes and thus by design
are limited in their affordances for helping developers in comprehending error
notifications. In this paper, we argue that developers stand to significantly benefit
when compilers are made more transparent and expose their internal reasoning
process to visualization systems. We argue that such systems can leverage these

78

structures to generate expressive, explanatory visualizations that align with the
way in which developers self-explain error notifications. Our contributions in this
paper are:

• A foundational set of composable visual annotations that aid developers in
better comprehending error messages.

• An explanation task evaluation, using a set of paper mockups, which demon-
strates that our explanatory visualizations yield more correct self-explanations
than the baseline visualizations used in IDEs today.

• A recall task evaluation, in which developers write programs in a minimalistic
programming environment to intentionally generate compiler errors, which
demonstrates that better self-explanations enable developers to construct
better mental models of error notifications.

5.3 Motivating Example
Yoonki is an experienced C++ developer who has recently transitioned to a project
that is being developed in the Java programming language. While programming,
he encounters a wavy red underline visualization as shown in Figure 5.1a, which
indicates an error. The problem seems to be related to final int i, which Yoonki
recognizes as being roughly similar to the concept of a const variable in C++. Yoonki
investigates further and notices the full text of the error in the bottom pane of his
IDE (Figure 5.1c).

However, Yoonki is now a bit puzzled. The error message indicates the variable
might not be initialized at Line 7. He decides this error message is incorrect and
ignores it because Line 7 contains only a curly brace, which seems to have nothing to
do with his problem. He is comfortable in doing so because in C++, he often received
unhelpful notifications.

Yoonki explains to himself that the problem is that final variables in Java,
like const variables in C++, must be assigned at their point of declaration, or in
a constructor initializer list. Satisfied with his explanation, he rewrites Line 2 to
read final int i = 3; but this immediately results in a downstream error, as Line
6 now displays cannot assign a value to final variable i. Yoonki realizes that
a constant cannot be re-assigned, so he deletes the entire conditional statement.
Even though the program now compiles, the fix happens to be an incorrect one.

79

The problem here is that Yoonki has learned a reasonable heuristic for how
constant variables work in programming languages, but his heuristic fails in this
case. Like C++, Yoonki is correct in that Java final variables can only be assigned
once. But unlike C++, final variables in Java can be assigned at a point other
than the declaration. Yoonki has experienced what we could call a knowledge break-
down [197]. In this case, Yoonki has a confirmation bias about how the system is
supposed to work, and this false hypothesis has worked reasonably well for him
until now.

This false hypothesis remains uncorrected by the IDE. In his IDE, the red wavy
underline visualization can only indicate a single location related to the error. The
IDE is unable to convey that the problem is dependent on several program elements.
For example, the error text and the indicated location is accurate in that after this
line the variable might be uninitialized, but the IDE does not have an effective way
to indicate how that location relates to the final variable.

In contrast, consider our approach, shown in Figure 5.1b. Here, Yoonki may
not experience the same knowledge breakdown, because the IDE provides a visual
explanation of the problem within his source code. Though Yoonki might once
again incorrectly assume final variables must be assigned at declaration, the
visualization implies that the problem is actually related to control flow. Specifically,
the explanatory visualization is showing Yoonki there is a code path in which i is
assigned a value (when b = true), and another code path where it is not (when b =

false). This time, Yoonki correctly fixes the defect by adding an else statement to
the condition, initializing it with an appropriate value in the case when b = false.

This hypothetical scenario illustrates why the dominant visualization paradigm
is not sufficient in supporting the process of self-explanation. As we argue in this
paper, this scenario is illustrative of a more general problem with the output of
program analysis tools: these tools present only the end-result of the complex
reasoning process and therefore do not support the developer in self-explaining.

5.4 Pilot Study
We conducted a pilot study3 from undergraduate lab sessions in Software Engineer-
ing to address a prerequisite research question:

RQ0 What annotations do developers use when they explain error messages to
3All experimental study materials are available at http://go.barik.net/errviz.

80

http://go.barik.net/errviz

Table 5.1 Frequency of Visual Annotations in Pilot

Annotation Frequency Description
Point 49 A particular token or set of tokens has been marked.

Examples include underlining or circles the to-
ken(s).

Text 45 Natural language text. For example, “assign a value
to the variable” or “dead code”.

Association 33 An association between two or more program el-
ements, which is accomplished by drawing a con-
necting line between the elements, with or without
arrow heads.

Symbol 20 Symbols include visual annotation such as ? or x, or
numbered circles, to name a few.

Code 14 Explanatory code that is written in order to explain
the error message, for example, if (b == false) or
m(1.0, 2). This does not have to be correct Java
code, but should be interpretable as pseudocode.

Strikethrough 5 The strikethrough is separated from the point anno-
tation because this annotation is provided by IDEs
today, and has pre-established semantics.

Multicolor - The use of more than a single color to explain a
concept. For example, green may be used to indicate
lines that are okay, and red to indicate lines that
are problematic. This option was not available to
students in the pilot study.

each other?

We hypothesized that if participants preferred certain types of annotations when
explaining error messages to each other, they could also benefit when the same
annotations were used to explain error messages to them through their IDE.

Thus, before generating our annotations, we conducted an informal lab activity
with third-year Software Engineering students. Each student was given a sheet of
paper with a source code listing and the corresponding compiler error message. The

81

source code listings were unadorned and lacked any visual annotations.
Students were paired for an explainer-listener exercise. This is an exercise in

which one student, the explainer, is asked to verbally explain the error message
to the other student while visually annotating the source code listing during their
explanation. Access to external materials was not allowed. After two minutes of
explanation, roles were swapped and the second explainer annotated the second
error message.

We randomly assigned one of four source code listings to each student, pulled
verbatim from the OpenJDK 7 unit tests for compiler diagnostics framework. These
examples, among others used in subsequent studies, are found in Table 5.3. No
students within a pair received the same source code listings. In total, we collected
73 samples: 17 from T1 (23%), 12 from T2 (16%), 20 from T3 (27%), and 24 from T6
(33%). Students did not receive tasks T4 or T5, because they had not been created
at the time of the pilot study.

From these annotations we performed two passes over the student responses. In
the first pass, we created a taxonomy of visual annotations based on our observations.
In the second pass, we classified the student responses using this taxonomy. The
aggregated results are shown in Table 5.1.

The pilot study informed our explanatory visualizations, which we implement
through annotations such as points, associations, symbols and explanatory code.
Since students used these types of annotations without any a priori prompting,
we postulate that they find these types of annotations intuitive to use during
explanation.

5.5 Explanatory Visualizations of Error Messages
We propose a set of eight visual annotations, which are summarized in Table 5.2.
We now concretely describe these annotations using the motivational example from
Figure 5.1b. The starting point for visual explanation in the source code listing is
indicated using code (a green rectangle with rounded corners that surrounds a
program element). In our visualization mockups, we choose the starting point to
be the same as the source of the error identified by IntelliJ (Figure 5.1a). In the
example, this is final int i.

Continuing our example, the starting point is associated with a second point,
int i, because this is where the potential assignment to the variable occurs. We
indicate the starting point with code (red rectangle with rounded corners), and

82

Table 5.2 Visual Annotation Legend

Sym-
bol Description

code The starting location of the error.

code Indicates issues related to the error.

Arrows can be followed. They indicate the next relevant location to check.

1
Enumerations are used to number items of potential interest, especially
when the information doesn’t fit within the source code.

? The compiler expected an associated item, but cannot find it.

Conflict between items.

code
Explanatory code or code generated internally by the compiler. The code
is not in the original source.

Indicates code coverage. Green lines indicate successfully executed code.
Red lines indicate failed or skipped lines.

the association is indicated by (a directional arrow).
A second association leads the developer to an explanatory code block that

contains a copy of the statement. Explanatory code is represented by code (dashed
gray rectangle), which indicates the surrounded elements are explanatory and not
part of the original source code of the program. This explanatory code block is part
of a larger composite annotation describing the control flow scenario under which
the statement is executed.

This composite annotation demonstrates that several basic annotations can be
combined to create a new annotation for expressing a more complex concept. One of
these components is the code coverage annotation. This annotation uses (green
line) and (red line) to indicate whether or not a line is covered. In addition, the

83

enumerations 1 and 2 provide the developer with convenient labels for referring to
the branches (for example, “It looks like it works fine in branch 1, but not in branch
2”). The final component is another explanatory code block indicating one possible
condition under which the branch would be executed.

Thus, the composite annotation indicates that i = 3, and all statements within
branch 1 will be executed when b = true. This composite annotation is then used to
show the developer a counterexample in which i would be uninitialized. A simple
text explanation stating that i is uninitialized when b = false would have pro-
vided the same conclusion, but we hypothesize that the intermediate steps in the
explanation are important for developer comprehension.

There are two visual annotations that do not appear in the motivating example
that warrant explanation. These are (red cross), which indicates that a conflict
exists between blocks, such as when the developer accidentally specifies repeated
modifiers:

class Apple {

public public String toString () {
return "Red";

}
}

Finally, the ? is used to indicate that the program element should be associated
with another element, but that the connecting element is not found. This can occur
when a catch statement is unreachable either because the exception can never be
thrown, or because it is always caught by a prior catch clause:

Screen Listing for Trumpet.java

1 import java.io.*;
2
3 class Trumpet {
4
5 void play() {
6 try {

7 if (true) {
8 throw new FileNotFoundException ();
9 }

10 else {
11 throw new EOFException ();
12 }
13 }

14 catch(FileNotFoundException fnf) { }

15 catch(EOFException eof) { }

16 catch(IOException ex) { }
17 }
18 } ?

Compiler Output

Trumpet.java :16: warning: unreachable catch clause
catch(IOException ex) { }
ˆ

thrown types FileNotFoundException ,EOFException have already been caught
1 warning

5.6 Methodology
We conducted a second, formal study, which we discuss for the remainder of this
paper.

84

5.6.1 Research Questions
We assigned participants randomly to two groups: a control group, having access to
the baseline visualization (red wavy underline) in their source code, and a treatment
group, having access to our explanatory visualizations. We designed our experiment
to elicit answers for four research questions:

RQ1 Do explanatory visualizations result in more correct self-explanations by
developers?

RQ2 Do developers adopt conventions from our visual annotations in their own
self-explanations?

RQ3 What aspects differentiate explanatory visualizations from baseline visual-
izations?

RQ4 Do better self-explanations enable developers to construct better mental
models of error notifications?

Unlike the baseline visualization, explanatory visualizations are intended to
expose the reasoning process of the compiler.

For RQ1, we hypothesized that exposing this reasoning process would result
in significantly more correct explanations by developers. If this hypothesis was
not supported, it would imply that the explanatory visualizations might confuse
developers and differ from the way they model error messages.

For RQ2, we hypothesized that both the control group and treatment group would
adopt similar annotations when developers explained error messages, because our
visualizations are based on conventions that developers would find intuitive for
self-explanation.

For RQ3, we wanted to identify the traits of the explanatory visualizations
beneficial to developers in comprehending error notifications. Significant differences
in traits between the baseline visualization and explanatory visualizations would
give us insight into the design of explanatory visualizations in general.

For RQ4, we hypothesized that better explanations result in better mental
models, and that developers with explanatory visualizations would tend to have
better mental models than the control group.

85

5.6.2 Participants
We recruited 28 participants (n = 28) from a third-year undergraduate course in
Software Engineering because they were readily available and because we wanted
to reserve our more limited industry participants for a full implementation. We
offered participants extra credit on their final exam for participating in the study.
Participants self-reported demographic data. 23 of the participants were male (82%),
and five of the participants were female (18%). The mean age of the participants
was 22 (s = 3.6). Participants reported a mean of 9 months (s = 12) of industry
programmer experience.

26 participants reported using the Eclipse IDE as their primary Java program-
ming environment; two participants reported IntelliJ. On a 4-point Likert-type item
scale of Novice—Expert, 13 participants reported their overall programming ability
as Intermediate (46%), 14 as Advanced (50%), and 1 as Expert (4%). No participants
ranked themselves as Novice. On a 4-point scale Not knowledgeable—Very knowl-
edgeable, 19 participants indicated they were knowledgeable about Java (68%), and
the remaining 9 participants indicated they were very knowledgeable about Java
(32%).

5.6.3 Selection Criteria for Mockups

86

Table 5.3 Participant Explanation and Recall Tasks

Task Order Task Name OpenJDK File Error Message
T1 Melon VarMightNotHaveBeenInitialized.java variable i might not have been initialized

T2 Kite UnreportedExceptionDefaultConstructor.java unreported exception Exception in default

constructor

T3 Brick RefAmbiguous.java reference to m is ambiguous, both

method m(int,double) in Brick and method

m(double,int) in Brick match

T4 Zebra InferredDoNotConformToBounds.java cannot infer type arguments for

BlackStripe<>;

reason: inferred type does not conform to

declared bound(s)

inferred: String

bound(s): Number

T5 Apple RepeatedModifier.java repeated modifier

T6 Trumpet UnreachableCatch1.java unreachable catch clause

thrown types FileNotFoundException,EOFException

have already been caught

87

Because our university requires students to have knowledge of Java, we selected
examples in this language to mockup our visualizations.

Pragmatically, we wanted to keep the entire study under an hour, so we could
only present six novel visualizations to participants. We admit that the selection
of these visualizations was not random, and offer our justification for this decision
here.

We selected our compiler error examples from the OpenJDK diagnostics frame-
work.4 This framework contains a collection of 382 Java code examples, each of
which is designed to generate one or more error messages when compiled.

Since some error messages may be more conceptually sophisticated than others
(for example, “illegal escape character” is not particularly suited to an explanatory
visualization), we hand-selected a set of examples that we believed could benefit
most from visual annotations. If no significant results could be identified even from
this hand-selected set, then it would suggest that this visualization system is not
worth pursuing for a full implementation.

Furthermore, our visualization system is not intended to teach new concepts;
rather, it is intended to aid the developer in understanding how a particular instance
of an error message applies to a specific source file. Consequently, we selected
examples based on concepts that students were expected to already know from their
coursework, such as constants and variables, exceptions, and classes.

Ultimately, we selected messages that we believed could effectively demonstrate
the rich explanatory potential of visualizations, while considering the capability of
the participants. The selected messages are summarized in Table 5.3.

5.6.4 Mockup Construction Procedure
Using the six selected error messages, we constructed a total of 12 mockups—six for
the control group and six for the treatment group. We designed the paper mockups
to resemble how the visualization would appear within the text editor of the IDE,
with one mockup per page. Each page contained a listing of the source code with
the appropriate visualizations and line numbers. The code listing was followed by
the text of the compiler error message.

The control group mockups were designed by directly copying the red wavy
underline visualizations provided by the IntelliJ IDE for the Java code examples.

4The framework contains a sample source code listing for almost every compiler error within
Java. The source files may be downloaded at http://hg.openjdk.java.net/jdk7/tl/langtools/, and
then by browsing to test/tools/javac/diags/examples/.

88

http://hg.openjdk.java.net/jdk7/tl/langtools/

IntelliJ also provides interactive tooltips for each error, which are shown when the
developer hovers over an annotated substring. However, we did not consider these
interactive features since we are specifically interested in the contribution of the
explanatory capability of the non-interactive visualizations. We chose IntelliJ over
the Eclipse IDE because it uses the same text error messages as the command-line
OpenJDK compiler, which is important to our experimental design.

The treatment group mockups were informed by a pilot study through which
we elicited an initial taxonomy of visual annotations that appeared to be useful to
developers when they explained concepts to other developers (see Section 5.4). We
used the annotations from this pilot experiment as a foundation for manually draw-
ing visual annotations for six of the error messages. We used our own experiences
with compiler technologies such as Roslyn5 to render visualizations that we think
are plausible for compilers to render if they expose the appropriate data structures
to a visualization system.

5.6.5 Investigator Training
The first and second authors conducted the experiments. To increase consistency
between the authors, the first author conducted a practice session with the second
author acting as a participant. The roles were then reversed, and the study was
repeated. Through this process, we developed a formal protocol script for conducting
the sessions.

5.6.6 Experimental Procedure

5.6.6.1 Assignment

We randomly assigned participants to one of two groups—control or treatment,
such that each group had an equal number of participants. This resulted in 14
participants per group. The only difference between the treatment and control
groups was the type of visualizations that they used during the experiment.

5.6.6.2 Recording

Participants filled out an informed consent form and indicated whether or not they
wanted their audio (used in Phase 1 and 2) and screens (used in Phase 2) to be

5http://msdn.microsoft.com/en-us/library/roslyn.aspx

89

http://msdn.microsoft.com/en-us/library/roslyn.aspx

recorded. For participants who agreed to be recorded (n = 26), we used desktop
recorder software to record both the audio of the explanations as well as screen
interactions during the experiment.

5.6.6.3 Phase 1: Self-Explanation Phase

The purpose of this phase was to evaluate whether our explanatory visualizations
resulted in more correct self-explanations by developers than with baseline visual-
izations (RQ1), and to identify the extent to which developers adopt conventions
from our visual annotations in their own explanations (RQ2).

We sequentially provided participants with six error notifications, presented
as paper mockups that resembled an IDE. For the mockup, the source code of the
OpenJDK file was minimally modified using a random-noun generator to make
the class and method names more pronounceable. These tasks are summarized in
Table 5.3, and we presented the tasks to the participants alphabetically by Task
Name.

In the control group, participants received paper mockups. containing the base-
line red wavy underline visualization, such as in Figure 5.1a. The treatment group
received paper mockups containing our explanatory visualization as in Figure 5.1b.
Below the source code listing, all participants received the full error message text
(Figure 5.1c). In the treatment group, we provided participants with a visual an-
notation legend (Table 5.2), since these participants did not have prior familiarity
with our visualizations. Finally, we provided participants with colored pencils and
an unadorned mockup of the IDE having the source code and error message text,
but no annotations.

For each task, we provided participants with 30 seconds to individually examine
the paper mockup. Then, we instructed participants to think-aloud and verbally
explain the cause of the error. During their self-explanation, we encouraged par-
ticipants to visually annotate the unadorned mockup. We gave participants two
minutes for the think-aloud explanation, but allowed them to finish earlier if they
were satisfied with their explanation for the task. The investigators were not al-
lowed to correct the participants when they gave incorrect explanations, nor give
any hints about the error notification. However, we permitted the investigators to
ask clarifying questions (e.g., “Could you explain that in more detail?” or “I didn’t
hear you. Could you repeat that?”). At the end of each explanation, participants
indicated whether or not they had previously encountered this error message, which
they categorized as Yes, No, or Unsure.

90

5.6.6.4 Cognitive Dimensions Survey

To evaluate the aspects of visualizations that developers find useful in self-explanation
(RQ3), participants completed a Cognitive Dimensions of Notations questionnaire
(CD) [138], which we simplified for error message notifications. We chose this evalu-
ation instrument over other usability instruments because the analysis is usable
by non-specialists in HCI (in contrast with Nielson and Molich’s heuristic evalua-
tion [268]). The instrument is also quick to apply, and can be used in an early design
phase.

The full CD defines 14 dimensions, but not all of these are applicable to our
design. Since our visualizations are currently non-interactive, we eliminated all
dimensions that assessed interactivity or were otherwise immaterial to our study,
among them, viscosity, premature commitment, and progressive evaluation. This
left four dimensions:

Consistency similar semantics are expressed in similar syntactic forms

Hidden dependencies important links between entities are not visible

Hard mental operations high demand on cognitive resources

Role expressiveness the purpose of a component is readily inferred

A description of each dimension was presented to the participants, along with a
5-point interval scale indicating the degree to which their visualizations satisfied the
dimension, which we worded so that higher scores are better. We gave participants
5 minutes to complete the questionnaire.

5.6.6.5 Break

We gave participants a 5 minute break between the first and second phases. We did
this partly because of the long duration of the study, but also to minimize short-term
memory interference between the two parts of the experiment.

5.6.6.6 Phase 2: Recall Phase

The purpose of this phase was to determine whether better self-explanations enable
developers to construct better mental models of error notifications (RQ4). To evaluate
this hypothesis, we asked participants to write source code listings on a computer
from scratch in order to generate a provided compiler error.

91

(a) Command prompt. (b) Minimal text editor.

Figure 5.2 We presented participants with a command prompt in which they had the
compile command available to them. The limited interaction modality forces participants to
rely solely on their own memory to successfully complete the task.

Participants did so through the interface shown in Figure 5.2. We gave the
participants a command prompt (Figure 5.2a) supporting a single command, compile.
This command printed to the console the expected error for the task, as well as the
error that their source file produced. In addition, participants entered their source
code into a minimal text editor (Figure 5.2b). We chose a minimal text editor to
force all participants to recall code entirely from memory, without assistive features
like auto-completion. For example, in Figure 5.2, the participant has been asked
to write a source listing that generates the error variable i might not have been

initialized. However, the source listing as currently written compiles without error.
Participants used this interface to complete a total of six tasks, all of which

they had previously explained during the Self-Explanation Phase of the experiment.
The tasks from this phase are also from Table 5.3, but to avoid serial recall we
presented the tasks in Task Order, rather than alphabetically by Task Name. Thus,
participants had to successfully recall their explanations from the Self-Explanation
Phase of the experiment and apply their understanding to this phase of the experi-
ment. We allowed participants an unlimited number of compilation attempts, but
restricted the time for each task to 5 minutes. Participants moved on to the next
task either when they had successfully replicated the error message, which we term
recall correctness, or when their time had expired.

The unusual experimental technique in this phase is not without theoretical
justification. In 1977, Shneiderman conducted an experiment in which he used
memorization/recall tasks as a basis for judging programmer comprehension [336].
Specifically, one component of his experiment involved non-programmers and pro-
grammers memorizing a proper FORTRAN program printed on paper through a line

92

Fail Poor Good Excellent

C T C T C T C T
0

10
20
30
40

Explanation Rating / Group

Fr
eq

ue
nc

y
of

R
at

in
g

Figure 5.3 Explanation rating by group. The treatment group (T) provided significantly
higher rated explanations than the control group (C).

printer. He also printed a second program with shuffled lines. He found that non-
programmers had similar performance in recall with both the proper and shuffled
versions of the program, but that programmers had significantly better recall on
the proper version of the program. Through the development of his cognitive syntan-
tic/semantic model, he suggests that “performance on a recall task would be a good
measure of program comprehension” because such a task cannot be accomplished
by rote memorization, and instead requires “recognizing meaningful program struc-
tures enabling them to recode the syntax of the program into a higher level internal
semantic structure” [336].

Thus, participants had to construct a correct mental model of the error notifi-
cation through self-explanation in order to successfully complete the task in this
phase of the experiment.

5.7 Results

5.7.1 RQ1: Visualizations Lead to More Correct Explanations
Our hypothesis was that having visual explanations for compiler notifications would
result in more correct self-explanations by participants. To validate this hypothesis,
we conducted an inter-rater reliability exercise in which the first and second authors
independently rated the participants’ explanations, without consideration of group.
The first author assigned ratings using both the recorded verbal explanations of the

93

participant as well as their paper markings. The second author assigned ratings
using only the paper markings. This was a deliberate design decision to ascertain
the extent to which visual markings alone can be used to infer the correctness of an
explanation.

We assigned ratings to each of the 168 tasks on a Likert-type scale from 1–4,
labeled Fail, Poor, Good, and Excellent, respectively. For each task, we developed a
rubric for what constituted a correct explanation and noted common misconceptions.
Cohen’s Kappa (squared weights), found moderate agreement between the raters
(n = 168, κ = 0.58, 95% CI: [0.46, 0.68]). Furthermore, a paired Wilcoxon Signed-Rank
Test did not identify the differences between the two raters as being significant
(n1 = n2 = 168, S = 200, p = .21), Thus, the data suggest that visual annotations
capture the correctness of the full explanation adequately. No attempts were made
to reconcile disagreement. In subsequent analysis, we use the explanation ratings
from the rater using both verbal and written explanations. Because this rater had
access to more information from which to assign a rating, these ratings are likely
to be more accurate than ratings assigned from written markings alone.

The distribution between the two groups, binned by rating, is shown in Figure 5.3.
Between the control and treatment groups, a Wilcoxon Rank-Sum Test confirms
that participants gave significantly better explanations in the treatment group
(n1 = n2 = 84, Z = 2.23, p = .026). A potential confound is that participants are
simply providing better explanations in the treatment group because more of them
had previously encountered the error messages, but a Pearson Chi-squared Test did
not identify a significant difference between the groups (n = 168, df = 2, χ2 = 3.37,
p = .19).

5.7.2 RQ2: Availability of Explanatory Visual Annotations Pro-
motes More Frequent Use of Annotations During Self-
Explanation

Our hypothesis was that both the control group and treatment group would adopt
similar annotations when developers explained error messages, if these annotations
were grounded in conventions that developers found intuitive.

Consider for a moment the visualizations drawn by two participants in our
study, shown in Figure 5.5. In Figure 5.5a, the control group participant receives a
score of Fail, because he incorrectly self-explains that the problem must be due to
not initializing the variable at its point of declaration. He then either ignores the

94

Assoc. Code Colors Point Strike Symbol Text

C T C T C T C T C T C T C T
0%

20%

40%

60%

80%

Annotation / Group

U
sa

ge
A

cr
os

s
Ta

sk
s Task

T1
T2
T3
T4
T5
T6

Figure 5.4 Annotations by group, filled with usage across tasks. The distribution of
annotations used by the control (C) and treatment groups (T) were not identified as being
significantly different, but the treatment group used annotations significantly more often.

Table 5.4 Number of Features by Task and Group

Number of Features
Control Treatment

Task Median Dist Median Dist
T1 2 3
T2 2 2
T3 2 2
T4 2 3
T5 1 2
T6 3 3

conditional statement in which the constant value is re-assigned, or fails to notice
that the variable is declared as final. In Figure 5.5b, the participant, aided by the
explanatory visualization, correctly self-explains that the problem is actually in
the conditional statement, and provides explanatory code to demonstrate a case in
which the variable remains uninitialized. In addition, the treatment participant
uses more annotations, such as colors, points, and associations, in his explanation
than the control group participant.

Table 5.4 summarizes the number of annotation types used for each task, par-
titioned into control and treatment groups. Using a Wilcoxon Rank-Sum Test, we
find that the treatment group used significantly more visual annotation types in

95

Table 5.5 Cognitive Dimensions Questionnaire Responses

Control Treatment
Dimension Median Dist Median Dist p

Hidden Dependencies* 3 4 .008
Consistency 4 4 .979
Hard Mental Operations 3 2.5 .821
Role Expressiveness 4 4 .130

their explanations than the control group (n1 = n2 = 84, Z = 2.15, p = .032).
One concern is that participants in the treatment group used these annotations

simply because they were readily available, not because they were useful to their
explanations. Figure 5.4 shows the distribution of the annotations by group. The
bars are filled with the usage of that annotation by task to indicate how a particular
annotation is distributed among the tasks. A Pearson Chi-squared Test was unable
to identify any significant differences in the distribution of these annotation types
between groups (n = 389, χ2 = 4.20, df = 5, p = .65), suggesting that these anno-
tations are intuitive even without priming the participants. Although Figure 5.4
shows that the control group used the point annotation more than the treatment
group, this difference was not found to be significant (n = 168, df = 1, χ2 = 1.53,
p = .22).

In addition, none of the participants in the treatment group used our invented
code coverage annotation, nor did this annotation appear directly in our pilot study.
This suggests that participants are using these annotations only when they find
them to be useful in self-explanation.

Thus, participants in both groups used and applied the annotations found in our
explanatory visualizations, despite the fact that we did not expose the control group
to our visualizations. This indicates that these annotations are intuitive and useful
for participants. Moreover, the presence of explanatory visualizations promotes
their usage during self-explanation by participants.

96

(a) (b)

Figure 5.5 A contrast between visual explanations offered by (a) control group participant
with explanation rating of Fail, and (b) treatment group participant with explanation
rating of Excellent.

5.7.3 RQ3: Explanatory Visualizations Reveal Hidden Depen-
dencies

We wanted to know which factors participants considered to be significant improve-
ments over the baseline visualization. We had no explicit hypothesis for this research
question.

Table 5.5 summarizes the results from our Cognitive Dimensions questionnaire.
Median results for the hidden dimensions for control and treatment groups were
3 and 4, respectively. The distribution of responses in the two groups were signif-
icantly different (n1 = n2 = 14, Z = −2.64, p = .008). The result suggests that our
explanatory visualizations reveal more of the hidden dependencies, that is, the
internal reasoning process of the compiler, than the baseline visualizations.

We were unable to identify any statistically significant differences from the
remaining dimensions in the questionnaire.

97

T1 T2 T3 T4 T5 T6

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0

10

20

Task / Explanation RatingFr
eq

ue
nc

y
of

Ex
pl

an
at

io
n

Correct
No
Yes

Figure 5.6 Task by explanation rating. Each of the six tasks are broken by explanation
rating (1 = Fail, 2 = Poor, 3 = Good, 4 = Excellent) from the first phase of the experiment.
For each explanation rating, the frequency of correct and incorrect recall tasks from the
second phase of the experiment is indicated by filling in the bars. Higher rated
explanations lead to significantly better recall correctness.

5.7.4 RQ4: Higher Rated Explanations Lead to Better Mental
Models, and Better Recall Correctness

Figure 5.6 illustrates the explanation rating for each task, the frequency of the
explanation for each rating within the task, and the recall correctness. Remember
from Section 5.7.1 that the treatment group had higher explanation ratings than
the control group. Our expectation was that these higher rated explanations would
translate to better correctness scores during the recall phase of the experiment.

A Kruskal-Wallis Test revealed a significant difference between performance on
explanation correctness and performance on recall correctness (χ2 = 29.39, df = 3,
p < .001), and the mean ranks indicate that recall correctness generally increases
with explanation correctness (u1 = 51.8, u2 = 69.8, u3 = 69.3, u4 = 102.8). This
confirms that explanation is valuable for improving correctness in the recall task,
but two potentially problematic issues arise.

In Figure 5.6, we observe that task T5 (repeated modifier) has both perfect
recall correctness and uniformly excellent explanation rating, which we postulate
is attributable to this being trivial problem. Our first concern is that this task is
artificially inflating the influence of the explanation correctness to recall correct-
ness. As a contradictory example, we visually identify that T4 (cannot infer type

98

arguments) has some participants who have poor performance during recall despite
excellent explanation correctness. We found that even without T5, the difference
is still significant (χ2 = 12.33, df = 3, p = 0.006), and the general trend remains
(u1 = 49.0, u2 = 64.0, u3 = 63.6, u4 = 84.0).

However, a second issue remains—if the treatment group gives higher rated
explanations, then we would expect that they have greater correctness in recall.
Unfortunately, we were unable to identify this as being significant (n1 = n2 = 84,
Z = 1.09, p = 0.27).

We conclude that better explanations yield improved recall correctness, though
with some reservations.

5.8 Threats to Validity
In real code bases, developers have to explain error messages in functional code
intertwined with erroneous code, and across multiple source files. Our tasks con-
tained only the code directly pertinent to generating the error, and within a single
source file. We don’t yet know if explanatory visualizations will be equally beneficial
or scale to more realistic contexts.

We applied a set of visualizations to only six hand-selected tasks that could
fit on a single screen. As such, it remains to be seen whether visual annotations
can be effectively applied to the broader set of error messages, including those in
languages other than Java. Thus, we cannot and do not claim that these annotations
are comprehensive.

We think there exists a construct validity problem in that explanation ratings
were significantly better in the treatment group, but this performance did not
translate to better recall correctness. We postulate that this situation occurred
because it was possible for developers to successfully explain the task, yet still have
gaps in their mental model that prevent them from successfully completing the task.
In addition, we observed that some participants had significant difficulties with
syntax, and in some cases even introduced secondary compiler errors not related to
the recall task during the process.

Furthermore, the act of performing a think-aloud can enhance self-explanation,
and in turn, the construction of mental models for notifications. This process was
necessary in order to evaluate participant explanations, but in doing so, we may
have unintentionally enhanced the performance of the control group in their recall
tasks. Another issue is that participants were already familiar with the baseline

99

visualizations, but had no prior experience or any training with our explanatory
visualizations. This may explain why we found no statistical difference in hard
mental operations: the potential cognitive benefit of our visual annotations was
counterbalanced by the difficulty of understanding an unfamiliar visualization.

5.9 Related Work
Self-explanation. Lim and colleagues demonstrate that explaining why a system
behaves a certain way results in better understanding and stronger feelings of
trust [220]. We were also inspired by the work of Ainsworth and Th Loizou, who
showed that the use of diagrams promote the self-explanation effect significantly
more than text [5].

Improving error notification comprehension. Jeffrey created a tool called Merr
that overrides the error handler of the LR parser generator of a compiler to automat-
ically provide more useful syntax error messages [176], and Kantorowitz and Laor
likewise propose modifications to the parser generator [188]. While these tools apply
to text error messages, they illustrate that tools can improve error messages when
they can interact with compiler internals. However, even detailed messages do not
necessarily improve understanding, which suggests that alternative representations
of error notifications may sometimes be more appropriate [93, 269].

Hartmann and colleagues introduce a social recommendation system that presents
examples of how other developers understand and correct errors [152]. In contrast,
our approach argues that the compiler can offer its own reasoning process to aid
developer comprehension. Other approaches attempt to provide better diagnos-
tics or reduce false positives in compiler errors [40, 54, 60]. We expect that our
visualizations can leverage such improvements in compiler technology.

5.10 Future Work
We suggest several potential research directions. One direction is the feasibility
challenge of developing algorithms and techniques for recording compiler analysis
traces so they can be exposed to visualization systems. We know compilers generate a
significant amount of information during the compilation process, but it remains an
open question as to what information is pertinent to aiding developer comprehension,
and how to represent this information in a way usable by visualization systems.

100

One approach to demonstrate this feasibility may be to modify an implementation
such as MiniJava, a useful but restricted subset of the Java language [313].

An empirical direction is to determine the extent to which visualizations can be
applied to notifications, given that some annotations appear to be more suitable
than others. A systematic investigation into categorizing these notifications, such
as through taxonomy construction, may offer researchers insights into this design
space.

5.11 Conclusion
Our work in this paper demonstrates the potential for facilitating developer self-
explanations when opaque compiler reasoning processes are made available for
visualization. Through error notifications, we demonstrated that when such visu-
alizations align with developer expectations, developers better comprehend error
notifications, use these visualizations more often in their own self-explanations, and
construct better mental models of error notifications. We think the diagrammatic
techniques developers use to explain problems to other developers and to themselves
can serve as an effective foundation for how IDEs should visually communicate to
developers.

Acknowledgments
This material is based upon work supported by the National Science Foundation
under Grant No. 1217700. We thank the Software Engineering group at ABB
Corporate Research for their funding and support.

101

6 | How Should Compilers
Explain Problems to
Developers?

Go forward in all of your beliefs, and
prove to me that I am not mistaken
in mine.

The Doctor

6.1 Abstract
Compilers primarily give feedback about problems to the developer through the use
of error messages. Unfortunately, developers routinely find these messages to be
confusing and unhelpful. In this paper, we postulate that because error messages
present poor explanations, theories of explanation—such as Toulmin’s model of
argument—can be applied to improve their quality. To understand how compilers
should present explanations to developers, we conducted a comparative evaluation
with 68 professional software developers and an empirical study of compiler error
messages found in Stack Overflow questions across seven different programming
languages.

Our findings indicate that developers significantly prefer error messages that
employ proper argument structure over deficient argument structure when neither
offers a resolution, but will accept deficient argument structure if they provide

102

a resolution to the problem. Human-authored explanations on Stack Overflow
converge to one of the three argument structures: those that provide a resolution
to the error, simple arguments, and extended arguments that provide additional
evidence for the problem. Finally, we contribute three practical design principles to
inform the design and evaluation of compiler error messages.

6.2 Introduction
Compilers primarily give feedback about problems to developers through the use
of error messages. Despite the intended utility of error messages, researchers
and practitioners alike have described their output as “cryptic” and “difficult to
resolve” [370], “not very helpful” [386], “appalling” [48], “unnatural” [54], and
“basically impenetrable” [347].

While poor error messages are paralyzing for novices, even experienced develop-
ers have substantial difficulties when comprehending and resolving them. A study
conducted at Google found that nearly 30% of builds fail due to a compiler error,
and that the median resolution time for each error is 12 minutes [330]. Surpris-
ingly, the costly errors that developers make are rather mundane, relating to basic
issues such as dependencies, type mismatches, syntax, and semantic errors. Barik,
Smith, Lubick, and colleagues [20] conducted an eye-tracking study with developers
and found almost 25% of their task time on reading error messages. In addition,
developers in a study by Johnson, Song, Murphy-Hill, and colleagues [183] reported
that error messages were often not useful because they did not adequately explain
the problem.

It isn’t difficult to come up with instances of poor error message explanations,
even for routine problems. Consider the following Java code snippet:

2 void m() {
3 final int x;
4 while (true) {
5 x = read();
6 }
7 }

and the resulting error message from the OpenJDK compiler:

F.java:5: error: variable x might be assigned in loop
x = read();
^

1 error

103

Although the location of the message is reasonable, intuitively, this is a poor
explanation. The problem isn’t just that the variable x is being assigned a loop—it is
that this particular variables happens to be marked final (Line 3). A final variable
can only be assigned once. What if we had received the following error message
instead?

F.java:5: error: The blank final variable "x" cannot
be assigned within the body of a loop that may execute
more than once.

x = read();
^

This second message gives a better explanation, and developers in our study
preferred it significantly over the first (Section 6.6.1). Specifically, the second mes-
sage not only indicates that there is not only a problem (the blank variable "x"

cannot be assigned"), the message also supports this claim by offering evidence,
or grounds, that clarify why this is a problem—because "x" cannot be assigned

within the body of a loop that may execute more than once. That is to say, the
second message has a better explanatory structure than the first. This message also
delivers more specific content. In contrast to the relatively vague variable x in the
first message, it is immediately apparent in the second message that x is a blank

final, without being too verbose.
If compiler error messages are framed as explanations, then it follows that we

can apply theories of explanation to understand why some error messages are more
effective than others. To that end, this paper applies Toulmin’s model of argumenta-
tion (Section 6.3)—a theory for the structure and content of messages in everyday
discourse—to the design and evaluation of compiler error messages.

To understand if developers find explanatory error messages helpful, we con-
ducted a comparative study between two compilers for the same programming
language, and had experienced developers within a large software company indicate
which message they would prefer in their compiler. Then, to understand why some
error messages produced by compilers are less helpful than others, we conducted
an empirical study through a popular question-and-answer site, Stack Overflow.1
From Stack Overflow, we extracted 210 question-answer pairs posted by developers
about compiler error messages, across seven different programming languages. For
every question-answer pair, we qualitatively coded the compiler error message found
within the question, and the human-authored answer, through the theoretical model
of argumentation. We characterized these question-answer pairs both in terms of

1https://www.stackoverflow.com

104

https://www.stackoverflow.com

Grounds Claim

Resolution

Warrant
(a) Simple argument layout

Grounds ClaimQualifier

Rebuttal

Resolution

Warrant

Backing
(b) Extended argument layout

Figure 6.1 A prototypical Toulmin’s model of argumentation for (a) simple argumentation
layout, and (b) extended argument layout. The possible need for auxiliary steps to convince
the other party yields the extended argument layout.

the structure and content of their explanation. From this analysis, we can better
understand the structure and content that compilers should use in explanations to
developers.

The results of our studies provide support for presenting compiler error messages
to developers as explanations, and inform the design of compiler error messages.
We find that: 1) developers prefer error messages with proper argument structures
over deficient arguments, but will prefer deficient arguments if they provide a
resolution to the problem (Section 6.6.1). 2) human-authored explanations converge
to argument structures that offer a simple resolution, or to structures with proper
arguments (Section 6.6.2). They do so using a catalog of content in within the
structure (Section 6.6.3). We contribute three design principles for compiler authors
to inform the design and evaluation of error messages (Section 6.9).

6.3 Background on Explanations
Arguments are a form of justification-explanations, in which reasons are used as ev-
idence to support a conclusion [385]. Argumentation theory provides a lens through
which we can evaluate the effectiveness of arguments [110, 290]. Within argumen-
tation theory, the Toulmin model of argument posits one such model precisely for
this style of argument: an informal reasoning model which characterizes everyday
arguments, or how arguments occur in practice [368]. Specifically, the Toulmin

105

Table 6.1 OpenJDK and Jikes Error Message Descriptions

Tag Compiler Error Message
E1 OpenJDK Variable x might be assigned in loop.

Jikes The blank final variable "x" cannot be assigned within

the body of a loop that may execute more than once.

E2 OpenJDK cannot find symbol

symbol: variable varnam

location: class Foo

Jikes No field named "varnam" was found in type "Foo".

However, there is an accessible field "varname" whose

name closely matches the name "varnam".

E3 OpenJDK static method should be qualified by type name, Foo,

instead of by an expression.

Jikes Invoking the class method "f" via an instance is

discouraged because the method invoked will be the one

in the variable's declared type, not the instance's

dynamic type.

E4 OpenJDK method remove in class A.B cannot be applied to given

types

required: no arguments

found: int

reason: actual and formal argument lists differ in

length

Jikes The method "void remove(int x);" contained in the

enclosing type "A" is a perfect match for this method

call. However, it is not visible in this nested class

because a method with the same name in an intervening

class is hiding it.

E5 OpenJDK Illegal static declaration in inner class A.B.

Modifier 'static' is only allowed in constant variable

declarations.

Jikes This static variable declaration is invalid, because it

is not final, but is enclosed in an inner class, "B".

106

model of argument is a macrostructure model. Macrostructure examines how com-
ponents combine to support the larger argument rather; in contrast, microstructure
examines the phrasing and composition of the “sentence-level” statements. For
clarity, we will refer to macrostructure simply as structure and microstructure as
content.

In the simple argument layout (Figure 6.1a), the components consist first of
a claim—the assertion, view or judgment to be justified. Resolutions are also a
form of claim, The second component is ground, or data that provides evidence for
this claim. The third component is the justification or warrant, which acts as a
bridge between the grounds and the claim (for example, “[claim] because [ground]”).
Together, the claim, the grounds, and the warrant provide a simple argument layout.
The simple argument layout is the minimal proper argument structure. Arguments
that do not have at least three components are considered to be deficient. Specific
to error messages are claim-resolution: the first claim states the problem, and the
second claim states the resolution or fix. Although these are not proper argument
structures, they are nevertheless useful.

Toulmin also devised an extended model of argument, to acknowledge the pos-
sibility of needing to infuse additional components to the simple argument layout
(Figure 6.1b). In addition to the simple argument layout components, the extended
argument layout offers a rebuttal when an exception has to be inserted into the
argument. The claim may also not be absolute: in this case, a qualifier component
can temper the claim. Finally, the warrant may also not be immediately accepted by
the other party, in which case additional backing is needed to support the warrant.
If any of these additional components are used in the argument, the argument is
an extended argument structure. An example for a compiler error message can be
mapped to an argument structure is described in Figure 6.2; in this example, the
error message is an extended argument because it contains a backing.

6.4 Methodology

6.4.1 Research Questions
In this study, we investigate the following research questions and offer the motivation
for each:

107

Error:(31, 58) java: incompatible types(C):

bad return type in lambda expression(bc W, G)

java.lang.String cannot be converted to void(B)

Figure 6.2 A compiler error message from Java, annotated with argumentation theory
constructs. This particular message contains all of the basic argumentation constructs to
satisfy Toulmin’s argument: (C) = Claim, (bc W) = implied “because” Warrant, (G) =
Grounds. It also includes an extended construct, (B) = Backing.

RQ1: Are compiler errors presented as explanations helpful to devel-
opers? If explanatory compiler error messages are useful to developers, then they
should prefer them over error messages that are less explanatory in their presen-
tation. If this is not confirmed, then developers prefer error message presentation
based on other factors, such as the verbosity of the error message.

RQ2: How is structure of explanations in Stack Overflow different from
compiler error messages? If compiler error messages and Stack Overflow ac-
cepted answers use significantly different argument layout components, this would
suggest that structure differences in argumentation play an important role in con-
fusion developers face with compiler errors. While some approaches to improving
compiler error messages focus on the content (for example, “confusing wording”
in the message [183, 269]), the structure differences emphasize how components
combine to support the larger argument rather than the statements themselves.
Content improvements may be ineffectual without a supporting structure layout.

Further, the answer to this question helps us to understand the types of argument
layouts that are used in accepted answers. In other words, toolsmiths can use the
design space of argument layout to model and structure automated compiler error
messages for developers. Importantly, the argument layout space can also be used
as a means to evaluate existing error messages, and to identify potential gaps in
argument components for these messages.

RQ3: How is the content of explanations in Stack Overflow different
from compiler error messages? Once the structure argument layouts are iden-
tified, learning how the components within these layouts are instantiated provide
content details for what information developers find useful within each component.
For example, one way to instantiate backing for a warrant might be to provide a
link to external documentation—and if we find that accepted answers do so, tool-
smiths may also consider incorporating such information in the presentation of

108

their compiler error messages.

6.4.2 Phase I: Study Design for Comparative Evaluation
To answer RQ1, we asked professional software developers to indicate their pref-
erence between corresponding compile error messages that explained the same
problem, but produced by different compilers.

Compiler selection rationale. We needed to compare two compilers which
produced different error messages for the same problem in code, preferably where
one compiler produced error messages with better explanatory structure than the
other. We selected the Jikes and OpenJDK compiler for this purpose. Jikes is a
Java compiler created by IBM for professional use, with one primary design goal
focusing on high-quality explanations produced by the compiler [59]. Though now
discontinued, Jikes has been lauded by the developer community for giving “better
error messages than the JDK compiler” [85].

Task selection. To select candidate error messages, we examined error mes-
sages produced by Jikes and identified error messages which contained argument
structures. To determine if an error message contained any elements of an argu-
ment structure, we tagged each message using labels from the Toulmin model of
argument: claim, grounds, warrant, qualifier, rebuttal, and backing. From this
analysis, we found 30 error messages which used at least a simple argument in
Jikes. We then examined the corresponding OpenJDK messages and found only 7
error messages used simple arguments.

To keep the study brief, we selected 5 OpenJDK and Jikes compiler error mes-
sages (Table 6.1) that address the same problem, but differ in argument structure.
For each pair of error messages, we formed a hypothesis on how differences in
argument structure would influence our expected results prior to the study.
E1 Deficient argument vs. simple argument. Both OpenJDK and Jikes make a claim

that the variable might be assigned to in a loop. But Jikes completes a simple
argument by presenting a ground for why this problem is actually a problem:
if the loop executes more than once.

E2 Deficient argument vs. extended argument. Again, OpenJDK only presents
a claim. Jikes presents a ground (there is an accessible field "varname"),
which is qualified through a rebuttal (However).

E3 Claim-resolution vs. extended argument The should in the OpenJDK message
would suggest that this an extended argument, but the error message has

109

no ground. Thus, it is a claim-resolution structure, which is not formally
considered an argument. The Jikes message is an extended argument because
of discouraged, but Jikes does not offer a resolution for how to address the
problem.

E4 Different claim, same extended argument. Both messages provide an extended
argument, but for different claims. OpenJDK assumes that the developer is
trying to recursively call the current method, remove(). Jikes assumes that
the developer wants to a call a class method, remove(int x), from the method
remove(). Since the developer does not know which fix is actually intended,
their judgment about which message is correct is determined by the content,
not the argument structure.

E5 Same claim, same simple argument. Both OpenJDK and Jikes present the same
argument (but is enclosed in an inner class, "B" is simply long-form of A.B
in the OpenJDK version). The content of both messages are essentially the
same, with minor variations in wording: final versus constant.

Participants. We recruited developers at a large software company to partic-
ipate in this study. As we were primarily interested with professional software
development, we selected our population from full-time software developers from
a large software company—excluding interns or roles such as testers or project
managers. We distributed our study to 300 developers and received 68 respondents.
The average reported experience of our participants was 6.3 years.

Procedure. We designed a questionnaire which could be distributed and an-
swered electronically. In the questionnaire, we asked demographic questions, includ-
ing years of programming experience and proficiency in programming languages.

To measure preference for compiler messages, we presented participants with
a required binary response for either the Jikes or OpenJDK version of the error
message. We randomized error message order. On average, participants took seven
minutes to complete our study.

6.4.3 Phase II: Study Design for Stack Overflow
Research context. Previous research by Treude, Barzilay, and Storey [371] identi-
fied questions regarding error messages as being one of the top categories, and other
research supports that Stack Overflow today is a primary resource for software
engineering problems [228]. Additionally, Stack Overflow provides an open-access

110

Table 6.2 Compiler Errors and Warnings Count by Tag

Question Count2

Tag1 Errors3 Warnings4 Total % Accepted5

C++ 3508 421 3929 63%
Java 2078 170 2248 55%
C 1179 286 1465 61%
C# 783 122 905 69%
Objective-C 270 109 379 65%
Swift 246 17 263 56%
Python 211 4 215 53%
Totals 11736 1553 13289 58%
1 Programming languages are indicated in bold.
2 Questions may be counted more than once if they have multiple

tags, for example, C and C++.
3 Questions tagged as compiler-errors.
4 Questions tagged with compiler-warnings, but not compiler-

errors.
5 Percentage of questions tagged as compiler-errors and
compiler-warnings that have accepted answers.

API, through Stack Exchange Data Explorer,2 that allows researchers to mine their
database. An initial query against this dataset confirmed that questions about
compiler error messages exist in Stack Overflow across a diversity of programming
languages and platforms.

Data collection. We extracted all posts of type question or answer, tagged as
“compiler-errors” or “compiler-warnings.” Some systems allow the developer to flag
warnings as errors, and thus we included these warnings in our set. We extracted
a total of 13289 questions; 7741 of which have accepted answers. Including co-
occurring tags, we identified 1690 “compiler-warnings” and 11736 “compiler errors”.

A subset of these questions link to an associated accepted answer, which in this
paper we term question-answer pairs. An accepted answer is an answer marked
by the original questioner as being satisfactory in resolving or addressing their
original question. Although a question may have multiple answers, only one may

2http://data.stackexchange.com/

111

http://data.stackexchange.com/

be marked as accepted. We used accepted answers as a proxy to identify helpful
answers.

For each question, we extracted the compiler error message from the compiler
used in the question. If the question did not contain a compiler error message, the
question-answer pair was dropped from analysis.

Sampling strategy. To obtain diversity across programming languages, we use
stratified sampling across the top languages on Stack Overflow for compiler errors,
until we covered over 95% of all of the messages. This threshold was exceeded at
Python (Table 6.2). Within each stratum, we used simple random sampling for
selecting question-answer pairs to analyze, in which each question-answer pair
has an equal probability of being selected. As we sampled, we discarded questions
that did not refer to or display a specific error message, were incorrectly tagged
(for example, not relating to an error message), were related to issues in not being
able to invoke the compiler in the first place (for example, “g++ not found”), or
question-answer pairs that are unambiguously “trolling,” [149] such as through
deliberately bogus questions.3 The time required to manually categorizing question-
answer pairs has high variance, from 5-15 minutes, depending on the complexity
of the pair. Thus, to balance breath of languages and depth of error messages in
each language—while still keep categorization tractable—we continued this process
until we obtained 30 question-answer pairs for each of the top seven languages, for
a total of 210 question-answer pairs.

Qualitative closed coding. The first and second authors performed closed
coding, that is, coding over pre-defined labels, for compiler error messages extracted
from the Stack Overflow question and over the complete Stack Overflow accepted
answer for that question. We tagged each using labels from the Toulmin model of
argument: claim (and resolutions as claim), grounds, warrant, qualifier, rebuttal,
and backing. Thus, we had a total of seven labels, and a compiler error message or
Stack Overflow accepted answer may be assigned more than one label.

During the coding process, we employed the technique of negotiated agreement
as a means to address the reliability of coding [53]. Using this technique, the first
and second authors collaboratively code to achieve agreement and to clarify the
definitions of the codes; thus, measures such as inter-rater agreement are not
applicable.

Supporting verifiability. If using a supported PDF reader, quotations from
3For example, the post “Why is this program erroneously rejected by three C++ compilers?”

attempts to compile a hand-written C++ program scanned as an image, through three different com-
pilers. The offered answers are equally sardonic. (http://stackoverflow.com/questions/5508110/)

112

http://stackoverflow.com/questions/5508110/

Claim
(a) Claim-only
(191)

Claim

Resolution

(b) Claim-resolution
(10)

Grounds Claim

Resolution

Warrant
(c) Simple argument layout
(8)

Grounds Claim

Resolution

Warrant

Backing
(d) With backing (1)

Figure 6.3 Identified argument layouts for compiler error messages (as found in Stack
Overflow questions). Counts are indicated in parentheses.

Stack Overflow are hyperlinked and can be clicked to take the reader to the corre-
sponding Stack Overflow page.4

6.5 Analysis

6.5.1 RQ1: Are compiler errors presented as explanations help-
ful to developers?

For the analysis of RQ1, we performed a Chi-squared test on each of the five error
messages (E1-E5, Table 6.1), using the developer responses as the observed values
for OpenJDK and Jikes. If we use a null hypothesis where both messages are equally

4These references are indicated as Q:id or A:id, and can be directly accessed through https:

//www.stackoverflow.com/questions/:id

113

https://www.stackoverflow.com/questions/:id
https://www.stackoverflow.com/questions/:id

Grounds Claim

Resolution

Warrant

Backing
(a) With backing (102)

Claim

Resolution

(b) Claim-resolution
(59)

Grounds Claim

Resolution

Warrant
(c) Simple argument layout
(49)

Figure 6.4 Identified argument layouts for Stack Overflow accepted answers. Counts are
indicated in parentheses.

acceptable, then the expected values would be split such that OpenJDK and Jikes
receive exactly half of the counts. In effect, this situation is essentially analogous
to a coin toss problem, where heads is, say, OpenJDK, and tails is Jikes. The null
hypothesis is rejected (α = 0.05) if the observed values are significantly different
from the expected values.

For the responses on how developers use Stack Overflow, we report the data
descriptively.

6.5.2 RQ2: How is structure of explanations in Stack Over-
flow different from compiler error messages?

As the first step towards answering this research, we wanted to quantify whether
whether the argument structure between compilers error messages and Stack
Overflow answers are significantly different. To do so, we applied a statistical,
permutation testing approach by Simpson, Lyday, Hayasaka, and colleagues [349]
that allows comparison across two groups when each observation in the group is an
ordered set. If we think of the question-answer pairs from Stack Overflow as tuples,
then the first group is the set of error messages from the compiler (such as OpenJDK
or LLVM) found in the Stack Overflow Question. The second group consists of the the
corresponding accepted, human-authored answer for its associated Stack Overflow
question. Essentially, the goal of this analysis is to identify if these two groups are
statistically different.

114

However, since error message aren’t numbers, they must be first represented in
an approximated form for statistical analysis. Thus, an error message, whether it is
a compiler error message extracted from a Stack Overflow question or a Stack Over-
flow accepted answer, is represented as an ordered set in terms of argumentation
components, E:

E = 〈a1, a2, . . . , an, r〉 (6.1)

where a1, a2, . . . , an are the labels for the argument components, such as grounds,
warrants, and backing, and r is an extended resolution component. For each com-
ponent, a binary true or false indicates the presence or absence of the component
within the argument.

Then, given any two error messages, E1 and E2, we now need a metric that
represents the similarity between two sets: this is the Jaccard index, and intuitively
the Jaccard index is the intersection over the union of sets [349]. Next, we perform
a permutation testing calculation, fully described in Simpson, Lyday, Hayasaka,
and colleagues [349]. The explanation of this algorithm is fairly intricate, but the
essential result of this computation is an empirically-obtained p-value.

To characterize what types of arguments structures are found in accepted an-
swers, we used quasi-statistics—essentially, a process of transforming qualitative
data to simple counts—to aid the interpretations of the Stack Overflow data [235].
We once again used the error messages as ordered sets to perform this task. First, we
removed negligible components in the set—those components with few counts—and
ignore them in any subsequent operations. Second, we grouped identical sets—that
is, sets with the same ordered values and counted them. In practice, because there
are only a finite number of reasonable ways to present explanations, we expect there
to be few variations in argument structure from Toulmin’s prototypical structures
(Section 6.3).

6.5.3 RQ3: How is the content of explanations in Stack Over-
flow different from compiler error messages?

To identify the content of argument, that is, the techniques developers use within
the argumentation components, we performed a second qualitative coding exercise
over the first closed coding. For this analysis, we performed descriptive coding
to label the types of evidence provided within the accepted answers [322]. As a
concrete example, the argumentation component of backing can be provided by

115

Table 6.3 OpenJDK and Jikes Error Message Preferences

OpenJDK Jikes
Tag p1 n % n %
E1 .001* 2 3% 66 97%
E2 .014* 20 29% 48 71%
E3 .037* 46 68% 22 32%
E4 .014* 20 29% 48 71%
E5 .732 36 53% 32 47%
1 * Indicates a statistically significant result.

through pointing to a local or program element in the code (blame), through a code
example that provides evidence for the problem, or through external resources, such
as language-specification documentation.

In addition to random sampling, we performed purposive sampling, or non-
probabilistic sampling, on question-answer pairs to compose memos [35]. These
memos captured interesting exchanges or properties of the question-answer pairs
to promote depth and credibility, and to frame the information needs and responses
posters’ through their reported experiences. That is, they provide a thick description
to contextualize the findings [294].

6.6 Results

6.6.1 RQ1: Are compiler errors presented as explanations help-
ful to developers?

From Table 6.3, developers significantly preferred Jikes over OpenJDK for E1, E2,
and E4; they preferred OpenJDK over Jikes for E3. Green bars indicate the greater
preference of error tags with a significant difference. We did not identify significant
differences in E5.

E1 Deficient argument vs. simple argument. As we expected, developers signifi-
cantly preferred the simple argument from Jikes to the deficient argument in
OpenJDK.

116

E2 Deficient argument vs. extended argument. As we expected, developers signifi-
cantly preferred the extended argument from Jikes to the deficient argument
in OpenJDK.

E3 Claim-resolution vs. extended argument We did not know if developers would
prefer a claim-resolution structure or an extended argument, given that the
extended argument did not provide a resolution. Developers significantly
preferred having a resolution over a more elaborate argument.

E4 Different claim, same extended argument. Given two different claims, we ex-
pected the developer to prefer Jikes, because the argument is present in natural
language. In other words, given the same claim, the content of the argument
would influence their preference, not the structure. Developers significantly
preferred the natural language presentation of the content.

E5 Same claim, same simple argument. Given only minor variations in the word-
ing of the content, we expected that the preference would essentially be a
coin flip. Indeed, developers did not significantly prefer OpenJDK or Jikes;
the distribution is also nearly 50%/50%, as we would expect from a random
selection.

6.6.2 RQ2: How is structure of explanations in Stack Over-
flow different from compiler error messages?

The Jaccard ratio of the two groups are Rj = 1.6441, with permutation testing
yielding a significant difference between the two groups (for repeated iterations, p =

0.008±0.001). Because we have computed a pair-wise statistic, the implication is that
the compiler error message and Stack Overflow accepted answers are significantly
different in terms of argumentation layout than the compiler error message provided
in the question.

Because the questioner asked a question about the compiler error message,
this indicates some confusion with the error messages they were presented with.
Because the same questioner also marked the Stack Overflow answer as accepted,
we can assume that the answer has resolved whatever confusion they had in the
original question. Since the argument structure between the compiler error message
and the accepted answer are significantly different in terms of argument layout, we
can conclude that differences in structure argument layout can be attributed to the
acceptance of the Stack Overflow answer.

117

The resulting argument structures are found in Figure 6.3 and Figure 6.4, for
compiler error messages and for Stack Overflow accepted answers, respectively. For
each the group, the argument layouts are ordered from most frequently observed to
least frequently observed. In this quasi-statistical reporting, it is clear to see why
the argument layout for compiler errors and Stack Overflow accepted answers were
found to be significantly different in RQ1: compiler error messages predominantly
present a claim with no additional information, and occasionally present a resolution
(that is, a fix) to resolve the claim. In contrast, Stack Overflow accepted answers are
inverted in argumentation layout frequency; the most frequent argument layout
extends simple argument layout with backing, and least frequently provides solely a
resolution for the claim. In our investigation, we did not find any instances in which
Stack Overflow accepted answers solely rephrased the compiler error message (that
is, the claim-only layout).

Thus, not only do Stack Overflow accepted answers more closely align with
Toulmin model’s of argumentation, these answers satisfactory resolved the confusion
of the developer when the original compiler error message did not.

6.6.3 RQ3: How is the content of explanations in Stack Over-
flow different from compiler error messages?

In this section, we describe the content of the components of argument structure
An overview of the argument structure is presented in Table 6.4.

6.6.3.1 Claim

Because of the layout of Stack Overflow, accepted answers assume that the developer
has read the error message in the question, and will refer to the claim without
explicit antecedent. For instance, the answer may say, “This problem” (A1225726)
or “This issue” (A32831677) or immediately chain from the question to the con-
nect their ground and warrant (A28880386). We did however, encounter instances
where developers explained error messages through first rephrasing, such as “it
means that” (A16686282) and “is saying” (A20858493)—usually for the purpose of
simplifying the jargon in the message or making an obtuse message more conver-
sational. Incidentally, compiler authors like Czaplicki (of the Elm programming
language) have also noted that error messages should be more conversational and
human-like [70]. For example, the compiler error message:

118

http://stackoverflow.com/questions/1225726
http://stackoverflow.com/questions/32831677
http://stackoverflow.com/questions/28880386
http://stackoverflow.com/questions/16686282
http://stackoverflow.com/questions/20858493

Table 6.4 Argument Layout Components for Error Messages

Attribute Description
Simple Argument Components
Claim
(Section 6.6.3.1)

The claim is the concluding assertion or judgment about a problem
in the code.

Resolution
(Section 6.6.3.2)

Resolutions suggest concrete actions to the source code to remedi-
ate the problem.

Ground
(Section 6.6.3.3)

Facts, rules, and evidence to support the claim.

Warrant
(Section 6.6.3.4)

Bridging statements that connect the grounds to the claim. Pro-
vides justification for using the grounds to support the claim.

Extended Argument Components
Backing
(Section 6.6.3.5)

Additional evidence to support the warrant, if the warrant is not
accepted.

Qualifier
(Section 6.6.3.6)

This is the degree of belief for a claim, used to weaken the claim.

Rebuttal
(Section 6.6.3.7)

Exceptions to the claim or other components of the argument.

foreach statement cannot operate on variables of type 'E' because 'E' does
not contain a public definition for 'GetEnumerator'}↪→

is rephrased by the accepted answer as “It means that you cannot do foreach on
your desired object, since it does not expose a GetEnumerator method.”

6.6.3.2 Resolution

Although not explicitly present in Toulmin’s model of argument, one way in which
error messages can convince developers of an argument is to offer the solution to
that argument that resolves their issue. Typically, Stack Overflow accepted answers
provide these resolution in a style similar to “Quick Fixes” in IDEs—they briefly
describe what will be changed, show the resulting code after applying the change,
and demonstrate that the compiler defect will be removed as a result of applying

119

the change. A prototypical example of how answers provide resolutions is found
in A8783019. Here, the answer notes, “You’re missing an & in the definition.” The
answer then proceeds to show the original code:

float computeDotProduct3(Vector3f& vec_a,

Vector3f vec_b) {

against the suggested fix:

float computeDotProduct3(Vector3f& vec_a,

ector3f& vec_b) {

6.6.3.3 Ground

Grounds are an essential building block for convincing arguments; they are the
substrate of declarative facts—which bridged by the warrant—support the claim,
that is, the compiler error message. For example, “the variable is non-static private
field” (A4114006), “clone() returns an Object” (A3941850), “foo<T> is a base class
of bar<T>” (A27412912), “[t]he only supertype of Int and Point is Any” (A2871344),
“local variables cannot have external linkage” (A5185833) all refer to grounds about
the state of the program or rules about what the compiler will accept.

Consider the use of gets() in a C program, which in the gcc compiler generates
the message:

test.c:27:2: warning: ‘gets’ is deprecated

(declared at /usr/include/stdio.h:638)

[-Wdeprecated-declarations]

gets(temp);

^

The poster of the compiler error wants to suppress this warning (Q26192934), but
the accepted answer explains the grounds for this warning (A26192934): “gets is
deprecated because it’s dangerous, it may cause buffer overflow.”

6.6.3.4 Warrant

In argumentation theory, warrants are bridge terms, such as “since” or “because”
that connect the ground to the claim. Often, the warrant is not explicitly expressed,

120

http://stackoverflow.com/questions/8783019
http://stackoverflow.com/questions/4114006
http://stackoverflow.com/questions/3941850
http://stackoverflow.com/questions/27412912
http://stackoverflow.com/questions/2871344
http://stackoverflow.com/questions/5185833
http://stackoverflow.com/questions/26192934
http://stackoverflow.com/questions/26192934

and the connection between the ground and the claim must be implicity identi-
fied [110]. During our analysis, we would insert implicit “since” or “because” phrases
during reading of the error message or Stack Overflow answer to identify implicit
warrants.

In some compilers, messages can bridge grounds with warrants through explicit
concenations, such as with the ”reason:” error template in Java:

Test.java:6: error: method b in class Test cannot

be applied to given types;

b(newList(type));

^

required: List<T>

found: CAP#1

reason:

inference variable L has incompatible bounds

equality constraints: CAP#2

upper bounds: List<CAP#3>,List<?>

where T,L are type-variables:

T extends Object declared in method <T>b(List<T>)

...

Unfortunately, the grounds for this warrant are particularly dense in itself.
However, warrants needs not always be this obtuse, as the following C++ message
from OpenCV indicates:

OpenCV Error: Image step is wrong

(The matrix is not continuous,

thus its number of rows can not be changed).

Here, the warrant is bridged through the use of the parenthetical statement.

6.6.3.5 Backing

A backing may be required in an argument if the warrant is not accepted; in this
case, the backing is additional evidence needed to support the warrant. In practice,
one should selectively support warrants; otherwise, the argument structure grows
recursively and quickly becomes intractable [110]. For presenting error messages,
we found that while warrants were typically additional statements, backing was

121

provided through the use of resources. These resources include code examples or
code snippets (A2640738, A1811168), references to the programming language
specifications (A5005384), and occasionally, bug reports (A37830382) as well as
tutorials (A2640738).

6.6.3.6 Qualifiers

Despite the usefulness of static analysis techniques for reporting compiler error
messages to developer, many classes of analysis feedback are undecidable or compu-
tationally hard, which necessitate the use of unsound simplifications [202]. Qual-
ifiers include statements like “should” (A29189727), “likely” (A17980236), “try”
(A7316513), and “probably” (A2841647, A7328052. A7942837). Although we found
such usages throughout Stack Overflow, it was difficult for us to determine if these
usages are simply used as casual linguistic constructs (essentially, fillers) or if
the answer actually intended to convey a judgment about belief. We did, however,
find several examples when developers were confused because the wording of the
compiler error made the developer believe that their own judgment was in error:
questions such as Q5013194 and Q36476599.

6.6.3.7 Rebuttal

We found few instances of rebuttals within Stack Overflow accepted answers, and
one of the reasons we believe rebuttals to be relatively infrequency is that an author
must have an expectation of what to rebut in order to provide a rebuttal in the first
place. Thus, we interpreted rebuttals liberally as statements in which an answer
would retract a particular ground or resolution due to a particular constraint—for
example, due to a bug in the compiler (A2858799, A1167204). Another means of
rebuttal occurs when the accepted answer provides reasons for ignoring a claim,
as in A11180068. Here, the accepted answer suggests downgrading a ReSharper
warning from a warning to a hint in order to not get “desensitized to their warnings,
which are usually useful.”

6.7 Limitations
The selection of error messages in our comparative study, along with the qualitative
research approaches used in the Stack Overflow study, introduces trade-offs in the
design and reporting of our study.

122

http://stackoverflow.com/questions/2640738
http://stackoverflow.com/questions/1811168
http://stackoverflow.com/questions/5005384
http://stackoverflow.com/questions/37830382
http://stackoverflow.com/questions/2640738
http://stackoverflow.com/questions/29189727
http://stackoverflow.com/questions/17980236
http://stackoverflow.com/questions/7316513
http://stackoverflow.com/questions/2841647
http://stackoverflow.com/questions/7328052
http://stackoverflow.com/questions/7942837
http://stackoverflow.com/questions/5013194
http://stackoverflow.com/questions/36476599
http://stackoverflow.com/questions/2858799
http://stackoverflow.com/questions/1167204
http://stackoverflow.com/questions/11180068

Comparative evaluation with Jikes and OpenJDK. In order to keep the
study brief, we were not able to evaluate all combinations of the argument design
space. In particular, we did not evaluate whether developer prefers simple argu-
ments against extended arguments. Although our results—where expected—were
statistically significant, the error messages we asked participants to evaluate are not
necessarily representative in terms of either the difficulty or type of error message.
Because the authors selected the explanations to present, we may also unintention-
ally introduced a bias in the selection process, favoring certain argument structures
over others. The subsequent Stack Overflow study to some extent mitigates this
threat, but does not explicit.

Identifying argument content. The design space of argument content is con-
strained to available affordances in Stack Overflow. For example, answers in Stack
Overflow must use mostly text notation, although past research has found that
developers sometimes place diagrammatic annotations on their code to help with
comprehension [18]. Similarly, Flanagan, Flatt, Krishnamurthi, and colleagues
[121] uses a diagrammatic representation on the source code to help developers
understand code flow for an error. Other tools like Path Projection [191] and The-
seus [218] use visual overlays on the source code, which are not expressible within
Stack Overflow except through rudimentary methods like adding comments to the
source. Thus, the design space of attributes is biased towards linear, text-based
representations of compiler error messages.

Generalizability. As a qualitative approach, our findings do not offer external
validity in the traditional sense of nomothetic, sample-to-population, or statistical
generalization. For example, we cannot claim that the differences in design space
usage between error messages and Stack Overflow accepted answers generalize
to those outside the ones we observed within our study. That is, our findings are
embedded within Stack Overflow and contextualized to understand a particular
aspect of developer experiences as they comprehend and resolve compiler error mes-
sages within these question-answer pairs. As one example, the argument layout for
compiler error messages is likely to significantly underrepresent claim-resolution
layouts, as resolutions in integrated development environments appear in a differ-
ent location—such as Quick Fixes in the editor margin—than the compiler error
message.

In place of statistical generalization, our qualitative findings support an id-
iographic means of satisfying external validity: analytic generalization [292]. In
analytic generalization, we generalize from individual statements within question-
answer pairs to broader concepts or higher-order abstractions through the applica-

123

tion of argumentation theory.

6.8 Related Work
The work by Nasehi, Sillito, Maurer, and colleagues [260] is the closest related work
in terms of research approach and methodology. Nasehi and colleagues, inspected
Stack Overflow questions and accepted answers to identify attributes of good code
examples: we use a similar methodology to verify if attributes of good compiler error
messages correspond to structure and content drawn from argumentation theory.

6.8.1 Design Criteria and Guidelines
Several researchers have identified guidelines for compile errors. However, the
history of design criteria for improving compiler error messages is both long and
sometimes sordid; many of these guidelines are today are considered to be pedes-
trian [48, 252].

Early work by Horning [165] suggested guidelines for the display of error mes-
sages, such as the use of headings that identify the version of the compiler being
used, a “coordinate system” for relating the error message back to the source code
listing, and the “memory addresses” relating to the error message. Shneiderman
[338] focused less on the structural design of the error message and more on the
holistic presentation, recommending that errors should have a positive tone, be
specific using the developer’s language, provide actionable information, and have a
consistent, comprehensible format. In 1982, Dean [89] argues for design guidelines
that emphasize humans goals, such as helping people correct errors as easily as
they make them, and giving people control over the messages they receive.

More recently, Traver [370] adapted criteria for Nielson’s heuristic evalua-
tion [267] to compiler error messages, suggesting principles such as clarity, speci-
ficity, context-insensitivity, as well as previously-seen guidelines such as positive
tone and matching the developers’ language. Similarly, Sadowski, Gogh, Jaspan,
and colleagues [320] present four design guidelines that inform when and how to
incorporate new error messages into a static analysis platform, Tricoder. Like
Kantorowitz and Laor [188], they suggest that program analysis tools minimize
errors messages that are false positives.

124

6.8.2 Barriers to Error Message Comprehension
Johnson, Song, Murphy-Hill, and colleagues [183] conducted an interview study
with developers to identify barriers to using static analysis tools. Their interviewers
reported barriers such as “poorly presented” tool output and “false positives” as
contributing to comprehension difficulties. One interviewee suggested that that error
messages be presented in some “distinct structure” to facilitate comprehension [183].
A follow-up study by Johnson, Pandita, Smith, and colleagues [182] identified
that mismatches between developers’ programming knowledge against information
provided by the error message contribute to this confusion. A large-scale multi-
method study at Microsoft identified several presentation “pain points,” such as
“bad warnings messages” and “bad visualization of warnings” [64].

Ko and Myers [196] found that many comprehension difficulties are due to pro-
grammers’ false assumptions formed while trying to resolve errors [196]. Similarly,
Lieber, Brandt, and Miller [218] postulated that difficulties in resolving errors were
due to faulty mental models, or misconceptions, that remained uncorrected until the
developer manually requested information explicitly from their programming envi-
ronment; they developed an always-on visualization in the integrated development
to proactively address misconceptions.

Still other work has focused on barriers novice developers face. For example,
Marceau, Fisler, and Krishnamurthi [231] found that students struggle with the
“carefully-designed vocabulary of the error message” and often misinterpret the
highlighted source code. And a large-scale study of novice compilations found that
minor syntax issues and typos are attributable to why compiler error messages are
emitted [6].

6.9 Design Principles
We synthesize our findings as design principles, which compiler authors can use to
inform the design and evaluation of error messages. We discuss our findings within
the context of these principles:

Principle I—Distinguish fixes from explanations. Accepted answers from
Stack Overflow identified a dichotomy in argument structure: 1) claim-resolutions,
which we can think of essential as quick fixes that immediately resolve the problem
for the developer, and 2) simple to extended argument structures, which provide an

125

explanation of the problem (Figure 6.4).
Both styles of argument structure are useful. A claim-resolution structure is

appropriate when the resolution is obvious. For example, consider a C file with a
missing semi-colon, as presented through the LLVM:

hello.c:4:28: error: expected ';' after expression
printf("Hello, world!\n")

^
;

For an expert, it is clear what the problem is and the developer does not need an
explanation for how semi-colons work in C. By constrast, consider the error message
E4 from our comparative evaluation. Here, there is a design choice that depends on
which remove method the developer intends to call; consequently, a simple argument
structure is appropriate.

Principle II—Allow developers the autonomy to elaborate arguments. From
our comparative evaluation in Phase I, we found that with E3 developers preferred
the OpenJDK version of the error messages, despite the fact that the Jikes version
is more explanatory. However, novice developers may still find the explanation from
Jikes useful, and expert developers may still find the Jikes presentation useful if
they want to understand the rationale for the fix. Thus, developers may selectively
need more or less help in comprehending the problem, and we should support mecha-
nisms to progressively elaborate error messages. The static analysis tool Error Prone
implements such an approach; the tool provides a simple argument for the error
messages, but also enables additional backing through providing an supporting link:

1 ShortSet.java:9: error: [CollectionIncompatibleType]
2 Argument 'i - 1' should not be passed to this method;
3 its type int is not compatible with its collection's
4 type argument Short
5 s.remove(i - 1);
6 ^
7 (see http://errorprone.info/bugpattern/
8 CollectionIncompatibleType)

Similarly, the Rust and Dotty compilers initially provide a simple argument, but
the developer can invoke an extended argument by passing a --explain flag to the
compiler.

126

Principle III—Apply argument structure and content to the design and
evaluation of error messages. The theory of argumentation can guide the design
of error messages, as well as assess potential problems with existing error messages.
For instance, considering the following Haskell code snippet:

let y = [True, 'a']

which produces this error message in the Haskell interpreter, ghci:

Couldn't match expected type ‘Bool’ with actual type ‘Char’
* In the expression: 'a'
* In the expression: [True, 'a']

In an equation for ‘y’: y = [True, 'a']

Inspecting this error message through the lens of argumentation theory immedi-
ately reveals a problem: the error message does not present a claim. Couldn't match

expected type ‘Bool’ with actual type ‘Char’ is actually a ground masquerading
as a claim. The rest of the explanation is backing to support the ground. This
deficiency is easy to spot if we compare against a similarly-produced F# (let y =

[true; 'a'];;) error message:

let y = [true; 'a'];;
---------------^^^

error FS0001: All elements of a list constructor expression must have the
same type. This expression was expected to have type 'bool', but here
has type 'char'.

↪→

↪→

Now, it is apparent the actual claim is that all all elements of a list expression

must have the same type, and the remainder of the error message is evidence to
support that claim. There are also content differences: F# helpfully provides a code
snippet that points to the position of the error in the result, where ghci indicates
the location narratively through a series of In the expression statements.

6.10 Conclusion
In this paper, we conducted studies on error messages, through Toulmin’s model of
argumentation. Our results suggest that generalizable, theory-driven approaches to
the design and evaluation of error messages will lead to more explainable, human-
friendly errors—across programming languages and compilers.

127

7 | Related Work

As we learn about each other, so we
learn about ourselves.

The Doctor

How does the work in this dissertation fit within the ontology and ontogeny
of related research areas in computer science and other disciplines? This chapter
delineates collections of research pertinent to the design of error messages, in pro-
gram comprehension (Section 7.1), human factors and warning design (Section 7.2),
experts systems (Section 7.3), structure editors (Section 7.4), and error messages
for novices (Section 7.5). Through examining the similarities and differences of my
own research within these collections, I defend the novelty of my thesis.

7.1 Program Comprehension in Debugging
Program comprehension is a cognitively-demanding activity, coordinating and com-
peting with a number of parallel mental processes that include language [344],
learning [306], attention [397], problem-solving [199], and memory [280]. Given
the complexity of human cognition and the different levels of abstraction under
which cognition has been studied, there are several concurrent theories to explain
program comprehension. The multiplicity of theoretical parameters can comple-
ment, integrate, and sometimes contradict theories such as the theory of rational
reconstruction proposed in this dissertation; for a literature review of confounding
parameters in program comprehension, see Siegmund and Schumann [346]. In
this section, I sample theories three established theories of program comprehen-
sion during debugging and maintenance activities: plans (Section 7.1.1), beacons

128

(Section 7.1.2), and information foraging theory (Section 7.1.3). I conclude with an
explanation of how rational reconstruction can support these theories (Section 7.1.4).

7.1.1 Plans
Shneiderman and Mayer [339] presented an information processing model that
comprises a long-term store of semantic and syntactic knowledge in conjunction
with a working memory through which developers construct problem solutions.
For debugging an error message, Shneiderman and Mayer [339] proposed that
developers are unable to resolve debugging output in two possible situations. In
the first situations, the developer has a correct plan for what the program is sup-
posed to do, but has made a mistake in representing that idea in the source code.
In the second situation, the developer makes a mistake when they use the error
message to construct a plan. This second situation is more insidious: confusion
arises because the error message conflicts in some way with the developers’ internal
semantics. Other researchers have also considered debugging as the construction or
execution of programming plans, or schemas [45, 213, 312, 353, 354, 360, 382]. The
planning theories have several differences: they are sometimes top-down compre-
hension models [44, 353], bottom-up comprehension models [214, 283], or integrated
models [237]. Nevertheless, there are many commonalities among them: namely,
they are all some cognitive process that constructs a mapping between the source
code and a cognitive representation of the problem, and understanding involves
reconstructing some or all of these mappings.

7.1.2 Beacons
But what is the link between source code and mapping during planning and recon-
struction? One theory is that developers search for beacons [44, 78, 397]—lines of
code that serve as indicators of a particular structure or operation, and developers
use the presence or absence of these beacons to confirm or reject hypotheses about
the message. To search for these beacons, developers employ a process called pro-
gram slicing, in which developers break apart large programs into smaller coherent,
though not necessarily textually contiguous, pieces [392]. During slicing, if the
developer fails to confirm the presence of beacons in source code, they may reject
their hypothesis about the error, and possibly even the error message itself. A recent
functional magnetic resonance imaging (fMRI) study by Siegmund, Peitek, Parnin,
and colleagues [345] confirmed lower activation of brain areas during comprehension

129

based on semantic cues, confirming that beacons ease comprehension.

7.1.3 Information Foraging Theory
An alternative theory for programmer comprehension that contrasts with the classi-
cal information processing theories we have so far described is information foraging
theory [208]. Information foraging explains and predicts how developers naviga-
tion as a problem of information seeking [122]. Information foraging proposes a
parsimonious predator-prey analogy in which a developer (predator) uses informa-
tion patches, cues or signposts, and information scents—essentially, a perceived
likelihood that a cue will lead to the fix (prey).

A salient property of information foraging theory is that it assumes that the
environment drives the developer’s behavior. That is to say, the theory does not
require knowledge of what is inside the developer’s mind [208]. We can think of
information foraging theory as a greedy search: at each decision point, the developer
chooses the interaction that they estimate would maximize information gain.

7.1.4 Relation to Rational Reconstruction
Although the theory of rational reconstruction is at a higher level of abstraction than
either the cognitive theories of plans and beacons or the ecological theory of informa-
tion foraging, rational reconstruction can be used as a support for both. For instance,
rational reconstruction as explanations can help developers construct plans, or they
can act as arguments to help developers justify their already-constructed plans.
Explanations situated within source code are essentially explicit beacons; without
rational reconstruction, the developer would likely need to identify these beacons
implicitly anyway. Rational reconstruction points may also act as a navigational
aid for information foraging theory, in cases where the developer’s information
estimate is contradictory to the reconstruction. However, I’m not sure how useful
the explanations themselves would be if information foraging is the sole driver of
comprehension.

7.2 Human Factors in Error and Warning Design
Of course, warnings messages aren’t something people encounter exclusively in
digital systems; they can be found in everyday situations and places, such as product

130

instruction manuals [408], medication [118, 250], cigarettes and alcohol labels [30,
207], and on signs at beaches [234]. But are theories of warning design [108] for phys-
ical objects applicable to the design of error messages in digital systems like program
analysis tools? Research suggests that it is [148, 289]: Pieterse and Gelderblom
[289], for example, successfully applied warning design theory—originally studied in
the context of the physical world—to the design of error messages in a digital system
like online Internet banking. As part of their study, Pieterse and Gelderblom [289]
adopted guidelines from warning theory design theory, and conducted a heuristic
evaluation in which experts using these guidelines to effectively identify problems
with error messages. There are several noteworthy literature review in human
factors which cover these and other dimensions for warnings and errors [92, 108,
206, 209, 281, 316, 401].

Mapping findings from warning design theory in the physical world to digital
systems additional factors through which we can investigate the comprehension of
error messages—beyond the theory of rational reconstruction that I’ve considered
within this dissertation. As one example, the Communication-Human Information
Processing (C-HIP) model is a communication theory from warning design with
three conceptual stages: source, channel, and receiver [72]. Within the receiver
stage, the model describes not only comprehension, but also attention, attitudes,
and motivation for why a user may or may not successfully interpret the message.
Similarly, the model also explains why a user might not notice the warning, due to
processing bottlenecks in one of the stages of this pipeline. For error messages in pro-
gram analysis tools, the C-HIP model could be applied to describe how information
flows from one stage to the next.

In particular, the C-HIP model brings to attention a broader scope of error
message comprehension than the one addressed in this dissertation. The thesis of
this dissertation primarily focuses on the error message content, and how developers
explicate this information as reconstructions in text or visual forms. But there are
other factors that can support or preclude comprehension: for instance, a developer
may not notice an error message in the first place. Our studies also considered
only error messages that the developer needed to resolve in order to successfully
compile the project; that is, the resolution of the error messages were mandatory.
Consequently, rational reconstruction theory does not explain why developers might
choose to ignore errors or warnings, or how they would prioritize multiple errors.
But warning design theory might.

Finally, warning design theory can inform the design space of error message as a
medium. These dimensions of medium include color [195], size [22, 41], location [207,

131

400], language of the warning text [2, 103, 148, 399], the pictorials or icons [86, 175,
364], expertise [42], habituation [150, 193], and social influence [96, 109, 124]. These
dimensions might influence how developers interpret the severity of the message,
whether they choose to take action for the message, which message they are likely
to use if multiple presentations are available, and the saliency of the message.

7.3 Expert Systems
Expert systems [219] are computer programs that reconstruct the expertise and
reasoning capabilities of qualified specialists within limited domains [300], for
emulating human expertise in well-defined problem domains [310], and for compu-
tationally representing task-specific human-knowledge of experts to systems [341].
While first-generation expert systems in the 1970s, such as DENDRAL [117] and
MACSYMA [232], focused primarily on performance and problem-solving, second-
generation systems, notably MYCIN [65, 340], introduced the distinguishing feature
of explanation facilities as part of the problem-solving process [88].

MYCIN became a model for succeeding systems [300], and the development
of expert systems became a forcing function in artificial intelligence research for
computational explanations and problem-solving [358]. Davis [88] writes, “problem
solving is only the most obvious [behavior of expert systems] and while necessary, it
is clearly insufficient. Would we be willing to call someone an expert if he could solve
a problem, but was able to explain the result? …I think not.” And Chandrasekaran
and Swartout [56] observed that “explanation of a knowledge system’s conclusions
can be as important to the conclusions themselves”.

In addition to the technical contributions of expert systems, people find their
explanations to be useful across several dimensions [140]. An evaluation by Ye and
Johnson [407] indicated that explanation-facilities can make advice from expert-
systems more acceptable to users. They evaluated three types of explanation: infer-
ential steps taken by the expert-system (trace or line reasoning), explicit description
of the casual argument or rationale for each step taken by the expert system (jus-
tification), high-level goal structures to determine how the expert system uses its
domain knowledge to accomplish the task (strategy). Of the three, justification was
found to be the most effective in changing the user attitudes towards the system.
Lim, Dey, and Avrahami [220] found explanations describing why a system behaved
a certain way resulted in better understanding and stronger feelings trust. Wick
and Thompson [396] proposed a computational model of reconstructive explanations

132

for expert systems: that effectiveness explanations often needs to substantially
reorganize the actual line of reasoning as a line of explanation. However, Wick and
Thompson [396] did not actually evaluate these explanations.

Though both novices and experts found explanations to be useful, they use
the explanations in different ways. Mao and Benbasat [229] show that people re-
quested explanation to deal with comprehension difficulties caused by perceived
anomalies—not necessarily real anomalies—in expert system output messages,
and that there were both qualitative and quantitative differences in the nature of
explanation between novices and experts. Specifically, they found that novices relied
on explanations for understanding the basic meaning, implication, and reasoning
process of the expert system. In contrast, experts rapidly created their own ratio-
nalizations and used explanations as a source of confirmation. Fischer, Mastaglio,
Reeves, and colleagues [120] proposed that systems should not attempt to generate
a perfect, one-shot explanation: instead, systems should initially provide brief ex-
planation and then allow the user to elaborate through several levels of explanation.
Other researchers have also suggested that tailoring explanations to users improves
the quality of explanation [24, 164, 181, 242, 245, 276].

Stand-alone expert systems eventually declined in popularity [10]; nevertheless
their ideas becomes embedded in specialized contexts such as recommendation
systems [277, 314, 366], and as intelligent tutoring systems [377]. The prolific rise
and fall of experts systems brought to attention three critical weaknesses of expert
systems, particularly with respect to explanation [184]:

1. There was no unifying theory of explanation, and few papers actually consid-
ered what explanations might be, or what might be acceptable as everyday
explanations as opposed to scientific explanations.

2. The lack of theory of explanation also gives rise to the absence of any criteria
for judging the quality of the explanation.

3. There were relatively few studies which evaluated to any degree the resulting
explanations.

The third-point can be debated, as what constitutes relatively few studies is
subjective. But the first two problems reveal a knowledge gap, not only for expert
systems, but parallel that knowledge gaps regarding comprehensible error mes-
sages in program analysis tools. It is precisely these first two questions that this
dissertation investigates: it proposes a theory of rational reconstruction, and in
doing so, offers a mechanism for constructing and evaluating error messages.

133

Given the similarities in goals between expert systems and error messages in
program analysis tools, could program analysis tools be investigated as a form
of expert system? If so, would explanations be as useful as they appear to be for
expert systems? What lessons could we learn from their successes and failures? For
example, linters—however rudimentary they may be— are essentially a collection
of automated rules about problems in source code, encoded into the tool by expert
developers. It may be fruitful to revisit the ideas from the expert systems to inform
the implementation of program analysis tools.

7.4 Preventing Errors with Structure Editors
Structure editors, also called projectional editors or syntax-directed editors, make
it difficult-to-impossible for developers to insert costly syntax errors into the source
code in the first place [7]. Rather than having developers work with source code
as text composed of strings of characters, they work directly with the syntax-tree
structure of the program. Structure editors have a long history, with early efforts
such as MENTOR [101] and the Cornell Program Synthesizer [365] in the 1980s.
Although structure editors are not mainstream, there are a few contemporary and
boutique structure editors intended for professional developers, such as Eco [97],
Lamdu [226], Unison [63], and isomorƒ [190].

There are some arguments in favor of structure editing approaches, beyond pre-
venting syntax errors [203, 332]. First, if developers think in terms of tree structures
in their own mind, editors should support this mode of thinking [133, 192]. Second,
structure editors express a typically-desirable property of closeness of mapping in
that developers work with the underlying syntax-tree directly, rather than an ab-
straction of text [381]. Third, proponents of structure editing argue that antiquated
text-based representations are inefficient ways of composing programs [285].

Unfortunately, the arguments in favor have not held up to scrutiny [375, 388].
Critics of structure editors have described them as restrictive, inflexible, and in-
efficient [192]. Thinking in terms of tree-structures turns out not to be natural at
all [160]: complex tasks require substantial experience with the underlying abstract
tree-structure, and additional developer experience lead doesn’t to increased effi-
ciency when composing programs [32]. Even trivial operations, such as entering
algebraic expressions, were found to be frustrating and tedious for developers to
compose over traditional text-editing [363]. Finally, developers routinely work in
malformed edit states: in the midst of a function call, for instance, “std(m,” they may

134

realize that they need an additional helper function, and begin writing this helper
function without first completing the original call [272]. Conventional structured
editors forbid such common workflows [369].

Light-weight structure editing approaches have found their way into modern
development environments, by relaxing the constraint of maintaining syntactically-
valid source code. Context-sensitive code templates [390], intelligent copying-and-
pasting of code fragments [384], auto-completion [227], and refactoring are examples
of tools whose usage can reduce, but not entirely prevent, the introduction of syntax
errors [131]. But relaxing the constraint of syntactic-validity brings us right back to
this dissertation: there remains a need to support comprehensible error messages
for syntax. And even theoretically-perfect structure editors do not prevent other
categories of errors, such as semantic errors, that developers introduce in source
code.

7.5 Error Messages for Novices
Despite cognitive differences in the way novices and experts problem-solve during
debugging (Section 7.1 on page 128), examining literature for novices can provide
insights into methods (Section 7.5.1), techniques (Section 7.5.2), and perspectives
(Section 7.5.3) on the design of error messages for experts.

There is substantial research literature on making error messages more acces-
sible to novices, spanning many decades, and for many programming languages
and programming environments [23, 71, 87, 115, 119, 126, 153, 162, 189, 252, 355,
394, 395, 409]. In this section, I focus on recent literature applicable to modern
programming environments as investigated within this dissertation.

7.5.1 Error Message Types and Distributions
An survey of the error distributions for novice error messages indicates that error
distributions are long-tailed, such that relatively few errors account for the majority
of problems encountered by novices. For example, Jadud [174] found that five
most common errors of 42 different types of errors accounted for 58% of all errors:
missing semicolons, unknown symbols: variable, bracket expected, illegal start
of expressions, and unknown symbol: class. Denny, Luxton-Reilly, Tempero, and
colleagues [94] found that 73% of all submissions failed to compile due to a syntax
error; in the top quartile, nearly 50% of all submissions failed to compile due to a

135

syntax error. The median lines of code for the submitted programs was eight. A
similar study by Jackson, Cobb, and Carver [172] found that the top ten errors
to represent nearly 52% of all errors, and that the top twenty represent 62.5% of
all errors. Pritchard [299] found the frequency of error messages to empirically
resemble the Zipf-Mandelbrot distribution, a type of long-tailed distribution, across
both Java and Python languages.

Further inspections of these data sets provide visibility into comprehension
difficulties with error messages. For example, Jadud [174] noted, “instead of taking
in the error or consulting additional help regarding the meaning of the error, the
students would immediately hit the ‘compile’ button a second time.” Instructors
postulated that students “don’t believe” the compilation error BlueJ was reporting
to them in many cases. Brown and Altadmri [46] used the Blackbox dataset [6] for
almost 100 million BlueJ compilations events. Combined with survey data of 76 ed-
ucators, they found that educators’ estimates of student errors did not agree either
with one another or with the student data. Their data also reveals little learning
effect over the course of 3 to 6 months for most students: the time to fix certain
compiler errors—for example, syntax errors—reduces with additional experience,
but they found no consistent effects for other errors, even when these errors are
unrelated to program complexity, such as string comparisons. Finally, Pritchard
[299] identified that while both Python and Java exhibited Zipf-Mandelbrot charac-
teristics, differences in the parameters of the distribution suggested that Python
perhaps provides more descriptive error messages than Java.

For experts, there are limited studies on the types of error messages developer
encounter in practice [330]. There is a need for additional studies that characterize
and pinpoint the space of confusing errors for developers, across both programming
languages and tools.

7.5.2 Mini-Languages
Simplifying programming concepts by adopting subsets of a more expressive pro-
gram language can eliminate confusing error messages, especially if novices aren’t
expected to use those capabilities in their programs in the first place. Removing lan-
guage features can also help program analysis provide by disambiguating the space
of possible diagnostics. For example, consider the following invalid if statement for
the integers x and m:

if (x >> m) {
return true;

136

}

If we interpret x >> m as a signed right-shift operator, then the problem is likely
a type error: the result of this bit-shift is an integer, but if requires a boolean for
the conditional. But if bitwise and bit-shift operators are prohibited within the
language—perhaps because this concept isn’t covered in the course—then it’s far
more likely than the student actually intended to simply perform a greater-than
operation: x > m. In the latter case, the problem is likely a syntax error.

An early mini-languages is LOGO, a teaching environment that simplified and
constrained the BASIC programming language to a turtle placed on a grid, through a
number of limited movement commands [334]. This inspired a family of derivative
visual languages, catalogued by Brusilovsky, Calabrese, Hvorecky, and colleagues
[49].

There are also several text-based mini-languages. MiniJava, a teaching-oriented
implementation of Java that discards over 700 built-in classes from the Java stan-
dard library to a manageable 17 core classes, eliminates inner classes, removes the
do-while statement, and simplifies some other language constructs [313]. Language-
levels in DrRacket provide full-fledged languages as staged into sub-languages that
tailor programming concepts to what students have learned in the course [231].
And Helium, a variation of Haskell, aims to provider higher-quality error messages
tailored for students [157]. Because Helium lacks removes type classes from the
language, programs written in Helium are not generally compatible with Haskell.

Thinking about languages as subsets of the language can help improve error
messages reporting for developers in programming analysis tools. For example, the
unwieldily error message generated by LLVM in Section 2.2.4 on page 6 was in
part due to the program analysis failing to distinguish standard library code from
code the developer wrote. Awareness of the source code as being part of a standard
library or developer-generated could improve the error messages from program
analysis. For example, MiniJava specifically recognizes the use of the standard
Vector library in Java, and can tailor messages when this class is used [313].

In contrast to novices, prohibiting expressive and useful concepts in program-
ming languages is undesirable for experts—but sometimes it’s necessary to do so
because their error messages are unusable. For example, the Google Style Guide
explicitly prohibits certain language constructs, instead suggesting alternative and
sometimes less expressive implementations [134]. The guide disallows the use of
preprocessor macros entirely, because they make it more difficult for programming
tools to perform analysis: “every error message from the compiler when developers

137

incorrectly use that interface now must explain how the macros formed the inter-
face. Refactoring and analysis tools have a dramatically harder time updating the
interface.” [134]. Template programming is also strongly discouraged because it
leads to poor compile-time messages, even for simple interfaces [134]. In effect, C++
at Google has become a mini-language. Perhaps better error messages would allow
developers to freely use these more expressive constructs in their code.

7.5.3 Enhancing Compiler Error Messages
Although there are substantive differences between novices and experts in debug-
ging [142, 240, 378], understanding how researchers enhance error messages for
novices could provide avenues for investigating error messages in intermediate-
expert developers. With that said, even experts are at times novices: for example,
when needing to transfer skills from one learned programming language to another
with no formal instruction [326, 404], or when contributing to unfamiliar code [200,
291].

Unfortunately, there is little consensus on what helps novices with error mes-
sages, even though researchers agree that error messages from production program
analysis is inadequate for novices. Enhanced error messages, then, are the revisions
made to the existing error messages in order to make them more appropriate for
novices. For example, Denny, Luxton-Reilly, and Carpenter [93] implemented an
feedback system in CodeWrite, a web-based tool in which students write the body
of methods in Java. The enhanced feedback includes a table showing two code frag-
ments side-by-side: the submitted version of the code with the error, and a corrected
version of the code highlighting the syntax differences. CodeWrite presents an
explanation of the error, and describes how it is corrected.

However, Denny, Luxton-Reilly, and Carpenter [93] found no significant effects
between the enhanced and baseline error messages. They speculated that the types
of errors may be simple enough to resolve without needing enhanced messages,
or that students did not pay attention to the additional information in the error
message. Pettit, Homer, and Gee [287] conducted a similar study, using an auto-
mated assessment tool for C++ called Athene. In addition to the original compiler
error message from GCC, they added explanatory feedback the error messages and
some hints for what to check Pettit, Homer, and Gee [287] found no measurable
benefit to students: they and also suggested that perhaps students don’t attentively
read the error messages, although students overwhelmingly self-reported reading
them. Nienaltowski, Pedroni, and Meyer [269] also found that more detailed error

138

messages do not necessarily simplify the understanding of error messages; instead,
it mattered more where the information was placed and how it was structured. A
nicely constructed study by Prather, Pettit, McMurry, and colleagues [298] found
that enhanced compiler error messages did not quantitatively show a substantially
increase in learning outcomes over existing error messages, but qualitative results
did show that students were reading the enhanced error messages and generally
making effective changes to their code.

There are several other attempts to improve compiler error messages for students
and present interesting ideas, but their studies have either limited or no evaluation,
do not offer a principled rationale for how the error messages are improved, or yield
inconclusive results [39, 71, 115, 123, 126, 168, 204, 325, 327, 389, 394].

Two notable exceptions are the studies by Becker, Glanville, Iwashima, and
colleagues [27] and Marceau, Fisler, and Krishnamurthi [231]. A notable exception
is the study by Becker, Glanville, Iwashima, and colleagues [27]. In contrast to
Denny, Luxton-Reilly, and Carpenter [93] and Pettit, Homer, and Gee [287], Becker,
Glanville, Iwashima, and colleagues [27] found that their enhanced error messages
did significantly reduce the frequency of overall errors and errors per student for
some types of errors. And Marceau, Fisler, and Krishnamurthi [231] investigated
DrRacket, a novice development environment, to understand why enhanced mes-
sages remained confusing for students. Their results found that students struggled
with the vocabulary of the error messages, and often misinterpreted the source
highlighting. They concluded that–despite the considerable effort the development
team invested into the design of error messages—the team lacked a clear model of
errors and feedback to principally guide the error message design process. They
have conducted subsequent to develop a rubric for assessing the performance of
error messages [230], and these rubrics have been applied as formal processes for
assessing and evaluating error reports, such as in Pyret [402].

Researchers acknowledge that error messages from production program analysis
tools for experts shouldn’t be the same as error messages for novices [126, 269, 282,
325, 402]. An extensive literature review by Qian and Lehman [301] offers a defense
for this position, through examining barriers that novices have with syntactic
knowledge, conceptual knowledge, and strategic knowledge. In other words, even
when a novice and an expert encounter the same error message, where they get
stuck and how they get stuck are likely to be very different. Moreover, feedback
for novices in educational contexts are intended for learning, whereas feedback for
professional developers is intended to help them productively identify and resolve
the issue [342].

139

Despite the differences in novices and experts, there are still several lessons we
can draw from the study of novices. First, the study methodologies used to under-
stand difficulties novices have with error messages can be adapted to experiments
for intermediate and expert developers. Second, it seems that ad-hoc approaches to
improving error messages is not all that successfully. Even when the error messages
perform better than baseline errors, we gain few insights into why those messages
are better. Instead, applying and developing principled models and theories to drive
the careful design of the error message seems more productive, even if the process
of theory-building initially delays our ability to actually revise error messages.

140

8 | Conclusion

I’ll be a story in your head. That’s
okay. We’re all stories, in the end.

The Doctor

8.1 Error: Expected Declaration or Statement at
End of Input

The thesis statement of this dissertation is:

Difficulties interpreting error messages produced by program analysis
tools are a significant predictor of developers’ inabilities to resolve defects:
difficulties in interpreting error messages can be explained by framing
error messages as insufficient rational reconstructions, in both visual
and textual presentations.

I defended the claims of the thesis statement through three studies. In the first
study (Chapter 4), I investigated how developers used the Eclipse IDE to compre-
hend and resolve Java compiler error messages. I found that difficulties interpreting
error messages produced by program analysis tools are a significant predictor of
developers’ inabilities to resolve defects. In the second study (Chapter 5), I conducted
a participatory design activity through which developers constructed diagrammatic
representations of error messages, overlaid on source code listings. The results
of the second study identify how error messages are insufficiently aligned with
developer expectations, particularly with respect to revealing relationships among

141

relevant program elements. In the third study, I analyzed Stack Overflow questions
and answers relating to error messages using argument theory, a form of ratio-
nal reconstruction. The third study (Chapter 6) finds that human-authored error
messages incorporate complementary argument layout structures, and that these
layout structures are significantly different from how error messages present errors
to developers. Moreover, developers indicate significant preference for structures
that either provide a simple resolution, or employ a proper simple or extended
argument structure. Together, the results of these studies advance our scientific
understanding for how developers comprehend error messages.

In the remainder of this chapter, I address some residual topics to situate the
research in this dissertation in terms of its broader impacts. First, I synthesize the
results of this research as design guidelines (Section 8.2). The design guidelines
allow us to generalize the findings of this work to environments and programming
languages beyond those studied in this dissertation. Second, I implement a proof-
of-concept compiler in TypeScript that enables the presentation of error messages
as rational reconstructions (Section 8.3). The proof-of-concept demonstrates that
it is feasible to present rational reconstructions when appropriate introspective
capabilities are present in the compiler infrastructure. Third, I discuss future work
(Section 8.4). This discussion provides a landscape for what I believe are impactful
directions within the discipline of error message comprehension.

8.2 Design Guidelines
All of our studies were conducted within the Java programming language, with
the assumption that developers had familiarity with the Eclipse programming
environment. To generalize the studies in this dissertation to other programming
languages and environments [270], we derive five design guidelines that capture the
principal findings from the studies conducted in this dissertation. Design guidelines
from studies by other research pertaining to system error messages can be found in
Appendix F.

Principle I—Implement rational reconstructions for humans, not tools. If
a program analysis error message is convenient to construct from the perspective of
the program analysis algorithm, this is a signal that the error message is inappropri-
ate for the developers. Our results demonstrate that developers reason about error
messages differently than the underlying mechanism by which program analysis

142

algorithms identify a problem in the source, and simply exposing internal program
analysis processes to developers isn’t useful. Consequently, a human-centered error
message will likely require reconstruction. and toolsmiths should expect to do so to
facilitate error message comprehension.

Principle II—Use code as the medium through which to situate error mes-
sages. Provide context for error messages, framed through the primary artifact
within which developer work—source code. In graphical environments, consider
using affordances which display error message information in proximity to the
source code. In text environments, consider inlining the source code context as part
of the error message presentation. When using diagrammatic elements, be ware
of introducing unfamiliar notation. Stick with basic diagram techniques, such as
lines, boxes, and arrows.

Principle III—Distinguish source code from explanation of source code.
Avoid mixing natural language and source code within the same sentence, as mix-
ing the two modes of natural language to context-switch incurs a cognitive processing
cost. Instead, clearly separate natural language explanation and its accompanying
source code as part of the rational reconstruction. If necessary, it’s okay to use
less-precise language to support readability, if it’s clear from the context what is
being referred to.

Principle IV—Present rational reconstructions as coherent narrative of
causes to symptoms. As with good arguments, error messages are easier to com-
prehend if there is a coherent narrative of causes to symptoms that logically explain
why a problem has occurred. These sequences need not be elaborate: often a sin-
gle, straight-forward backing can lead a developer to comprehend an otherwise
inscrutable message. Developers find it helpful if the error message explicitly relates
why different program elements are relevant to a particular problem.

Principle V—Give developers autonomy over error message presentation.
Depending on familiarity with the code and experts, developers may need to more
or less help in comprehending the problem. Support mechanisms to progressively
elaborate error messages which support both expert and occasional developers.

143

8.3 Toward Engineering a Compiler

8.3.1 Approach
To apply our theory into practice, I operationalized our design guidelines within a
production compiler (Section 8.2). Specifically, I modified the Microsoft TypeScript
compiler to generate rational reconstructions for TS2393, a duplicate function im-
plement error. I assessed this prototype through a formative, solution validation,
conducted through a focus group. The prototype demonstrates the feasibility of
engineering a compiler to support rational reconstruction, as well as its potential
utility if incorporated into practical program analysis tools.

I selected the TypeScript compiler for modification for several, mostly practical
reasons. Namely, the compiler is engineered with modern compiler design principles,
such as offering compiler toolsmiths an API-as-a-service. This makes it is easy to
introspect and to extend the compiler. The TypeScript source code builds relatively
quickly, on the order of seconds, and this rapid turn-around facilitates rapid iteration
when developing the prototyped. Additionally, the TypeScript compiler is itself
written using TypeScript, which means that the tools for developing the compiler
and the tools for testing rational reconstructions are unified. These properties make
TypeScript a convenient target for error message research.

Similarly, the decision to support a duplicate function implement as the vehicle
to investigate rational reconstructions was also not entirely arbitrary, and required
balancing several design constraints. I wanted an error message that would high-
light relationships between multiple program elements; this eliminated classes of
errors, such as syntax errors, whose reporting would only involve a single error.
I wanted an error message that would require introspecting the compiler during
the creation of the rational reconstruction, yet at the time did not want to spend
extraordinary effort to surface the underlying compiler structures. To support a
potential study, I also wanted an error message that used concepts that would likely
to be familiar to even occasional TypeScript developers. The duplicate function im-
plementation error meets all of these constraints. Moreover, variations of the error
message were used in previous studies: T8 in (Chapter 4), and Brick in (Chapter 5).

Essentially, there are two approaches to implementing rational reconstruction
within the TypeScript architecture. For the first approach, we could modify the
TypeScript compiler itself to construct rational reconstructions during the compila-
tion process. This turned out to be impractical, because it required knowing which
information the compiler should collect before we knew when (or if) we could even

144

encounter an error. The second approach is retrospective: we let the compiler run it’s
course as it would normally do. When the compiler identifies an error message, we
suppress the baseline error message. Instead, we interrogate the compiler through
introspection and request additional details. The information requested during in-
trospective is then used to construct a rational reconstruction. The implementations
details for how this process works is found in Appendix H.

8.3.2 Example: Duplicate Function Implementation
I implemented a rational reconstruction for TypeScript error TS2393, a duplication
function implemented error. For example, consider the following TypeScript file,
which induces TS2393 because of the function foo:

1 function baz() { }
2

3 function foo(a: boolean) {
4 }
5

6 function bar(): void { return; }
7

8 function foo(b: boolean, c: boolean) {
9 }

Unlike Java, TypeScript does not support multiple function implementations
with the same name.1 Consequently, the above source listing results in the following
TypeScript error message:

file.ts(3,10): error TS2393: Duplicate function implementation.
file.ts(8,10): error TS2393: Duplicate function implementation.

This error message is an insufficient rational reconstruction for a developer,
in several ways. First, the presentation of the error message does not explicitly
acknowledge that the duplicate function implementation errors are in fact related to
each other. The error message for Line 3 is a reciprocal of the error message on Line
8. Second, the error message does not indicate why this is a problem—though such
an explanation might not be needed for an expert who routinely encounters this
type of message. Third, other than line number and location, there is no contextual
beacon from which the developer can relate this error message back to their source

1If the developer wants to overload a function, they must use an alternative implementation
that involves supplying function types to a single implementation. This single implementation then
explicitly performs type checks to guide the behavior of the function.

145

code. Finally, even if the brief error message is suitable for some circumstances,
there is no way for the developer to request a more elaborate explanation of the
problem.

In Rational TypeScript, the error message is emitted as:

error[TS2393]: duplicate implementation of function `foo`
--> file.ts:8:10
|

3 × function foo(a: boolean) {
| --- previous implementation of `foo` here

...
8 × function foo(b: boolean, c: boolean) {

| ~~~ `foo` reimplemented here
|
= hint: `foo` must be implemented only once within the same namespace
= hint: To overload a function, see

https://www.typescriptlang.org/docs/handbook/functions.html

This error message has several appealing properties over the baseline Type-
Script message. The key differences from the baseline TypeScript is message is
that Rational TypeScript collects the duplication function implementations and
presents them as a single, related error. Furthermore, the error message informs
the developer of how the problem manifests, using the context of their source code in
the reconstruction. Through hints, the error messages provides additional warrants
for why the problem is a problem. The error message provides a pointer to addi-
tional documentation from the TypeScript handbook, for the use case in which the
developer is intending to perform function overloading. Finally, the error message
uses colorized output to visually partition the different components of the error
messages, such as the source code and explanatory text.

8.3.3 Formative Evaluation
Method. I conducted a 30-minute formative evaluation of Rational TypeScript,
focusing on the presentation of the error message. Participants. I recruited par-
ticipants (E1-E5) within Machine Learning at Microsoft, across various levels of
seniority (Table 8.1). Participants worked primarily in either TypeScript or C#,
but occasionally had to contribute code to their secondary language, for example,
when adding features or resolving bugs that spanned both front-end and back-end
development. Due to the nature of build system, all participants used Visual Studio
Code or Visual Studio to write the soft, but compiled code using a command-line

146

Table 8.1 Participants in Focus Group

ID Title Organization Primary Language
E1 Principal Software Engineer Machine Learning C#
E2 Principal Software Engineer Machine Learning TypeScript
E3 Senior Software Engineer Machine Learning C#
E4 Senior Software Engineer Office Online TypeScript
E5 Software Engineer Machine Learning TypeScript

Participants attended a 30-minute focus group session. During the session, they
evaluated baseline TypeScript error messages and rational reconstructions for
a duplicate function implementation error.

console. Study protocol. Participants were shown a demo of the duplicate function
implementation error, along with baseline and rational reconstruction versions of
the error message in TypeScript. Participants were asked about for their feedback
about the error message presentations, and when they would prefer one or the other.
Both versions of the error messages were made available for the duration of the
discussion. Analysis. Feedback was collected from the session, and qualitatively
summarized by myself.

Results. Participants reported that Rational TypeScript messages were more
helpful than baseline TypeScript messages, particularly with developers who only
sporadically program with TypeScript (E1, E3). Although full-time TypeScript
developers generally preferred the brevity of baseline error messages for routine
errors (E2, E4), they nevertheless indicated that rational reconstructions would be
useful as a presentation option for error messages when working with unfamiliar
code (E2, E4, E5). The results of the formative evaluation, though limited, encourage
us to pursue rational reconstructions in the design and implementation of practical
program analysis tools.

8.4 Future Work
There are many fruitful avenues of research that are worthwhile to pursue but
beyond the scope of this dissertation. Here are just a few directions for rational
reconstructions in program analysis tools:

• Benefits of wrong error messages. This dissertation investigated the pre-

147

sentation of error messages, with the assumption that all reported errors
are true positives. But most program analysis is an approximation of the
actual behavior of the program. As such, it is possible that the rational recon-
struction generated by the program analysis tool is actually wrong! Would
incorrect rational reconstructions still be useful to developers? Would such
reconstructions, for example, allow developers to confidently assess that the
error diagnostic is a false positive and dismiss it? Or should we only present ra-
tional reconstructions to developers when we have a high degree of confidence
that the diagnostic is accurate?

• Supporting developer diversity. A limitation of our studies is that we pri-
marily studied entry-level software developers, and only those with experience
in Java and the Eclipse IDE. However, our formative evaluation with Rational
TypeScript using principal and senior software developers reveals that ratio-
nal reconstructions may not always be the appropriate form of error message
presentation. For example, experts in a programming language would likely
be able to easily repair syntax errors in the program without an elaborate
error message. How do we construct rational reconstructions to support the
spectrum of developers?

• Error message telemetry and longitudinal research. One difficulty with
assessing whether error messages help developers is that the effect size of
any particular instance of an improved error message against a baseline error
message is small. Thus, the impact of better error messages is likely to only
be noticeable over time. Unfortunately, today we have limited telemetry and
longitudinal data on error message distributions. For example, our studies
relied solely on the Google error distribution from Seo, Sadowski, Elbaum, and
colleagues [330] to inform our research designs, and Google has proprietary
build processes that are not necessarily representative of other organizations.
From what other sources might be obtain telemetry on program analysis error
messages?

• Conversational program analysis tools. The interaction model for our
study was linear and one-way: given a problem in the source code, the pro-
gram analysis tool could report and present the problem to the developer.
However, there is no mechanism for the developer to subsequently interact
with the program analysis tool ask questions about the error message. How
could program analysis tools be made to be conversational agents? And would
conversational program analysis tools actually help developers?

148

• Interviews with authors of program analysis tools. Presumably, authors
of program analysis tools aren’t intentionally going out to their way to design
inscrutable error messages—at least I would hope not! And some programming
language communities, such as LLVM, Rust and Elm, have made commitments
to improving the quality of their error reporting for developers. So how do
poor error messages arise in practice? Are there tools or techniques that we
can develop to reduce the authorial burden of writing good error messages?
What are the perceptions of tool authors on the quality of their own messages?
Do authors of program analysis tools have realistic assumptions about the
developers who use their tools? Understanding the process through which
authors construct error messages can help pinpoint where the problem really
is, whether social, technological, or both.

• Computational generation of rational reconstructions. The rational re-
constructions in this study were manually constructed. Although constructing
these error messages is possible to do—and it’s what program analysis authors
currently do—the authorial burden of constructing a good error message is
high. Would it possible to build intelligent program analysis tools to automati-
cally explain their own diagnostics to developers? One avenue for pursuing
this line of thinking might be to draw inspiration from early ideas in expert
systems.

8.5 Epilogue
Curiously, implementing the design guidelines in a medley of program analysis
tools—and evaluating their usefulness and effectiveness—seems just the right
amount of material for a second dissertation.

IJKL

149

and if the sun comes up tomorrow,

let her be

> python

>>> from __future__ import braces

File "<stdin>", line 1

SyntaxError: not a chance

>>> import antigravity

150

BIBLIOGRAPHY

[1] G. D. Abowd and R. Beale, “Users, systems and interfaces: A unifying frame-
work for interaction,” in People and Computers VI, 1991, pp. 73–87 (see
pp. 196, 211).

[2] A. Adams, S. Bochner, and L. Bilik, “The effectiveness of warning signs
in hazardous work places: cognitive and social determinants,” Applied Er-
gonomics, vol. 29, no. 4, pp. 247–254, 1998 (see p. 132).

[3] A.-R. Adl-Tabatabai and T. Gross, “Source-level debugging of scalar op-
timized code,” in Proceedings of the ACM SIGPLAN 1996 Conference on
Programming Language Design and Implementation, ser. PLDI ’96, Philadel-
phia, Pennsylvania, USA: ACM, 1996, pp. 33–43 (see p. 200).

[4] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, “Compilers: Principles,
Techniques, and Tools,” 2007 (see p. 29).

[5] S. Ainsworth and A. T. Loizou, “The effects of self-explaining when learning
with text or diagrams,” Cognitive Science, vol. 27, no. 4, pp. 669–681, 2003
(see p. 100).

[6] A. Altadmri and N. C. Brown, “37 million compilations: Investigating novice
programming mistakes in large-scale student data,” in SIGCSE, 2015,
pp. 522–527 (see pp. 45, 125, 136).

[7] A. Altadmri, M. Kolling, and N. C. C. Brown, “The Cost of Syntax and How
to Avoid It: Text versus Frame-Based Editing,” in 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), IEEE, 2016,
pp. 748–753 (see p. 134).

[8] B. de Alwis and G. Murphy, “Using visual momentum to explain disorienta-
tion in the Eclipse IDE,” in VL/HCC, 2006, pp. 51–54 (see pp. 72, 74).

[9] G. Ammons, D. Mandelin, R. Bodı́k, and J. R. Larus, “Debugging temporal
specifications with concept analysis,” in Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation,
ser. PLDI ’03, San Diego, California, USA: ACM, 2003, pp. 182–195 (see
p. 201).

[10] C. Angeli, “Diagnostic expert systems: From expert’s knowledge to real-
time systems,” Advanced knowledge based systems: Model, applications &
research, vol. 1, pp. 50–73, 2010 (see p. 133).

151

[11] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S.
Amarasinghe, “Petabricks: A language and compiler for algorithmic choice,”
in Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’09, Dublin, Ireland: ACM,
2009, pp. 38–49 (see p. 204).

[12] H. Arksey and L. O’Malley, “Scoping studies: towards a methodological
framework,” Int J Soc Res Methodol, vol. 8, 2005 (see p. 197).

[13] A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee, and E. Witchel,
“Traceback: First fault diagnosis by reconstruction of distributed control
flow,” in Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’05, Chicago, IL, USA: ACM,
2005, pp. 201–212 (see p. 206).

[14] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh, “Using
Static Analysis to Find Bugs,” IEEE Software, vol. 25, no. 5, pp. 22–29, 2008
(see p. 25).

[15] T. Ball, M. Naik, S. K. Rajamani, T. Ball, M. Naik, and S. K. Rajamani,
“From symptom to cause: Localizing errors in counterexample traces,” in
Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages - POPL ’03, vol. 38, New York, New York, USA:
ACM Press, 2003, pp. 97–105 (see p. 41).

[16] T. Ball and S. K. Rajamani, “The SLAM Project: Debugging System Software
via Static Analysis,” in Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’02, New
York, NY, USA: ACM, 2002, pp. 1–3 (see p. 40).

[17] T. Barik, Y. Song, B. Johnson, and E. Murphy-Hill, “From quick fixes to
slow fixes: Reimagining static analysis resolutions to enable design space
exploration,” in IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2016, pp. 211–221 (see p. 72).

[18] T. Barik, K. Lubick, S. Christie, and E. Murphy-Hill, “How developers visual-
ize compiler messages: A foundational approach to notification construction,”
in 2014 Second IEEE Working Conference on Software Visualization, 2014,
pp. 87–96 (see pp. 77, 123).

152

[19] T. Barik, C. Parnin, and E. Murphy-Hill, “One λ at a time: What do we
know about presenting human-friendly output from program analysis tools?”
In PLATEAU’17 Workshop on Evaluation and Usability of Programming
Languages and Tools, 2017 (see p. 195).

[20] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill, and C.
Parnin, “Do developers read compiler error messages?” In Proceedings of
the 39th International Conference on Software Engineering, ser. ICSE ’17,
Buenos Aires, Argentina: IEEE Press, 2017, pp. 575–585 (see pp. 49, 103,
196).

[21] T. Barik, J. Witschey, B. Johnson, and E. Murphy-Hill, “Compiler error
notifications revisited: An interaction-first approach for helping developers
more effectively comprehend and resolve error notifications,” in Companion
Proceedings of the 36th International Conference on Software Engineering,
ser. ICSE Companion 2014, Hyderabad, India: ACM, 2014, pp. 536–539 (see
pp. 196, 209).

[22] T. Barlow and M. S. Wogalter, “Increasing the surface area on small product
containers to facilitate communication of label information and warnings,”
Proceedings of Interface, vol. 91, no. 7, pp. 88–93, 1991 (see p. 131).

[23] M. Barr, S. Holden, D. Phillips, and T. Greening, “An Exploration of Novice
Programming Errors in an Object-oriented Environment,” in Working Group
Reports from ITiCSE on Innovation and Technology in Computer Science
Education, ser. ITiCSE-WGR ’99, New York, NY, USA: ACM, 1999, pp. 42–46
(see p. 135).

[24] J. A. Bateman and C. Paris, “Phrasing a text in terms the user can under-
stand,” in IJCAI, 1989, pp. 1511–1517 (see p. 133).

[25] (2018). Bazel: Build and test software of any size, quickly and reliably,
[Online]. Available: https://bazel.build/ (visited on 01/01/2018) (see p. 31).

[26] M. Beaven and R. Stansifer, “Explaining type errors in polymorphic lan-
guages,” ACM Lett. Program. Lang. Syst., vol. 2, no. 1-4, pp. 17–30, 1993
(see p. 39).

[27] B. A. Becker, G. Glanville, R. Iwashima, C. McDonnell, K. Goslin, and C.
Mooney, “Effective compiler error message enhancement for novice program-

153

https://bazel.build/

ming students,” Computer Science Education, vol. 26, no. 2-3, pp. 148–175,
2016 (see p. 139).

[28] R. Bednarik and M. Tukiainen, “Temporal eye-tracking data: Evolution of
debugging strategies with multiple representations,” in ETRA, Savannah,
Georgia, 2008, pp. 99–102 (see p. 74).

[29] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler, “Explaining Coun-
terexamples Using Causality,” in Computer Aided Verification, A. Bouajjani
and O. Maler, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 94–108 (see p. 41).

[30] R. F. Beltramini, “Perceived Believability of Warning Label Information
Presented in Cigarette Advertising,” Journal of Advertising, vol. 17, no. 2,
pp. 26–32, 1988 (see p. 131).

[31] D. Benyon and D. Murray, “Applying user modeling to human-computer
interaction design,” Artificial Intelligence Review, vol. 7, no. 3, pp. 199–225,
1993 (see p. 15).

[32] T. Berger, M. Völter, H. P. Jensen, T. Dangprasert, and J. Siegmund, “Effi-
ciency of Projectional Editing: A Controlled Experiment,” in Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2016, New York, NY, USA: ACM, 2016,
pp. 763–774 (see p. 134).

[33] G. Bierman, M. Abadi, and M. Torgersen, “Understanding TypeScript,” in
ECOOP 2014 – Object-Oriented Programming: 28th European Conference,
Uppsala, Sweden, July 28 – August 1, 2014. Proceedings, R. Jones, Ed., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 257–281 (see p. 36).

[34] D. Binkley, “Source code analysis: A road map,” in Future of Software Engi-
neering, 2007. FOSE ’07, 2007, pp. 104–119 (see p. 24).

[35] M. Birks, Y. Chapman, and K. Francis, “Memoing in qualitative research:
Probing data and processes,” Journal of Research in Nursing, vol. 13, no. 1,
pp. 68–75, 2008 (see p. 116).

[36] S. Blackshear and S. K. Lahiri, “Almost-correct specifications: A modular
semantic framework for assigning confidence to warnings,” in Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design

154

and Implementation, ser. PLDI ’13, Seattle, Washington, USA: ACM, 2013,
pp. 209–218 (see p. 205).

[37] M. D. Bond, G. Z. Baker, and S. Z. Guyer, “Breadcrumbs: Efficient context
sensitivity for dynamic bug detection analyses,” in Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, ser. PLDI ’10, Toronto, Ontario, Canada: ACM, 2010, pp. 13–24
(see p. 204).

[38] P. N. van den Bosch, “A Bibliography on Syntax Error Handling in Context
Free Languages,” SIGPLAN Not., vol. 27, no. 4, pp. 77–86, 1992 (see p. 30).

[39] B. D. Boulay and I. Matthew, “Fatal error in pass zero: how not to confuse
novices,” Behaviour & Information Technology, vol. 3, no. 2, pp. 109–118,
1984 (see p. 139).

[40] N. Boustani and J. Hage, “Improving type error messages for generic Java,”
Higher-Order and Symbolic Computation, vol. 24, no. 1-2, pp. 3–39, 2011
(see p. 100).

[41] C. C. Braun, N. C. Silver, and B. R. Stock, “Likelihood of Reading Warnings:
The Effect of Fonts and Font Sizes,” Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 36, no. 13, pp. 926–930, 1992 (see
p. 131).

[42] C. Bravo-Lillo, L. F. Cranor, J. Downs, and S. Komanduri, “Bridging the Gap
in Computer Security Warnings: A Mental Model Approach,” IEEE Security
& Privacy, vol. 9, no. 2, pp. 18–26, 2011 (see p. 132).

[43] G. Brooks, G. J. Hansen, and S. Simmons, “A new approach to debugging
optimized code,” in Proceedings of the ACM SIGPLAN 1992 Conference on
Programming Language Design and Implementation, ser. PLDI ’92, San
Francisco, California, USA: ACM, 1992, pp. 1–11 (see pp. 200, 201).

[44] R. Brooks, “Towards a theory of the cognitive processes in computer program-
ming,” International Journal of Human-Computer Studies, vol. 51, no. 2,
pp. 197–211, 1977 (see p. 129).

[45] ——, “Towards a theory of the comprehension of computer programs,” Inter-
national Journal of Man-Machine Studies, vol. 18, no. 6, pp. 543–554, 1983
(see p. 129).

155

[46] N. C. C. Brown and A. Altadmri, “Novice Java Programming Mistakes:
Large-Scale Data vs. Educator Beliefs,” Trans. Comput. Educ., vol. 17, no. 2,
7:1–7:21, 2017 (see p. 136).

[47] P. J. Brown, “’My system gives excellent error messages’–or does it?” Software:
Practice and Experience, vol. 12, no. 1, pp. 91–94, 1982 (see p. 210).

[48] ——, “Error messages: The neglected area of the man/machine interface,”
Commun. ACM, vol. 26, no. 4, pp. 246–249, 1983 (see pp. 47, 103, 124, 196,
210, 271).

[49] P. Brusilovsky, E. Calabrese, J. Hvorecky, A. Kouchnirenko, and P. Miller,
“Mini-languages: a way to learn programming principles,” Education and
Information Technologies, vol. 2, no. 1, pp. 65–83, 1997 (see p. 137).

[50] S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid, M. Moskal, N.
Tillmann, and J. Kato, “It’s alive! continuous feedback in ui programming,”
in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’13, Seattle, Washington,
USA: ACM, 2013, pp. 95–104 (see p. 203).

[51] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte, B.
Sharif, and S. Tamm, “Eye movements in code reading: Relaxing the linear
order,” in ICPC, Florence, Italy, 2015, pp. 255–265 (see p. 74).

[52] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang, “Compositional
shape analysis by means of bi-abduction,” J. ACM, vol. 58, no. 6, 26:1–26:66,
2011 (see p. 276).

[53] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding In-
depth Semistructured Interviews,” Sociological Methods & Research, vol. 42,
no. 3, pp. 294–320, 2013 (see p. 112).

[54] J. C. Campbell, A. Hindle, and J. N. Amaral, “Syntax errors just aren’t
natural: improving error reporting with language models,” in Proceedings of
the 11th Working Conference on Mining Software Repositories - MSR 2014,
2014, pp. 252–261 (see pp. 29, 30, 100, 103).

[55] E. Chailloux, P. Manoury, and B. Pagano, “Program Analysis Tools,” in
Developing Applications with Objective Caml, O’Reilly Media, 2000 (see
pp. 24, 25).

156

[56] B. Chandrasekaran and W. Swartout, “Explanations in knowledge systems:
the role of explicit representation of design knowledge,” IEEE Expert, vol. 6,
no. 3, pp. 47–49, 1991 (see p. 132).

[57] B. Chandrasekaran, M. C. Tanner, and J. R. Josephson, “Explaining control
strategies in problem solving,” IEEE Expert, vol. 4, no. 1, pp. 9–15, 1989 (see
p. 14).

[58] A. Charguéraud, “Improving Type Error Messages in OCaml,” in Proceedings
ML/OCaml, 2014, pp. 80–97. arXiv: 1512.01897 (see pp. 37, 38).

[59] P. Charles and D. Shields, Frequently asked questions about jikes, 1998 (see
p. 109).

[60] S. Chen, M. Erwig, and K. Smeltzer, “Let’s hear both sides: On combining
type-error reporting tools,” in VL/HCC ’14, 2014, pp. 145–152 (see p. 100).

[61] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and J. Regehr,
“Taming compiler fuzzers,” in Proceedings of the 34th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, ser. PLDI
’13, Seattle, Washington, USA: ACM, 2013, pp. 197–208 (see p. 205).

[62] S. Cherem, L. Princehouse, and R. Rugina, “Practical memory leak detection
using guarded value-flow analysis,” in Proceedings of the 28th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
ser. PLDI ’07, San Diego, California, USA: ACM, 2007, pp. 480–491 (see
p. 203).

[63] P. Chiusano. (2017). Unison: Next-generation programming platform, [On-
line]. Available: http://unisonweb.org/ (see p. 134).

[64] M. Christakis and C. Bird, “What developers want and need from program
analysis: an empirical study,” in Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering - ASE 2016, New
York, New York, USA: ACM Press, 2016, pp. 332–343 (see pp. 50, 125, 196).

[65] W. J. Clancey, “The epistemology of a rule-based expert system —a frame-
work for explanation,” Artificial Intelligence, vol. 20, no. 3, pp. 215–251, 1983
(see p. 132).

[66] Clang Static Analyzer, http://clang-analyzer.llvm.org/ (see p. 71).

157

https://arxiv.org/abs/1512.01897
http://unisonweb.org/
http://clang-analyzer.llvm.org/

[67] E. M. Clarke, “The Birth of Model Checking,” in 25 Years of Model Checking:
History, Achievements, Perspectives, O. Grumberg and H. Veith, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1–26 (see p. 39).

[68] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. The MIT
Press, 2000 (see p. 39).

[69] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C Pro-
grams,” in, Springer, Berlin, Heidelberg, 2004, pp. 168–176 (see p. 40).

[70] Compiler errors for humans (see pp. 34, 118).

[71] R. W. Conway and T. R. Wilcox, “Design and Implementation of a Diagnostic
Compiler for PL/I,” Commun. ACM, vol. 16, no. 3, pp. 169–179, 1973 (see
pp. 135, 139).

[72] V. C. Conzola and M. S. Wogalter, “A Communication–Human Information
Processing (C–HIP) approach to warning effectiveness in the workplace,”
Journal of Risk Research, vol. 4, no. 4, pp. 309–322, 2001 (see p. 131).

[73] L. Cooke and E. Cuddihy, “Using eye tracking to address limitations in
think-aloud protocol,” English, in International Professional Communication
Conference, 2005, pp. 653–658 (see p. 74).

[74] E. Coppa, C. Demetrescu, and I. Finocchi, “Input-sensitive profiling,” in
Proceedings of the 33rd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, ser. PLDI ’12, Beijing, China: ACM, 2012,
pp. 89–98 (see p. 205).

[75] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby, “Bandera: A Source-level
Interface for Model Checking Java Programs,” in Proceedings of the 22Nd
International Conference on Software Engineering, ser. ICSE ’00, New York,
NY, USA: ACM, 2000, pp. 762–765 (see p. 40).

[76] D. S. Coutant, S. Meloy, and M. Ruscetta, “Doc: A practical approach to
source-level debugging of globally optimized code,” in Proceedings of the
ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation, ser. PLDI ’88, Atlanta, Georgia, USA: ACM, 1988, pp. 125–
134 (see p. 200).

158

[77] J. W. Creswell, Research Design: Qualitative, Quantitative, and Mixed Meth-
ods Approaches, Fourth. SAGE Publications, 2014 (see p. 16).

[78] M. E. Crosby, J. Scholtz, and S. Wiedenbeck, “The roles beacons play in
comprehension for novice and expert programmers,” in 14th Workshop of the
Psychology of Programming Interest Group, 2002, pp. 58–73 (see p. 129).

[79] M. Crotty, The Foundations of Social Research: Meaning and Perspective in
the Research Process. SAGE Publications, 1998 (see p. 16).

[80] C. Csallner and Y. Smaragdakis, “Check ’N’ Crash: Combining Static Check-
ing and Testing,” in Proceedings of the 27th International Conference on Soft-
ware Engineering, ser. ICSE ’05, New York, NY, USA: ACM, 2005, pp. 422–
431 (see p. 25).

[81] V. D’Silva, D. Kroening, and G. Weissenbacher, “A Survey of Automated Tech-
niques for Formal Software Verification,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 27, no. 7, pp. 1165–
1178, 2008 (see p. 39).

[82] L. Damas and R. Milner, “Principal type-schemes for functional programs,”
in Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’82, Albuquerque, New Mexico: ACM,
1982, pp. 207–212 (see p. 36).

[83] N. Danas, T. Nelson, L. Harrison, S. Krishnamurthi, and D. J. Dougherty,
“User Studies of Principled Model Finder Output,” in Software Engineering
and Formal Methods, A. Cimatti and M. Sirjani, Eds., Cham: Springer
International Publishing, 2017, pp. 168–184 (see pp. 41, 196).

[84] S. A. Dart, R. J. Ellison, P. H. Feiler, and A. N. Habermann, “Software
Development Environments,” Computer, vol. 20, no. 11, pp. 18–28, 1987 (see
p. 42).

[85] I. F. Darwin, Java Cookbook. O’Reilly Media, Inc., 2004 (see p. 109).

[86] S. Davies, H. Haines, B. Norris, and J. R. Wilson, “Safety pictograms: are
they getting the message across?” Applied Ergonomics, vol. 29, no. 1, pp. 15–
23, 1998 (see p. 132).

159

[87] E. A. Davis, M. C. Linn, and M. Clancy, “Learning to Use Parentheses and
Quotes in LISP,” Computer Science Education, vol. 6, no. 1, pp. 15–31, 1995
(see p. 135).

[88] R. Davis, “Expert Systems: Where Are We? And Where Do We Go from
Here?” AI Magazine, vol. 3, no. 2, p. 3, 1982 (see p. 132).

[89] M. Dean, “How a computer should talk to people,” IBM Systems Journal,
vol. 21, no. 4, pp. 424–453, 1982 (see pp. 15, 47, 124, 270).

[90] P. Degano and C. Priami, “Comparison of syntactic error handling in LR
parsers,” Software: Practice and Experience, vol. 25, no. 6, pp. 657–679, 1995
(see p. 30).

[91] ——, “LR techniques for handling syntax errors,” Computer Languages,
vol. 24, no. 2, pp. 73–98, 1998 (see p. 30).

[92] D. M. DeJoy, “Consumer Product Warnings: Review and Analysis of Effective-
ness Research,” Proceedings of the Human Factors Society Annual Meeting,
vol. 33, no. 15, pp. 936–940, 1989 (see p. 131).

[93] P. Denny, A. Luxton-Reilly, and D. Carpenter, “Enhancing syntax error
messages appears ineffectual,” in ITiCSE, 2014, pp. 273–278 (see pp. 50,
100, 138, 139).

[94] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx, “Understanding
the Syntax Barrier for Novices,” in Proceedings of the 16th Annual Joint
Conference on Innovation and Technology in Computer Science Education,
ser. ITiCSE ’11, New York, NY, USA: ACM, 2011, pp. 208–212 (see p. 135).

[95] N. K. Denzin, “Moments, Mixed Methods, and Paradigm Dialogs,” Qualitative
Inquiry, vol. 16, no. 6, pp. 419–427, 2010 (see p. 17).

[96] M. A. DeTurck, I.-H. Chih, and Y.-P. Hsu, “Three Studies Testing the Effects
of Role Models on Product Users’ Safety Behavior,” Human Factors, vol. 41,
no. 3, pp. 397–412, 1999 (see p. 132).

[97] L. Diekmann and L. Tratt, “Eco: A Language Composition Editor BT -
Software Language Engineering: 7th International Conference, SLE 2014,
Västerås, Sweden, September 15-16, 2014. Proceedings,” in, B. Combemale,

160

D. J. Pearce, O. Barais, and J. J. Vinju, Eds., Cham: Springer International
Publishing, 2014, pp. 82–101 (see p. 134).

[98] I. Dillig, T. Dillig, and A. Aiken, “Automated error diagnosis using abduc-
tive inference,” in Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’12, Beijing,
China: ACM, 2012, pp. 181–192 (see p. 203).

[99] D. von Dincklage and A. Diwan, “Explaining failures of program analyses,”
in Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’08, Tucson, AZ, USA:
ACM, 2008, pp. 260–269 (see p. 204).

[100] A. Dix, J. Finlay, G. D. Abowd, and R. Beale, Human-Computer Interaction,
3rd ed. Prentice-Hall, 2004 (see p. 46).

[101] V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang, “Programming environ-
ments based on structured editors: The MENTOR experience,” INSTITUT
NATIONAL DE RECHERCHE D’INFORMATIQUE ET D’AUTOMATIQUE
ROCQUENCOURT (FRANCE), Tech. Rep., 1980 (see p. 134).

[102] dotCover: A code coverage tool for .NET, http://www.jetbrains.com/dotcover/
(see p. 42).

[103] E. Duarte, F. Rebelo, J. Teles, and P. Noriega, “What should i do? - A
study about conflicting and ambiguous warning messages,” Work, vol. 41,
no. SUPPL.1, pp. 3633–3640, 2012 (see p. 132).

[104] D. Duggan and F. Bent, “Explaining type inference,” Science of Computer
Programming, vol. 27, no. 1, pp. 37–83, 1996 (see pp. 36, 39).

[105] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting Empir-
ical Methods for Software Engineering,” in Guide to Advanced Empirical
Software Engineering, F. Shull, J. Singer, and D. Sjøberg, Eds., 2008, ch. 11,
pp. 285–311 (see p. 16).

[106] Eclipse, http://www.eclipse.org/luna/ (see pp. 42, 57).

[107] J. Edlund, J. Gustafson, M. Heldner, and A. Hjalmarsson, “Towards human-
like spoken dialogue systems,” Speech Communication, vol. 50, no. 8, pp. 630–
645, 2008 (see p. 15).

161

http://www.jetbrains.com/dotcover/
http://www.eclipse.org/luna/

[108] J. Edworthy, Warning design: A research prospective. CRC Press, 1996 (see
p. 131).

[109] J. Edworthy and S. Dale, “Extending Knowledge of the Effects of Social
Influence in Warning Compliance,” Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 44, no. 25, pp. 107–110, 2000 (see
p. 132).

[110] F. H. van Eemeren, B. Garssen, E. C. W. Krabbe, A. F. Snoeck Henkemans,
B. Verheij, and J. H. M. Wagemans, Handbook of Argumentation Theory.
Dordrecht: Springer Netherlands, 2014 (see pp. 105, 121).

[111] N. El Boustani and J. Hage, “Improving type error messages for generic java,”
in Proceedings of the 2009 ACM SIGPLAN workshop on Partial evaluation
and program manipulation - PEPM ’09, New York, New York, USA: ACM
Press, 2008, p. 131 (see p. 39).

[112] F. Elbabour, O. Alhadreti, and P. Mayhew, “Eye Tracking in Retrospective
Think-aloud Usability Testing: Is There Added Value?” J. Usability Studies,
vol. 12, no. 3, pp. 95–110, 2017 (see p. 73).

[113] M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in WODA
2003: ICSE Workshop on Dynamic Analysis, 2003, pp. 24–27 (see pp. 24, 25).

[114] (2017). Error Prone, [Online]. Available: http://errorprone.info/ (visited
on 01/01/2018) (see pp. 31, 277).

[115] G. Evangelidis, V. Dagdilelis, M. Satratzemi, and V. Efopoulos, “X-compiler:
yet another integrated novice programming environment,” in Proceedings
IEEE International Conference on Advanced Learning Technologies, 2001,
pp. 166–169 (see pp. 135, 139).

[116] M. Faddegon and O. Chitil, “Lightweight computation tree tracing for lazy
functional languages,” in Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’16, Santa
Barbara, CA, USA: ACM, 2016, pp. 114–128 (see p. 206).

[117] E. A. Feigenbaum, B. G. Buchanan, and J. Lederberg, “On generality and
problem solving: A case study using the dendral program,” STANFORD
UNIV CALIF DEPT OF COMPUTER SCIENCE, Tech. Rep., 1970 (see
p. 132).

162

http://errorprone.info/

[118] R. Filik, K. Purdy, A. Gale, and D. Gerrett, “Labeling of Medicines and
Patient Safety: Evaluating Methods of Reducing Drug Name Confusion,”
Human Factors, vol. 48, no. 1, pp. 39–47, 2006 (see p. 131).

[119] R. B. Findler, C. Flanagan, M. Flatt, S. Krishnamurthi, and M. Felleisen,
“DrScheme: A pedagogic programming environment for scheme,” in Program-
ming Languages: Implementations, Logics, and Programs (PLILP ’97), H.
Glaser, P. Hartel, and H. Kuchen, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 1997, pp. 369–388 (see p. 135).

[120] G. Fischer, T. Mastaglio, B. Reeves, and J. Rieman, “Minimalist explanations
in knowledge-based systems,” in Twenty-Third Annual Hawaii International
Conference on System Sciences, vol. iii, 1990, 309–317 vol.3 (see p. 133).

[121] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and M. Felleisen,
“Catching bugs in the web of program invariants,” in Proceedings of the
ACM SIGPLAN 1996 Conference on Programming Language Design and
Implementation, ser. PLDI ’96, Philadelphia, Pennsylvania, USA: ACM, 1996,
pp. 23–32 (see pp. 44, 123, 204).

[122] S. D. Fleming, C. Scaffidi, D. Piorkowski, M. Burnett, R. Bellamy, J. Lawrance,
and I. Kwan, “An Information Foraging Theory Perspective on Tools for De-
bugging, Refactoring, and Reuse Tasks,” ACM Transactions on Software
Engineering and Methodology, vol. 22, no. 2, pp. 1–41, 2013 (see p. 130).

[123] T. Flowers, C. A. Carver, and J. Jackson, “Empowering students and build-
ing confidence in novice programmers through Gauntlet,” in 34th Annual
Frontiers in Education, 2004. FIE 2004., 2004, T3H/10–T3H/13 Vol. 1 (see
p. 139).

[124] B. J. Fogg, “Persuasive Technology: Using Computers to Change What We
Think and Do,” Ubiquity, vol. 2002, no. December, 2002 (see p. 132).

[125] M. Fowler, Refactoring: Improving the Design of Existing Code. 1999, p. 464
(see p. 217).

[126] S. N. Freund and E. S. Roberts, “Thetis: An ANSI C Programming Environ-
ment Designed for Introductory Use,” in Proceedings of the Twenty-seventh
SIGCSE Technical Symposium on Computer Science Education, ser. SIGCSE
’96, New York, NY, USA: ACM, 1996, pp. 300–304 (see pp. 135, 139).

163

[127] M. Frické, Logic and the Organization of Information. New York, NY: Springer
New York, 2012 (see p. 212).

[128] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor, “Kremlin: Rethinking
and rebooting gprof for the multicore age,” in Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI ’11, San Jose, California, USA: ACM, 2011, pp. 458–469 (see
p. 205).

[129] H. Gast, “Explaining ML Type Errors by Data Flows BT - Implementation
and Application of Functional Languages: 16th International Workshop, IFL
2004, Lübeck, Germany, September 8-10, 2004 Revised Selected Papers,” in,
C. Grelck, F. Huch, G. J. Michaelson, and P. Trinder, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 72–89 (see p. 39).

[130] GazePoint, http://www.gazept.com/ (see p. 57).

[131] X. Ge and E. Murphy-Hill, “Manual refactoring changes with automated
refactoring validation,” in Proceedings of the 36th International Conference
on Software Engineering - ICSE 2014, New York, New York, USA: ACM
Press, 2014, pp. 1095–1105 (see p. 135).

[132] L. M. Given, Ed., The Sage Encyclopedia of Qualitative Research Methods.
2008, p. 1043 (see p. 16).

[133] A. Gomolka and B. Humm, “Structure Editors: Old Hat or Future Vision?” In
Evaluation of Novel Approaches to Software Engineering: 6th International
Conference, L. A. Maciaszek and K. Zhang, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 82–97 (see p. 134).

[134] Google. (). Google c++ style guide, [Online]. Available: https : / / google .

github.io/styleguide/cppguide.html (visited on 01/01/2018) (see pp. 137,
138).

[135] A. Gosain and G. Sharma, “A survey of dynamic program analysis techniques
and tools,” in Proceedings of the 3rd International Conference on Frontiers
of Intelligent Computing: Theory and Applications (FICTA) 2014: Volume
1, S. C. Satapathy, B. N. Biswal, S. K. Udgata, and J. Mandal, Eds. Cham:
Springer International Publishing, 2015, pp. 113–122 (see pp. 24, 25).

164

http://www.gazept.com/
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html

[136] ——, “Static analysis: A survey of techniques and tools,” in Intelligent Com-
puting and Applications: Proceedings of the International Conference on ICA,
22-24 December 2014, D. Mandal, R. Kar, S. Das, and B. K. Panigrahi, Eds.
New Delhi: Springer India, 2015, pp. 581–591 (see p. 25).

[137] M. J. Grant and A. Booth, “A typology of reviews: an analysis of 14 review
types and associated methodologies,” Health Information & Libraries Jour-
nal, vol. 26, no. 2, pp. 91–108, 2009 (see p. 198).

[138] T. Green and M. Petre, “Usability analysis of visual programming environ-
ments: A ‘Cognitive Dimensions’ framework,” Journal of Visual Languages
& Computing, vol. 7, no. 2, pp. 131–174, 1996 (see p. 91).

[139] D. Greenaway, J. Lim, J. Andronick, and G. Klein, “Don’t sweat the small
stuff: Formal verification of C code without the pain,” in Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’14, Edinburgh, United Kingdom: ACM, 2014,
pp. 429–439 (see p. 200).

[140] S. Gregor and I. Benbasat, “Explanations from Intelligent Systems: Theo-
retical Foundations and Implications for Practice,” MIS Quarterly, vol. 23,
no. 4, pp. 497–530, 1999 (see p. 132).

[141] A. Groce and W. Visser, “What Went Wrong: Explaining Counterexamples,”
in Model Checking Software, T. Ball and S. K. Rajamani, Eds., Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2003, pp. 121–136 (see p. 41).

[142] L. Gugerty and G. Olson, “Debugging by skilled and novice programmers,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’86, Boston, Massachusetts, USA: ACM, 1986, pp. 171–174
(see p. 138).

[143] A. Gurfinkel and M. Chechik, “Proof-Like Counter-Examples,” in Tools and
Algorithms for the Construction and Analysis of Systems, H. Garavel and J.
Hatcliff, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 160–
175 (see p. 42).

[144] J. Ha, C. J. Rossbach, J. V. Davis, I. Roy, H. E. Ramadan, D. E. Porter, D. L.
Chen, and E. Witchel, “Improved error reporting for software that uses black-
box components,” in Proceedings of the 28th ACM SIGPLAN Conference on

165

Programming Language Design and Implementation, ser. PLDI ’07, San
Diego, California, USA: ACM, 2007, pp. 101–111 (see p. 201).

[145] M. van den Haak, M. De Jong, and P. Jan Schellens, “Retrospective vs.
concurrent think-aloud protocols: Testing the usability of an online library
catalogue,” Behaviour & Information Technology, vol. 22, no. 5, pp. 339–351,
2003 (see p. 61).

[146] K. Hammond and V. J. Rayward-Smith, “A survey on syntactic error recovery
and repair,” Computer Languages, vol. 9, no. 1, pp. 51–67, 1984 (see p. 30).

[147] S. Hanenberg, “Faith, hope, and love: An essay on software science’s neglect of
human factors,” in Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, ser. OOPSLA
’10, Reno/Tahoe, Nevada, USA: ACM, 2010, pp. 933–946 (see pp. 196, 207).

[148] M. Harbach, S. Fahl, P. Yakovleva, and M. Smith, “Sorry, I Don’t Get It: An
Analysis of Warning Message Texts,” in Financial Cryptography and Data
Security, A. A. Adams, M. Brenner, and M. Smith, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 94–111 (see pp. 131, 132).

[149] C. Hardaker, “Trolling in asynchronous computer-mediated communication:
From user discussions to academic definitions,” Journal of Politeness Re-
search. Language, Behaviour, Culture, vol. 6, no. 2, pp. 215–242, 2010 (see
p. 112).

[150] W. A. Harrell, “Effect of Two Warning Signs on Adult Supervision and Risky
Activities by Children in Grocery Shopping Carts,” Psychological Reports,
vol. 92, no. 3, pp. 889–898, 2003 (see p. 132).

[151] L. R. Harris and M. Jenkin, “Vision and Attention,” in Vision and Attention,
Springer New York, 2001, pp. 1–17 (see p. 62).

[152] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What would
other programmers do,” in CHI ’10, 2010, pp. 1019–1028 (see pp. 35, 100,
211).

[153] R. W. Hasker, “HiC: A C++ Compiler for CS1,” J. Comput. Sci. Coll., vol. 18,
no. 1, pp. 56–64, 2002 (see p. 135).

166

[154] A. Head, C. Appachu, M. A. Hearst, and B. Hartmann, “Tutorons: Generating
context-relevant, on-demand explanations and demonstrations of online
code,” in 2015 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), IEEE, 2015, pp. 3–12 (see p. 35).

[155] B. Heeren, “Top quality type error messages,” PhD, Universiteit Utrecht,
2005 (see p. 39).

[156] B. Heeren, J. Hage, and S. D. Swierstra, “Scripting the type inference pro-
cess,” in Proceedings of the Eighth ACM SIGPLAN International Conference
on Functional Programming, ser. ICFP ’03, Uppsala, Sweden: ACM, 2003,
pp. 3–13 (see p. 39).

[157] B. Heeren, D. Leijen, and A. van IJzendoorn, “Helium, for learning haskell,”
in Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell, ser. Haskell
’03, Uppsala, Sweden: ACM, 2003, pp. 62–71 (see pp. 38, 137, 280).

[158] P. Hejmady and N. H. Narayanan, “Visual attention patterns during program
debugging with an IDE,” in ETRA, Santa Barbara, California, 2012, pp. 197–
200 (see p. 74).

[159] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software Verification
with BLAST,” in Model Checking Software, T. Ball and S. K. Rajamani,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 235–239 (see
p. 40).

[160] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness
of software,” in 2012 34th International Conference on Software Engineering
(ICSE), 2012, pp. 837–847 (see p. 134).

[161] K. J. Hoffman, P. Eugster, and S. Jagannathan, “Semantics-aware trace
analysis,” in Proceedings of the 30th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, ser. PLDI ’09, Dublin, Ireland:
ACM, 2009, pp. 453–464 (see p. 201).

[162] R. C. Holt, D. B. Wortman, D. T. Barnard, and J. R. Cordy, “SP/K: A Sys-
tem for Teaching Computer Programming,” Commun. ACM, vol. 20, no. 5,
pp. 301–309, 1977 (see p. 135).

[163] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions on Software
Engineering, vol. 23, no. 5, pp. 279–295, 1997 (see p. 40).

167

[164] H. Horacek, “A Model for Adapting Explanations to the User’s Likely Infer-
ences,” User Modeling and User-Adapted Interaction, vol. 7, no. 1, pp. 1–55,
1997 (see p. 133).

[165] J. J. Horning, “What the compiler should tell the user,” in Compiler Con-
struction: An Advanced Course, ser. Lecture Notes in Computer Science,
vol. 21, Berlin, Heidelberg: Springer, 1974, pp. 525–548 (see pp. 46–48, 124,
269).

[166] S. Horwitz, “Identifying the semantic and textual differences between two
versions of a program,” in Proceedings of the ACM SIGPLAN 1990 Conference
on Programming Language Design and Implementation, ser. PLDI ’90, White
Plains, New York, USA: ACM, 1990, pp. 234–245 (see p. 202).

[167] Y. Hoskote, T. Kam, P.-H. Ho, and X. Zhao, “Coverage estimation for symbolic
model checking,” in Proceedings 1999 Design Automation Conference (Cat.
No. 99CH36361), 1999, pp. 300–305 (see p. 42).

[168] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and correcting
Java programming errors for introductory computer science students,” ACM
SIGCSE Bulletin, vol. 35, no. 1, p. 153, 2003 (see pp. 139, 211).

[169] (2018). Infer static analyzer, [Online]. Available: http://fbinfer.com/ (vis-
ited on 01/01/2018) (see p. 276).

[170] IntelliJ, https://www.jetbrains.com (see pp. 42, 57).

[171] C. Isradisaikul and A. C. Myers, “Finding counterexamples from parsing
conflicts,” in Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, ser. PLDI ’15, Portland, OR,
USA: ACM, 2015, pp. 555–564 (see p. 202).

[172] J. Jackson, M. Cobb, and C. Carver, “Identifying top Java errors for novice
programmers,” in Proceedings Frontiers in Education 35th Annual Confer-
ence, IEEE, 2005, T4C–24–T4C–27 (see pp. 136, 210).

[173] J. Z. Jacobson and P. Dodwell, “Saccadic eye movements during reading,”
Brain and Language, vol. 8, no. 3, pp. 303–314, 1979 (see pp. 63, 69).

168

http://fbinfer.com/
https://www.jetbrains.com

[174] M. C. Jadud, “A First Look at Novice Compilation Behaviour Using BlueJ,”
Computer Science Education, vol. 15, no. 1, pp. 25–40, 2005 (see pp. 135,
136).

[175] L. S. Jaynes and D. B. Boles, “The Effect of Symbols on Warning Compliance,”
Proceedings of the Human Factors Society Annual Meeting, vol. 34, no. 14,
pp. 984–987, 1990 (see p. 132).

[176] C. L. Jeffery, “Generating LR syntax error messages from examples,” ACM
Transactions on Programming Languages and Systems, vol. 25, no. 5, pp. 631–
640, 2003 (see pp. 31, 100).

[177] R. Jhala and R. Majumdar, “Software Model Checking,” ACM Comput. Surv.,
vol. 41, no. 4, 21:1–21:54, 2009 (see p. 40).

[178] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atomicity-
violation fixing,” in Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’11, San
Jose, California, USA: ACM, 2011, pp. 389–400 (see p. 200).

[179] A. Johnson, L. Waye, S. Moore, and S. Chong, “Exploring and enforcing
security guarantees via program dependence graphs,” in Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’15, Portland, OR, USA: ACM, 2015, pp. 291–302
(see p. 206).

[180] B. Johnson, “A Tool (Mis)communication Theory and Adaptive Approach for
Supporting Developer Tool Use,” PhD thesis, North Carolina State Univer-
sity, 2017 (see p. 45).

[181] B. Johnson, R. Pandita, E. Murphy-Hill, and S. Heckman, “Bespoke tools:
Adapted to the concepts developers know,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015,
Bergamo, Italy: ACM, 2015, pp. 878–881 (see p. 133).

[182] B. Johnson, R. Pandita, J. Smith, D. Ford, S. Elder, E. Murphy-Hill, S.
Heckman, and C. Sadowski, “A cross-tool communication study on program
analysis tool notifications,” in FSE, 2016, pp. 73–84 (see pp. 63, 125).

[183] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t soft-
ware developers use static analysis tools to find bugs?” English, in 2013

169

35th International Conference on Software Engineering (ICSE), IEEE, 2013,
pp. 672–681 (see pp. 31, 50, 103, 108, 125, 196).

[184] H. Johnson and P. Johnson, “Explanation Facilities and Interactive Sys-
tems,” in Proceedings of the 1st International Conference on Intelligent User
Interfaces, ser. IUI ’93, New York, NY, USA: ACM, 1993, pp. 159–166 (see
p. 133).

[185] R. B. Johnson and A. J. Onwuegbuzie, “Mixed Methods Research: A Research
Paradigm Whose Time Has Come,” Educational Researcher, vol. 33, no. 7,
pp. 14–26, 2004 (see p. 16).

[186] M. Jose and R. Majumdar, “Cause clue clauses: Error localization using max-
imum satisfiability,” in Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’11, San
Jose, California, USA: ACM, 2011, pp. 437–446 (see p. 204).

[187] J. M. Joyce, “Kullback-leibler divergence,” in International Encyclopedia of
Statistical Science, M. Lovric, Ed. Springer Berlin Heidelberg, 2011, pp. 720–
722 (see p. 62).

[188] E. Kantorowitz and H. Laor, “Automatic generation of useful syntax error
messages,” Software: Practice and Experience, vol. 16, no. 7, pp. 627–640,
1986 (see pp. 47, 48, 100, 124, 271).

[189] C. Kelleher and R. Pausch, “Lowering the Barriers to Programming: A
Taxonomy of Programming Environments and Languages for Novice Pro-
grammers,” ACM Comput. Surv., vol. 37, no. 2, pp. 83–137, 2005 (see p. 135).

[190] A. Kent and B. Kent. (). Isomof, [Online]. Available: https://isomorf.io/
(visited on 01/01/2018) (see p. 134).

[191] Y. P. Khoo, J. S. Foster, M. Hicks, and V. Sazawal, “Path projection for
user-centered static analysis tools,” in PASTE, 2008, p. 57 (see p. 123).

[192] A. A. Khwaja and J. E. Urban, “Syntax-directed Editing Environments:
Issues and Features,” in Proceedings of the 1993 ACM/SIGAPP Symposium
on Applied Computing: States of the Art and Practice, ser. SAC ’93, New York,
NY, USA: ACM, 1993, pp. 230–237 (see p. 134).

170

https://isomorf.io/

[193] S. Kim and M. S. Wogalter, “Habituation, Dishabituation, and Recovery Ef-
fects in Visual Warnings,” Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 53, no. 20, pp. 1612–1616, 2009 (see p. 132).

[194] B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK,
Keele University, vol. 33, no. 2004, pp. 1–26, 2004 (see p. 197).

[195] P. B. Kline, C. C. Braun, N. Peterson, and N. C. Silver, “The Impact of Color
on Warnings Research,” Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 37, no. 14, pp. 940–944, 1993 (see p. 131).

[196] A. Ko and B. Myers, “Development and evaluation of a model of programming
errors,” in IEEE Symposium on Human Centric Computing Languages and
Environments, IEEE, 2003, pp. 7–14 (see p. 125).

[197] A. J. Ko and B. A. Myers, “A framework and methodology for studying
the causes of software errors in programming systems,” Journal of Visual
Languages & Computing, vol. 16, no. 1, pp. 41–84, 2005 (see pp. 77, 80).

[198] ——, “Finding causes of program output with the Java Whyline,” in Proceed-
ings of the 27th international conference on Human factors in computing
systems - CHI 09, New York, New York, USA: ACM Press, 2009, pp. 1569–
1578 (see p. 44).

[199] J. Koenemann and S. P. Robertson, “Expert Problem Solving Strategies
for Program Comprehension,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ser. CHI ’91, New York, NY, USA:
ACM, 1991, pp. 125–130 (see p. 128).

[200] N. Kulkarni and V. Varma, “Supporting Comprehension of Unfamiliar Pro-
grams by Modeling an Expert’s Perception,” in Proceedings of the 3rd Inter-
national Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering, ser. RAISE 2014, New York, NY, USA: ACM, 2014, pp. 19–24
(see p. 138).

[201] S. K. Kummerfeld and J. Kay, “The neglected battle fields of syntax errors,”
pp. 105–111, 2003 (see p. 29).

[202] W. Landi and William, “Undecidability of static analysis,” ACM Letters on
Programming Languages and Systems, vol. 1, no. 4, pp. 323–337, 1992 (see
p. 122).

171

[203] B. Lang, “On the usefulness of syntax directed editors,” in Advanced Pro-
gramming Environments: Proceedings of an International Workshop, R. Con-
radi, T. M. Didriksen, and D. H. Wanvik, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 1986, pp. 47–51 (see p. 134).

[204] B. Lang, “Teaching New Programmers: A Java Tool Set As a Student Teach-
ing Aid,” in Proceedings of the Inaugural Conference on the Principles and
Practice of Programming, 2002 and Proceedings of the Second Workshop
on Intermediate Representation Engineering for Virtual Machines, 2002,
ser. PPPJ ’02/IRE ’02, Maynooth, County Kildare, Ireland, Ireland: National
University of Ireland, 2002, pp. 95–100 (see p. 139).

[205] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong pro-
gram analysis & transformation,” in International Symposium on Code
Generation and Optimization, 2004. CGO 2004., IEEE, 2004, pp. 75–86 (see
p. 25).

[206] K. R. Laughery and M. S. Wogalter, “Designing Effective Warnings,” Reviews
of Human Factors and Ergonomics, vol. 2, no. 1, pp. 241–271, 2006 (see
p. 131).

[207] K. R. Laughery, S. L. Young, K. P. Vaubel, and J. W. Brelsford, “The Notice-
ability of Warnings on Alcoholic Beverage Containers,” Journal of Public
Policy & Marketing, vol. 12, no. 1, pp. 38–56, 1993 (see p. 131).

[208] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D. Fleming,
“How Programmers Debug, Revisited: An Information Foraging Theory
Perspective,” IEEE Transactions on Software Engineering, vol. 39, no. 2,
pp. 197–215, 2013 (see pp. 74, 130).

[209] M. R. Lehto and J. M. Miller, Warnings. Volume I-Fundamentals, Design,
and Evaluation Methodologies. Fuller Technical Publications, Ann Arbor,
Mich., 1986 (see p. 131).

[210] K. R. M. Leino, “Dafny: An automatic program verifier for functional cor-
rectness,” in Logic for Programming, Artificial Intelligence, and Reasoning:
16th International Conference, LPAR-16, Dakar, Senegal, April 25–May 1,
2010, Revised Selected Papers, E. M. Clarke and A. Voronkov, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 348–370 (see p. 276).

172

[211] B. S. Lerner, M. Flower, D. Grossman, and C. Chambers, “Searching for
type-error messages,” in Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’07, San
Diego, California, USA: ACM, 2007, pp. 425–434 (see p. 202).

[212] ——, “Searching for type-error messages,” ACM SIGPLAN Notices, vol. 42,
no. 6, p. 425, 2007 (see p. 38).

[213] S. Letovsky and E. Soloway, “Delocalized Plans and Program Comprehen-
sion,” IEEE Software, vol. 3, no. 3, pp. 41–49, 1986 (see p. 129).

[214] S. Letovsky, “Cognitive processes in program comprehension,” Journal of
Systems and Software, vol. 7, no. 4, pp. 325–339, 1987 (see p. 129).

[215] A. Leung, J. Sarracino, and S. Lerner, “Interactive parser synthesis by exam-
ple,” in Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’15, Portland, OR, USA:
ACM, 2015, pp. 565–574 (see p. 203).

[216] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via remote
program sampling,” in Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation, ser. PLDI ’03, San
Diego, California, USA: ACM, 2003, pp. 141–154 (see p. 201).

[217] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable statisti-
cal bug isolation,” in Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’05, Chicago,
IL, USA: ACM, 2005, pp. 15–26 (see p. 201).

[218] T. Lieber, J. R. Brandt, and R. C. Miller, “Addressing misconceptions about
code with always-on programming visualizations,” in CHI, 2014, pp. 2481–
2490 (see pp. 44, 123, 125).

[219] J. Liebowitz, The handbook of applied expert systems. cRc Press, 1997 (see
p. 132).

[220] B. Y. Lim, A. K. Dey, and D. Avrahami, “Why and why not explanations
improve the intelligibility of context-aware intelligent systems,” in CHI ’09,
2009, pp. 2119–2129 (see pp. 100, 132).

173

[221] C. Litecky, “An expert system for Cobol program debugging,” ACM SIGMIS
Database, vol. 20, no. 1, pp. 1–6, 1989 (see pp. 32, 211).

[222] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee, “Merlin: Specifi-
cation inference for explicit information flow problems,” in Proceedings of
the 30th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’09, Dublin, Ireland: ACM, 2009, pp. 75–86 (see
p. 206).

[223] (2017). Llvm: Expressive diagnostics, [Online]. Available: http://clang.llvm.
org/diagnostics.html (visited on 01/01/2018) (see p. 29).

[224] F. Logozzo, S. K. Lahiri, M. Fähndrich, and S. Blackshear, “Verification mod-
ulo versions: Towards usable verification,” in Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI ’14, Edinburgh, United Kingdom: ACM, 2014, pp. 294–304
(see p. 205).

[225] C. Loncaric, S. Chandra, C. Schlesinger, M. Sridharan, C. Loncaric, S. Chan-
dra, C. Schlesinger, and M. Sridharan, “A practical framework for type
inference error explanation,” in Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications - OOPSLA 2016, vol. 51, New York, New York,
USA: ACM Press, 2016, pp. 781–799 (see p. 39).

[226] E. Lotem and Y. Chuchem. (2016). Lamdu: Towards a new programming ex-
perience, [Online]. Available: http://www.lamdu.org/ (visited on 01/01/2018)
(see p. 134).

[227] M. Madsen, B. Livshits, and M. Fanning, “Practical Static Analysis of
JavaScript Applications in the Presence of Frameworks and Libraries,” in
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engi-
neering, ser. ESEC/FSE 2013, New York, NY, USA: ACM, 2013, pp. 499–509
(see p. 135).

[228] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann, “Design
lessons from the fastest Q&A site in the west,” in CHI, 2011, pp. 2857–2866
(see p. 110).

[229] J.-Y. Mao and I. Benbasat, “The Use of Explanations in Knowledge-Based
Systems: Cognitive Perspectives and a Process-Tracing Analysis,” Journal

174

http://clang.llvm.org/diagnostics.html
http://clang.llvm.org/diagnostics.html
http://www.lamdu.org/

of Management Information Systems, vol. 17, no. 2, pp. 153–179, 2000 (see
p. 133).

[230] G. Marceau, K. Fisler, and S. Krishnamurthi, “Measuring the effectiveness
of error messages designed for novice programmers,” in SIGCSE, 2011,
pp. 499–504 (see pp. 50, 139).

[231] ——, “Mind your language: On novices’ interactions with error messages,”
in ONWARD, 2011, pp. 3–17 (see pp. 125, 137, 139, 211).

[232] W. A. Martin and R. J. Fateman, “The macsyma system,” in Proceedings
of the Second ACM Symposium on Symbolic and Algebraic Manipulation,
ser. SYMSAC ’71, Los Angeles, California, USA: ACM, 1971, pp. 59–75 (see
p. 132).

[233] N. D. Matsakis and F. S. Klock II, “The rust language,” in Proceedings
of the 2014 ACM SIGAda Annual Conference on High Integrity Language
Technology, ser. HILT ’14, Portland, Oregon, USA: ACM, 2014, pp. 103–104
(see p. 278).

[234] B. Matthews, R. Andronaco, and A. Adams, “Warning signs at beaches: Do
they work?” Safety Science, vol. 62, pp. 312–318, 2014 (see p. 131).

[235] J. A. Maxwell, “Using numbers in qualitative research,” Qualitative Inquiry,
vol. 16, no. 6, pp. 475–482, 2010 (see p. 115).

[236] G. R. Mayes, “Argument-Explanation Complementarity and the Structure
of Informal Reasoning,” Informal Logic, vol. 30, no. 1, pp. 92–111, 2010 (see
p. 14).

[237] A. von Mayrhauser and A. M. Vans, “From program comprehension to tool re-
quirements for an industrial environment,” in [1993] IEEE Second Workshop
on Program Comprehension, 1993, pp. 78–86 (see p. 129).

[238] B. McAdam, “How to Repair Type Errors Automatically,” in Trends in Func-
tional Programming, Volume 3, 2002, ch. 8 (see pp. 38, 39).

[239] B. J. McAdam, “On the Unification of Substitutions in Type Inference,” in
Implementation of Functional Languages, K. Hammond, T. Davie, and C.
Clack, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 137–
152 (see pp. 38, 39).

175

[240] R. McCauley, S. Fitzgerald, G. Lewandowski, L. Murphy, B. Simon, L. Thomas,
and C. Zander, “Debugging: a review of the literature from an educational
perspective,” Computer Science Education, vol. 18, no. 2, pp. 67–92, 2008
(see p. 138).

[241] M. W. McKeon, “On the Rationale for Distinguishing Arguments from Ex-
planations,” Argumentation, vol. 27, no. 3, pp. 283–303, 2013 (see p. 14).

[242] K. R. McKeown, M. Wish, and K. Matthews, “Tailoring Explanations for the
User,” in Proceedings of the 9th International Joint Conference on Artificial
Intelligence - Volume 2, ser. IJCAI’85, San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1985, pp. 794–798 (see p. 133).

[243] M. McLuhan and Q. Fiore, “The medium is the message,” New York, vol. 123,
pp. 126–128, 1967 (see p. 9).

[244] D. Menendez and S. Nagarakatte, “Alive-infer: Data-driven precondition
inference for peephole optimizations in llvm,” in Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI ’17, Barcelona, Spain: ACM, 2017, pp. 49–63 (see p. 202).

[245] V. O. Mittal and C. L. Paris, “Generating explanations in context: The system
perspective,” Expert Systems with Applications, vol. 8, no. 4, pp. 491–503,
1995 (see p. 133).

[246] R. Molich and J. Nielsen, “Improving a human-computer dialogue,” Commu-
nications of the ACM, vol. 33, no. 3, pp. 338–348, 1990 (see p. 211).

[247] J. D. Moore, “What makes human explanations effective,” in Proceedings of
the fifteenth annual conference of the Cognitive Science Society, 1993, pp. 131–
136 (see p. 15).

[248] E. M. Moreno, K. D. Federmeier, and M. Kutas, “Switching languages,
Switching palabras (words): An electrophysiological study of code switching,”
Brain and Language, vol. 80, no. 2, pp. 188–207, 2002 (see p. 70).

[249] D. L. Morgan, “Paradigms Lost and Pragmatism Regained: Methodological
Implications of Combining Qualitative and Quantitative Methods,” Journal
of Mixed Methods Research, vol. 1, no. 1, pp. 48–76, 2007 (see p. 16).

176

[250] D. G. Morrow, C. M. Hier, W. E. Menard, and V. O. Leirer, “Icons improve
older and younger adults’ comprehension of medication information,” The
Journals of Gerontology Series B: Psychological Sciences and Social Sciences,
vol. 53, no. 4, P240–P254, 1998 (see p. 131).

[251] M. A. A. Mosleh, M. A. Alhussein, M. S. Baba, S. Malek, and S. ab Hamid, “Re-
viewing and Classification of Software Model Checking Tools,” in Advanced
Computer and Communication Engineering Technology, H. A. Sulaiman,
M. A. Othman, M. F. I. Othman, Y. A. Rahim, and N. C. Pee, Eds., Cham:
Springer International Publishing, 2016, pp. 279–294 (see p. 40).

[252] P. G. Moulton and M. E. Muller, “DITRAN—a compiler emphasizing diag-
nostics,” Communications of the ACM, vol. 10, no. 1, pp. 45–52, 1967 (see
pp. 46, 124, 135, 211, 269).

[253] F. Mulder. (2016). Awesome error messages for Dotty, [Online]. Available:
https://www.scala-lang.org/blog/2016/10/14/dotty-errors.html (visited
on 01/01/2018) (see pp. 31, 33).

[254] ——, (2016). Shape of errors to come, [Online]. Available: https://blog.rust-
lang.org/2016/08/10/Shape-of-errors-to-come.html (visited on 01/01/2018)
(see pp. 31, 34).

[255] E. Murphy-Hill, T. Barik, and A. P. Black, “Interactive ambient visualizations
for soft advice,” Information Visualization, vol. 12, no. 2, pp. 107–132, 2013
(see pp. 45, 48, 272).

[256] E. Murphy-Hill and A. P. Black, “Programmer-friendly refactoring errors,”
IEEE Transactions on Software Engineering, vol. 38, no. 6, pp. 1417–1431,
2012 (see pp. 44, 48, 272).

[257] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Speculative anal-
ysis of integrated development environment recommendations,” in OOPSLA
’12, 2012, pp. 669–682 (see pp. 210, 211).

[258] N. J. D. Nagelkerke, “A note on a general definition of the coefficient of
determination,” Biometrika, vol. 78, no. 3, pp. 691–692, 1991 (see p. 63).

[259] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder, “Auto-
matically classifying benign and harmful data races using replay analysis,”
in Proceedings of the 28th ACM SIGPLAN Conference on Programming

177

https://www.scala-lang.org/blog/2016/10/14/dotty-errors.html
https://blog.rust-lang.org/2016/08/10/Shape-of-errors-to-come.html
https://blog.rust-lang.org/2016/08/10/Shape-of-errors-to-come.html

Language Design and Implementation, ser. PLDI ’07, San Diego, California,
USA: ACM, 2007, pp. 22–31 (see p. 201).

[260] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming Q&A in StackOverflow,” in 2012
28th IEEE International Conference on Software Maintenance (ICSM), 2012,
pp. 25–34 (see p. 124).

[261] C. Nass, J. Steuer, and E. R. Tauber, “Computers Are Social Actors,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’94, New York, NY, USA: ACM, 1994, pp. 72–78 (see p. 15).

[262] National Cryptologic School, “Lesson Four,” Ft. George G. Meade, Maryland,
Tech. Rep., 1990 (see pp. 47, 272).

[263] NCrunch: Concurrent testing tool for Visual Studio, http://www.ncrunch.net/
(see p. 42).

[264] T. Nelson, N. Danas, D. J. Dougherty, and S. Krishnamurthi, “The Power of
”Why” and ”Why Not”: Enriching Scenario Exploration with Provenance,”
in Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2017, New York, NY, USA: ACM, 2017, pp. 106–
116 (see p. 41).

[265] T. Nelson, S. Saghafi, D. J. Dougherty, K. Fisler, and S. Krishnamurthi, “Alu-
minum: Principled scenario exploration through minimality,” in Proceedings
of the 2013 International Conference on Software Engineering, ser. ICSE ’13,
San Francisco, CA, USA: IEEE Press, 2013, pp. 232–241 (see p. 41).

[266] P. C. Nguyen and D. Van Horn, “Relatively complete counterexamples for
higher-order programs,” in Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, ser. PLDI ’15,
Portland, OR, USA: ACM, 2015, pp. 446–456 (see p. 202).

[267] J. Nielsen, “Heuristic evaluation,” Usability inspection methods, vol. 17, no. 1,
pp. 25–62, 1994 (see p. 124).

[268] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” ser. CHI
’90, 1990, pp. 249–256 (see p. 91).

178

http://www.ncrunch.net/

[269] M.-H. Nienaltowski, M. Pedroni, and B. Meyer, “Compiler error messages:
What can help novices?” In SIGCSE ’08, 2008, pp. 168–172 (see pp. 100, 108,
138, 139).

[270] D. A. Norman, “Design principles for human-computer interfaces,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’83, Boston, Massachusetts, USA: ACM, 1983, pp. 1–10 (see p. 142).

[271] P. Ohmann, A. Brooks, L. D’Antoni, and B. Liblit, “Control-flow recovery
from partial failure reports,” in Proceedings of the 38th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, ser. PLDI
’17, Barcelona, Spain: ACM, 2017, pp. 390–405 (see p. 206).

[272] C. Omar, I. Voysey, M. Hilton, J. Sunshine, C. L. Goues, J. Aldrich, and
M. A. Hammer, “Toward Semantic Foundations for Program Editors,” in
2nd Summit on Advances in Programming Languages (SNAPL 2017), B. S.
Lerner, R. Bodík, and S. Krishnamurthi, Eds., ser. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 71, Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 11:1–11:12 (see p. 135).

[273] OpenCV, http://opencv.org/ (see p. 59).

[274] S. Packowski, “A lightweight and flexible process for designing intuitive error
handling and effective error messages,” in CASCON ’09, 2009, pp. 149–163
(see p. 211).

[275] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham, “Ivy: Safety
verification by interactive generalization,” in Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI ’16, Santa Barbara, CA, USA: ACM, 2016, pp. 614–630 (see
p. 202).

[276] C. L. Paris, “Tailoring Object Descriptions to a User’s Level of Expertise,”
Comput. Linguist., vol. 14, no. 3, pp. 64–78, 1988 (see p. 133).

[277] D. H. Park, H. K. Kim, I. Y. Choi, and J. K. Kim, “A literature review
and classification of recommender systems research,” Expert Systems with
Applications, vol. 39, no. 11, pp. 10 059–10 072, 2012 (see p. 133).

179

http://opencv.org/

[278] D. L. Parnas and P. C. Clements, “A rational design process: How and why
to fake it,” IEEE Transactions on Software Engineering, vol. SE-12, no. 2,
pp. 251–257, 1986 (see p. 15).

[279] C. Parnin, “Subvocalization - Toward hearing the inner thoughts of develop-
ers,” in ICPC ’11, 2011, pp. 197–200 (see p. 77).

[280] C. Parnin and S. Rugaber, “Programmer information needs after memory
failure,” in 2012 20th IEEE International Conference on Program Compre-
hension (ICPC), IEEE, 2012, pp. 123–132 (see p. 128).

[281] S. O. Parsons, J. L. Seminara, and M. S. Wogalter, “A Summary of Warnings
Research,” Ergonomics in Design, vol. 7, no. 1, pp. 21–31, 1999 (see p. 131).

[282] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen, M. De-
vlin, and J. Paterson, “A survey of literature on the teaching of introductory
programming,” in Working Group Reports on ITiCSE on Innovation and
Technology in Computer Science Education, ser. ITiCSE-WGR ’07, New York,
NY, USA: ACM, 2007, pp. 204–223 (see p. 139).

[283] N. Pennington, “Comprehension strategies in programming,” in Empirical
studies of programmers: second workshop, Ablex Publishing Corp., 1987,
pp. 100–113 (see p. 129).

[284] D. Perelman, S. Gulwani, T. Ball, and D. Grossman, “Type-directed comple-
tion of partial expressions,” in Proceedings of the 33rd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, ser. PLDI
’12, Beijing, China: ACM, 2012, pp. 275–286 (see p. 205).

[285] R. H. Perrott, “Syntax-directed editing,” Software Engineering Journal,
vol. 3, no. 2, 37–46(9), 1988 (see p. 134).

[286] T. Peters. (2014). Pep 20: The zen of python, [Online]. Available: https:
//www.python.org/dev/peps/pep-0020/ (see p. 274).

[287] R. S. Pettit, J. Homer, and R. Gee, “Do Enhanced Compiler Error Messages
Help Students?: Results Inconclusive.,” in Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, ser. SIGCSE
’17, New York, NY, USA: ACM, 2017, pp. 465–470 (see pp. 138, 139).

180

https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/

[288] B. C. Pierce and D. N. Turner, “Local type inference,” ACM Trans. Program.
Lang. Syst., vol. 22, no. 1, pp. 1–44, 2000 (see p. 36).

[289] H. Pieterse and H. Gelderblom, “Guidelines for Error Message Design,”
International Journal of Technology and Human Interaction (IJTHI), vol. 14,
no. 1, pp. 80–98, 2018 (see p. 131).

[290] N. Pinkwart, K. Ashley, C. Lynch, and V. Aleven, “Evaluating an intelligent
tutoring system for making legal arguments with hypotheticals,” Int. J. Artif.
Intell. Ed., vol. 19, no. 4, pp. 401–424, 2009 (see p. 105).

[291] D. Piorkowski, S. D. Fleming, C. Scaffidi, M. Burnett, I. Kwan, A. Z. Henley,
J. Macbeth, C. Hill, and A. Horvath, “To fix or to learn? How production bias
affects developers’ information foraging during debugging,” in 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME),
2015, pp. 11–20 (see p. 138).

[292] D. F. Polit and C. T. Beck, “Generalization in quantitative and qualitative
research: Myths and strategies,” International Journal of Nursing Studies,
vol. 47, no. 11, pp. 1451–1458, 2010 (see p. 123).

[293] J. Pombrio and S. Krishnamurthi, “Resugaring: Lifting evaluation sequences
through syntactic sugar,” in Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, ser. PLDI ’14,
Edinburgh, United Kingdom: ACM, 2014, pp. 361–371 (see p. 200).

[294] J. Ponterotto, “Brief note on the origins, evolution, and meaning of the qual-
itative research concept thick description,” The Qualitative Report, vol. 11,
no. 3, 2006 (see p. 116).

[295] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack Overflow in
the IDE,” in 2013 35th International Conference on Software Engineering
(ICSE), 2013, pp. 1295–1298 (see p. 35).

[296] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza, “Min-
ing StackOverflow to Turn the IDE into a Self-confident Programming
Prompter,” in Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories, ser. MSR 2014, New York, NY, USA: ACM, 2014, pp. 102–
111 (see p. 35).

181

[297] F. Pottier, “Reachability and Error Diagnosis in LR(1) Parsers,” in Proceed-
ings of the 25th International Conference on Compiler Construction, ser. CC
2016, New York, NY, USA: ACM, 2016, pp. 88–98 (see p. 31).

[298] J. Prather, R. Pettit, K. H. McMurry, A. Peters, J. Homer, N. Simone, and M.
Cohen, “On Novices’ Interaction with Compiler Error Messages: A Human
Factors Approach,” in Proceedings of the 2017 ACM Conference on Interna-
tional Computing Education Research, ser. ICER ’17, New York, NY, USA:
ACM, 2017, pp. 74–82 (see p. 139).

[299] D. Pritchard, “Frequency distribution of error messages,” in PLATEAU,
2015, pp. 1–8 (see pp. 46, 50, 72, 136).

[300] F. Puppe, Ed., Systematic Introduction to Expert Systems: Knowledge Repre-
sentations and Problem-Solving Methods, 2. Springer-Verlag, 1993, vol. 8
(see p. 132).

[301] Y. Qian and J. Lehman, “Students’ Misconceptions and Other Difficulties
in Introductory Programming: A Literature Review,” ACM Trans. Comput.
Educ., vol. 18, no. 1, 1:1–1:24, 2017 (see p. 139).

[302] X. Qiu, P. Garg, A. Ştefănescu, and P. Madhusudan, “Natural proofs for struc-
ture, data, and separation,” in Proceedings of the 34th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, ser. PLDI
’13, Seattle, Washington, USA: ACM, 2013, pp. 231–242 (see p. 200).

[303] Racket, https://racket-lang.org/ (see p. 44).

[304] V. Rahli, J. Wells, J. Pirie, and F. Kamareddine, “Skalpel: A Type Error
Slicer for Standard ML,” Electronic Notes in Theoretical Computer Science,
vol. 312, pp. 197–213, 2015 (see p. 39).

[305] M. M. Rahman and C. K. Roy, “SurfClipse: Context-Aware Meta-search in
the IDE,” in 2014 IEEE International Conference on Software Maintenance
and Evolution, 2014, pp. 617–620 (see p. 35).

[306] V. Rajlich and N. Wilde, “The role of concepts in program comprehension,”
in Proceedings 10th International Workshop on Program Comprehension,
2002, pp. 271–278 (see p. 128).

182

https://racket-lang.org/

[307] J. W. Ratcliff and D. E. Metzener, “Pattern matching: The Gestalt approach,”
Dr Dobbs Journal, vol. 13, no. 7, p. 46, 1988 (see p. 59).

[308] K. Rayner, “Eye movements in reading and information processing: 20 years
of research.,” Psychological Bulletin, vol. 124, no. 3, pp. 372–422, 1998 (see
pp. 62, 66).

[309] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case
reduction for c compiler bugs,” in Proceedings of the 33rd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, ser. PLDI
’12, Beijing, China: ACM, 2012, pp. 335–346 (see p. 202).

[310] G. Riley, “Clips: An expert system building tool,” 1991 (see p. 132).

[311] C. C. Risley and T. J. Smedley, “Visualization of compile time errors in a
Java compatible visual language,” in Proceedings. 1998 IEEE Symposium
on Visual Languages (Cat. No.98TB100254), 1998, pp. 22–29 (see p. 45).

[312] R. S. Rist and colleagues, “Plans in programming: Definition, demonstration,
and development,” in first workshop on empirical studies of programmers on
Empirical studies of programmers, 1986, pp. 28–47 (see p. 129).

[313] E. Roberts, “An overview of MiniJava,” in SIGCSE ’01, vol. 33, 2001, pp. 1–5
(see pp. 101, 137).

[314] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation Systems
for Software Engineering,” IEEE Software, vol. 27, no. 4, pp. 80–86, 2010
(see p. 133).

[315] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,
“Improving automated source code summarization via an eye-tracking study
of programmers,” in ICSE, 2014, pp. 390–401 (see p. 73).

[316] W. A. Rogers, N. Lamson, and G. K. Rousseau, “Warning Research: An
Integrative Perspective,” Human Factors, vol. 42, no. 1, pp. 102–139, 2000
(see p. 131).

[317] P. Romero, R. Cox, B. du Boulay, and R. Lutz, “Visual attention and rep-
resentation switching during Java program debugging: A study using the
restricted focus viewer,” in Diagrammatic Representation and Inference: Sec-
ond International Conference, Diagrams 2002 Callaway Gardens, GA, USA,

183

April 18–20, 2002 Proceedings, M. Hegarty, B. Meyer, and N. H. Narayanan,
Eds. 2002, pp. 221–235 (see p. 73).

[318] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-Dusseau, and A. C.
Arpaci-Dusseau, “Error propagation analysis for file systems,” in Proceedings
of the 30th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’09, Dublin, Ireland: ACM, 2009, pp. 270–280
(see p. 206).

[319] Rust Enhanced, https://github.com/rust-lang/rust-enhanced (see p. 44).

[320] C. Sadowski, J. van Gogh, C. Jaspan, E. Soderberg, and C. Winter, “Tricorder:
Building a Program Analysis Ecosystem,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, IEEE, 2015, pp. 598–608
(see pp. 24, 48, 124, 273).

[321] S. Saghafi, R. Danas, and D. J. Dougherty, “Exploring Theories with a Model-
Finding Assistant,” in Automated Deduction - CADE-25, A. P. Felty and A.
Middeldorp, Eds., Cham: Springer International Publishing, 2015, pp. 434–
449 (see p. 41).

[322] J. Saldaña, The Coding Manual for Qualitative Researchers. SAGE Publica-
tions, 2009 (see p. 115).

[323] I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives of
professionals in software engineering experiments?” In ICSE, 2015, pp. 666–
676 (see p. 73).

[324] E. A. Santos, J. C. Campbell, D. Patel, A. Hindle, and J. N. Amaral, “Syntax
and sensibility: Using language models to detect and correct syntax errors,”
in 25th IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER 2018), (25th IEEE International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER 2018)), Campobasso,
Italy, 21, 2018, pp. 1–11 (see p. 30).

[325] M. Satratzemi, S. Xinogalos, and V. Dagdilelis, “An environment for teach-
ing object-oriented programming: objectKarel,” in Proceedings 3rd IEEE
International Conference on Advanced Technologies, 2003, pp. 342–343 (see
p. 139).

184

https://github.com/rust-lang/rust-enhanced

[326] J. Scholtz and S. Wiedenbeck, “Learning a new programming language: a
model of the planning process,” in Proceedings of the Twenty-Fourth Annual
Hawaii International Conference on System Sciences, vol. ii, 1991, 3–12 vol.2
(see p. 138).

[327] T. Schorsch, Tom, Schorsch, and Tom, “CAP: An automated self-assessment
tool to check Pascal programs for syntax, logic and style errors,” in Proceed-
ings of the twenty-sixth SIGCSE technical symposium on Computer science
education - SIGCSE ’95, vol. 27, New York, New York, USA: ACM Press,
1995, pp. 168–172 (see p. 139).

[328] H. J. Schünemann and L. Moja, “Reviews: Rapid! Rapid! Rapid! …and
systematic,” Systematic Reviews, vol. 4, no. 1, p. 4, 2015 (see p. 197).

[329] E. L. Seidel, H. Sibghat, K. Chaudhuri, W. Weimer, and R. Jhala, “Learning to
blame: localizing novice type errors with data-driven diagnosis,” Proceedings
of the ACM on Programming Languages, vol. 1, no. OOPSLA, pp. 1–27, 2017
(see p. 39).

[330] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge, “Pro-
grammers’ build errors: a case study (at google),” in Proceedings of the 36th
International Conference on Software Engineering - ICSE 2014, New York,
New York, USA: ACM Press, 2014, pp. 724–734 (see pp. 45, 46, 50, 53, 55,
56, 62, 65, 72, 103, 136, 148, 196).

[331] O. Shacham, M. Vechev, and E. Yahav, “Chameleon: Adaptive selection
of collections,” in Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’09, Dublin,
Ireland: ACM, 2009, pp. 408–418 (see p. 203).

[332] U. Shani, “Should Program Editors Not Abandon Text Oriented Commands?”
SIGPLAN Not., vol. 18, no. 1, pp. 35–41, 1983 (see p. 134).

[333] B. Sharif, M. Falcone, and J. I. Maletic, “An eye-tracking study on the role of
scan time in finding source code defects,” in ETRA, 2012, p. 381 (see p. 74).

[334] D. G. Shaw, “Effects of Learning to Program A Computer in BASIC or Logo
on Problem-solving Abilities,” AEDS Journal, vol. 19, no. 2-3, pp. 176–189,
1986 (see p. 137).

185

[335] W. J. Shaw, “Making APL error messages kinder and gentler,” ACM SIGAPL
APL Quote Quad, vol. 19, no. 4, pp. 320–324, 1989 (see pp. 47, 271).

[336] B. Shneiderman, “Measuring computer program quality and comprehension,”
International Journal of Man-Machine Studies, vol. 9, no. 4, pp. 465–478,
1977 (see pp. 17, 92, 93).

[337] ——, “System message design: Guidelines and experimental results,” in
Directions in Human-Computer Interaction, 1982, pp. 55–78 (see p. 211).

[338] B. Shneiderman, “Designing computer system messages,” Communications
of the ACM, vol. 25, no. 9, pp. 610–611, 1982 (see pp. 47, 124, 271).

[339] B. Shneiderman and R. Mayer, “Syntactic/semantic interactions in program-
mer behavior: A model and experimental results,” International Journal
of Computer & Information Sciences, vol. 8, no. 3, pp. 219–238, 1979 (see
p. 129).

[340] E. Shortliffe, Computer-based medical consultations: MYCIN. 1976 (see
p. 132).

[341] Shu-Hsien Liao, “Expert system methodologies and applications—a decade
review from 1995 to 2004,” Expert Systems with Applications, vol. 28, no. 1,
pp. 93–103, 2005 (see p. 132).

[342] V. J. Shute, “Focus on Formative Feedback,” Review of Educational Research,
vol. 78, no. 1, pp. 153–189, 2008 (see p. 139).

[343] J. Siegmund, “Framework for measuring program comprehension,” PhD
thesis, University of Magdeburg, 2012 (see p. 56).

[344] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich, G.
Saake, and A. Brechmann, “Understanding Understanding Source Code
with Functional Magnetic Resonance Imaging,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014, New
York, NY, USA: ACM, 2014, pp. 378–389 (see p. 128).

[345] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kästner, A.
Begel, A. Bethmann, and A. Brechmann, “Measuring Neural Efficiency of
Program Comprehension,” in Proceedings of the 2017 11th Joint Meeting on

186

Foundations of Software Engineering, ser. ESEC/FSE 2017, New York, NY,
USA: ACM, 2017, pp. 140–150 (see p. 129).

[346] J. Siegmund and J. Schumann, “Confounding parameters on program com-
prehension: a literature survey,” Empirical Software Engineering, vol. 20,
no. 4, pp. 1159–1192, 2015 (see p. 128).

[347] J. Siek and A. Lumsdaine, “Concept checking: Binding parametric polymor-
phism in C++,” in First Workshop on C++ Template Programming, Germany,
2000 (see p. 103).

[348] A. Simon, O. Chitil, and F. Huch, “Typeview: A tool for understanding
type errors,” in Draft Proceedings of the 12th International Workshop on
Implementation of Functional Languages, Citeseer, 2000, pp. 63–69 (see
p. 39).

[349] S. L. Simpson, R. G. Lyday, S. Hayasaka, A. P. Marsh, and P. J. Laurienti,
“A permutation testing framework to compare groups of brain networks,”
Frontiers in Computational Neuroscience, vol. 7, p. 171, 2013 (see pp. 114,
115).

[350] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback generation
for introductory programming assignments,” in Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI ’13, Seattle, Washington, USA: ACM, 2013, pp. 15–26 (see
p. 200).

[351] R. Smith, “An overview of the Tesseract OCR engine,” in ICDAR, vol. 2, 2007,
pp. 629–633 (see p. 59).

[352] A. Solar-Lezama, C. G. Jones, and R. Bodik, “Sketching concurrent data
structures,” in Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, ser. PLDI ’08, Tucson, AZ,
USA: ACM, 2008, pp. 136–148 (see p. 202).

[353] E. Soloway, B. Adelson, and K. Ehrlich, “Knowledge and processes in the
comprehension of computer programs,” The nature of expertise, pp. 129–152,
1988 (see p. 129).

187

[354] E. Soloway and K. Ehrlich, “Empirical Studies of Programming Knowledge,”
IEEE Transactions on Software Engineering, vol. SE-10, no. 5, pp. 595–609,
1984 (see p. 129).

[355] J. C. Spohrer and E. Soloway, “Novice mistakes: are the folk wisdoms correct?”
Communications of the ACM, vol. 29, no. 7, pp. 624–632, 1986 (see p. 135).

[356] M. Sridharan, S. J. Fink, and R. Bodik, “Thin slicing,” in Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’07, San Diego, California, USA: ACM, 2007,
pp. 112–122 (see p. 204).

[357] (2017). Stack overflow developer survey results 2017, [Online]. Available:
https://insights.stackoverflow.com/survey/2017 (visited on 01/01/2018)
(see p. 42).

[358] M. Stefik, J. Aikins, R. Balzer, J. Benoit, L. Birnbaum, F. Hayes-Roth, and
E. Sacerdoti, “The organization of expert systems, a tutorial,” Artificial
Intelligence, vol. 18, no. 2, pp. 135–173, 1982 (see p. 132).

[359] J. Stolarek, “Understanding Basic Haskell Error Messages,” The Monad.Reader,
no. 20, pp. 21–41, 2012 (see p. 37).

[360] M.-A. Storey, “Theories, tools and research methods in program compre-
hension: past, present and future,” Software Quality Journal, vol. 14, no. 3,
pp. 187–208, 2006 (see p. 129).

[361] P. J. Stuckey, M. Sulzmann, and J. Wazny, “Interactive type debugging in
haskell,” in Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell,
ser. Haskell ’03, Uppsala, Sweden: ACM, 2003, pp. 72–83 (see p. 39).

[362] ——, “Improving type error diagnosis,” in Proceedings of the 2004 ACM
SIGPLAN Workshop on Haskell, ser. Haskell ’04, Snowbird, Utah, USA:
ACM, 2004, pp. 80–91 (see p. 39).

[363] B. Sufrin and O. De Moor, “Modeless structure editing,” in Proceedings of
the Oxford-Microsoft symposium in Celebration of the work of Tony Hoare,
1999 (see p. 134).

[364] J. Tao, N. Yafeng, and Z. Lei, “Are the warning icons more attentional?”
Applied Ergonomics, vol. 65, pp. 51–60, 2017 (see p. 132).

188

https://insights.stackoverflow.com/survey/2017

[365] T. Teitelbaum and T. Reps, “The Cornell Program Synthesizer: A Syntax-
directed Programming Environment,” Commun. ACM, vol. 24, no. 9, pp. 563–
573, 1981 (see p. 134).

[366] N. Tintarev and J. Masthoff, “A Survey of Explanations in Recommender
Systems,” in 2007 IEEE 23rd International Conference on Data Engineering
Workshop, 2007, pp. 801–810 (see p. 133).

[367] E. Torlak, M. Vaziri, and J. Dolby, “Memsat: Checking axiomatic specifica-
tions of memory models,” in Proceedings of the 31st ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, ser. PLDI ’10,
Toronto, Ontario, Canada: ACM, 2010, pp. 341–350 (see p. 206).

[368] S. Toulmin, The Uses of Argument. Cambridge University Press, 2003. arXiv:
arXiv:1011.1669v3 (see p. 105).

[369] L. Tratt. (2004). An editor for composed programs, [Online]. Available: https:
//tratt.net/laurie/blog/entries/an_editor_for_composed_programs.html

(see p. 135).

[370] V. J. Traver, “On compiler error messages: What they say and what they
mean,” Advances in Human-Computer Interaction, vol. 2010, pp. 1–26, 2010
(see pp. 48, 50, 77, 103, 124, 196, 210, 211, 272).

[371] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and
answer questions on the web?” In ICSE, 2011, pp. 804–807 (see p. 110).

[372] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “Taj: Ef-
fective taint analysis of web applications,” in Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI ’09, Dublin, Ireland: ACM, 2009, pp. 87–97 (see p. 206).

[373] H. Uwano, M. Nakamura, A. Monden, and K.-i. Matsumoto, “Analyzing indi-
vidual performance of source code review using reviewers’ eye movement,”
in ETRA, San Diego, California, 2006, pp. 133–140 (see p. 74).

[374] (2017). Valgrind user manual (valgrind-3.13.0), [Online]. Available: http:
//valgrind.org/docs/ (see p. 287).

[375] M. L. Van De Vanter, “Practical language-based editing for software engi-
neers,” in Software Engineering and Human-Computer Interaction (ICSE

189

https://arxiv.org/abs/arXiv:1011.1669v3
https://tratt.net/laurie/blog/entries/an_editor_for_composed_programs.html
https://tratt.net/laurie/blog/entries/an_editor_for_composed_programs.html
http://valgrind.org/docs/
http://valgrind.org/docs/

’94) Workshop on SE-HCI: Joint Research Issues, R. N. Taylor and J. Coutaz,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 251–267 (see
p. 134).

[376] G. Van Rossum and colleagues, “Python programming language.,” in USENIX
Annual Technical Conference, vol. 41, 2007, p. 36 (see p. 274).

[377] K. VanLehn, “The Relative Effectiveness of Human Tutoring, Intelligent
Tutoring Systems, and Other Tutoring Systems,” Educational Psychologist,
vol. 46, no. 4, pp. 197–221, 2011 (see p. 133).

[378] I. Vessey, “Expertise in Debugging Computer Programs: An Analysis of the
Content of Verbal Protocols,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 16, no. 5, pp. 621–637, 1986 (see p. 138).

[379] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model Checking
Programs,” Automated Software Engineering, vol. 10, no. 2, pp. 203–232,
2003 (see p. 40).

[380] Visual Studio, https://www.visualstudio.com/ (see pp. 42, 57).

[381] M. Voelter, J. Siegmund, T. Berger, and B. Kolb, “Towards User-Friendly
Projectional Editors,” in Software Language Engineering: 7th International
Conference (SLE 2014), B. Combemale, D. J. Pearce, O. Barais, and J. J.
Vinju, Eds., Cham: Springer International Publishing, 2014, pp. 41–61 (see
p. 134).

[382] A. Von Mayrhauser and A. Vans, “Program comprehension during software
maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44–55, 1995 (see
p. 129).

[383] P. Wadler, “A Complement to Blame,” in 1st Summit on Advances in Program-
ming Languages (SNAPL 2015), T. Ball, R. Bodik, S. Krishnamurthi, B. S.
Lerner, and G. Morrisett, Eds., ser. Leibniz International Proceedings in
Informatics (LIPIcs), vol. 32, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2015, pp. 309–320 (see p. 39).

[384] G. Wallace, R. Biddle, and E. Tempero, “Smarter Cut-and-paste for Pro-
gramming Text Editors,” in Proceedings of the 2nd Australasian Conference
on User Interface, ser. AUIC ’01, Washington, DC, USA: IEEE Computer
Society, 2001, pp. 56–63 (see p. 135).

190

https://www.visualstudio.com/

[385] D. Walton, “Explanations and arguments based on practical reasoning,”
2009 (see p. 105).

[386] M. Wand, “Finding the source of type errors,” in POPL, 1986, pp. 38–43 (see
pp. 39, 103).

[387] C. Wang, Z. Yang, F. Ivančić, and A. Gupta, “Whodunit? Causal Analysis for
Counterexamples,” in Automated Technology for Verification and Analysis,
S. Graf and W. Zhang, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 82–95 (see p. 42).

[388] R. C. Waters, “Program Editors Should Not Abandon Text Oriented Com-
mands,” SIGPLAN Not., vol. 17, no. 7, pp. 39–46, 1982 (see p. 134).

[389] C. Watson, F. W. B. Li, and J. L. Godwin, “BlueFix: Using Crowd-Sourced
Feedback to Support Programming Students in Error Diagnosis and Re-
pair,” in Advances in Web-Based Learning - ICWL 2012: 11th International
Conference, Sinaia, Romania, September 2-4, 2012, E. Popescu, Q. Li, R.
Klamma, H. Leung, and M. Specht, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 228–239 (see p. 139).

[390] G. Weber, “Code is Not Just Text: Why Our Code Editors Are Inadequate
Tools,” in Companion to the First International Conference on the Art, Science
and Engineering of Programming, ser. Programming ’17, New York, NY, USA:
ACM, 2017, 35:1–35:3 (see p. 135).

[391] G. M. Weinberg, The Psychology of Computer Programming. Dorset House
Publications, 1998 (see p. 209).

[392] M. Weiser, “Programmers use slices when debugging,” Communications of
the ACM, vol. 25, no. 7, pp. 446–452, 1982 (see p. 129).

[393] D. T. Welsh and L. D. Ordonez, “Conscience without cognition: The effects of
subconscious priming on ethical behavior,” Academy of Management Journal,
vol. 57, no. 3, pp. 723–742, 2014 (see p. 61).

[394] J. Whittle, A. Bundy, R. Boulton, and H. Lowe, “An ML editor based on
proofs-as-programs,” in 14th IEEE International Conference on Automated
Software Engineering, 1999, pp. 166–173 (see pp. 135, 139).

191

[395] J. Whittle, A. Bundy, and H. Lowe, “An editor for helping novices to learn
standard ML BT - Programming Languages: Implementations, Logics, and
Programs: 9th International Symposium, PLILP ’97 Including a Special
Track on Declarative Programming Languages in Education Southampton,
UK, Septe,” in, H. Glaser, P. Hartel, and H. Kuchen, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997, pp. 389–405 (see p. 135).

[396] M. R. Wick and W. B. Thompson, “Reconstructive expert system explanation,”
Artificial Intelligence, vol. 54, no. 1, pp. 33–70, 1992 (see pp. 132, 133).

[397] S. Wiedenbeck, “Beacons in computer program comprehension,” Interna-
tional Journal of Man-Machine Studies, vol. 25, no. 6, pp. 697–709, 1986
(see pp. 128, 129).

[398] S. L. Wise and X. Kong, “Response time effort: A new measure of examinee
motivation in computer-based tests,” Applied Measurement in Education,
vol. 18, no. 2, pp. 163–183, 2005 (see p. 61).

[399] M. S. Wogalter and N. C. Silver, “Warning signal words: connoted strength
and understandability by children, elders, and non-native English speakers,”
Ergonomics, vol. 38, no. 11, pp. 2188–2206, 1995 (see p. 132).

[400] M. S. Wogalter, S. S. Godfrey, G. A. Fontenelle, D. R. Desaulniers, P. R.
Rothstein, and K. R. Laughery, “Effectiveness of Warnings,” Human Factors,
vol. 29, no. 5, pp. 599–612, 1987 (see p. 131).

[401] M. Wogalter and C. Mayhorn, “The future of risk communication: Technology-
based warning systems,” Handbook of Warnings, MS Wogalter, ed., Lawrence
Erlbaum Associates, Inc., Mahwah, NJ, pp. 783–794, 2006 (see p. 131).

[402] J. Wrenn and S. Krishnamurthi, “Error messages are classifiers: a process
to design and evaluate error messages,” in Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software - Onward! 2017, New York, New
York, USA: ACM Press, 2017, pp. 134–147 (see p. 139).

[403] B. Wu, J. P. Campora III, and S. Chen, “Learning User Friendly Type-error
Messages,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA, 106:1–106:29,
2017 (see p. 38).

192

[404] Q. Wu and J. R. Anderson, “Problem-solving transfer among programming
languages,” 1990 (see p. 138).

[405] G. Xu, M. D. Bond, F. Qin, and A. Rountev, “Leakchaser: Helping program-
mers narrow down causes of memory leaks,” in Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI ’11, San Jose, California, USA: ACM, 2011, pp. 270–282 (see
p. 203).

[406] J. Yang, “Explaining type errors by finding the source of a type conflict.,” in
Scottish Functional Programming Workshop, Citeseer, vol. 1, 1999, pp. 59–67
(see p. 39).

[407] L. R. Ye and P. E. Johnson, “The Impact of Explanation Facilities on User
Acceptance of Expert Systems Advice,” MIS Quarterly, vol. 19, no. 2, pp. 157–
172, 1995 (see p. 132).

[408] S. L. Young and M. S. Wogalter, “Comprehension and Memory of Instruction
Manual Warnings: Conspicuous Print and Pictorial Icons,” Human Factors,
vol. 32, no. 6, pp. 637–649, 1990 (see p. 131).

[409] E. A. Youngs, “Human errors in programming,” International Journal of
Man-Machine Studies, vol. 6, no. 3, pp. 361–376, 1974 (see pp. 135, 210).

[410] D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton-Jones, “Diagnosing type
errors with class,” in Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’15, Portland,
OR, USA: ACM, 2015, pp. 12–21 (see p. 204).

[411] Q. Zhang, C. Sun, and Z. Su, “Skeletal program enumeration for rigorous com-
piler testing,” in Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, ser. PLDI ’17, Barcelona,
Spain: ACM, 2017, pp. 347–361 (see p. 202).

[412] X. Zhang, N. Gupta, and R. Gupta, “Pruning dynamic slices with confidence,”
in Proceedings of the 27th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, ser. PLDI ’06, Ottawa, Ontario, Canada:
ACM, 2006, pp. 169–180 (see p. 204).

193

APPENDICES

194

A | What Do We Know About
Presenting Human-Friendly
Output from Program
Analysis Tools?

A.1 Abstract
Program analysis tools perform sophisticated analysis on source code to help pro-
grammers resolve compiler errors, apply optimizations, and identify security vul-
nerabilities. Despite the utility of these tools, research suggests that programmers
do not frequently adopt them in practice—a primary reason being that the output
of these tools is difficult to understand. Towards providing a synthesis of what re-
searchers know about the presentation of program analysis output to programmers,
we conducted a scoping review of the PLDI conference proceedings from 1988-2017.
The scoping review serves as interim guidance for advancing collaborations be-
tween research disciplines. We discuss how cross-disciplinary communities, such as
PLATEAU, are critical to improving the usability of program analysis tools.1

1This chapter was previously published in: T. Barik, C. Parnin, and E. Murphy-Hill, “One λ at a
time: What do we know about presenting human-friendly output from program analysis tools?” In
PLATEAU’17 Workshop on Evaluation and Usability of Programming Languages and Tools, 2017.

195

Output

Input

ProgrammerTool

observation

articulationperformance

presentation
IDE/console

Figure A.1 The interaction framework.

A.2 Introduction
In 1983, Brown [48] lamented that one of the most neglected aspects of the human-
machine interface was the quality of the error messages produced by the machine.
Today, it appears that many of Brown’s laments still hold true with regard to
program analysis tools—tools that are intended to help programmers resolve defects
in their code. For example, interview and survey studies conducted at Microsoft
reveal that poor error messages remain one of the top pain points when using
program analysis tools [64], and other studies show similar frustration with error
messages in tools [20, 183, 330]. In academia, the situation seems even more dire. As
Hanenberg [147] notes in his essay on programming languages research: “developers,
which are the main audience for new language constructs, are hardly considered in
the research process.” And Danas, Nelson, Harrison, and colleagues [83] note that
in some cases, the output of program analysis tools, such as in model-finders and
SAT-solvers, are generated arbitrarily and in an unprincipled way, without regard
to the friendliness towards the programmer who might actually use them.

In prior work [21], we have modeled the interaction of programmers with their
program analysis tools in terms of an interaction framework, conceptualized by
Abowd and Beale [1] and adapted to tools by Traver [370] (Figure A.1). The in-
teraction framework describes the different interactions between the tool and the
programmer, with the tool performing some sophisticated analysis, presenting the
information to the programmer for observation through a console or IDE, and then
allowing the programmer to articulate their intentions back to the tool. In this
paper, we are interested specifically in the presentation aspect of the framework,
and what we know about presenting human-friendly output from program analysis
tools.

196

Towards the longer-term goal of providing a comprehensive knowledge synthesis
about program analysis output, we conducted an interim scoping review of the
proceedings from Programming Language Design and Implementation (PLDI),
from 1988-2017. The scoping review is intended to be accessible to human-computer
interaction (HCI) researchers who want to understand how the PL community
is currently applying program analysis output, in order to eventually bridge HCI
research with program analysis tools. Consequently, while PLDI papers are typically
written to emphasize the formal properties of their program analysis tools as their
primary goal, our scoping review reframes these papers in terms of the their program
analysis output as the primary investigation.

The contributions of this scoping review are:

• A quasi-gold set of manually-identified papers from PLDI that relate to pro-
gram analysis output, to bootstrap future, comprehensive literature reviews
on the subject of human-friendly program analysis output.

• A knowledge synthesis of the features of program analysis output that re-
searchers employ to present output to programmers, instantiated as a taxon-
omy (Appendix A.4). Our taxonomy is agnostic to a particular mode of output,
such as text or graphics.

A.3 Methodology

A.3.1 What is a Scoping Review?
In this study, we conduct a scoping review—a reduced form of the traditional sys-
tematic literature review [12, 194]. Scoping reviews have many of the same charac-
teristics of traditional literature reviews: their purpose is to collect, evaluate, and
present the available research evidence for a particular investigation. However, be-
cause of their reduced form, they can also be executed more rapidly than traditional
literature reviews [328]. For example, reductions to scoping reviews include limiting
the types of literature databases, constraining the date range under investigation,
or eliding consistency measures such as inter-rater agreement. A notable weakness
of scoping reviews is that they are not a final output; instead, they provide interim
guidance towards what to expect if a comprehensive literature review were to be
conducted. Scoping reviews are particularly useful in this interim stage for soliciting
guidance on conducting a more formal review, as is our intention in this paper.

197

A.3.2 Execution of SALSA Framework
We conducted our scoping review using the traditional SALSA framework: Search,
AppraisaL, Synthesis, and Analysis. Here, we discuss the additional constraints we
adopted in using SALSA for our scoping review.

Search. We scoped our search to all papers within a single conference: Pro-
gramming Language Design and Implementation (PLDI), for all years (1988-2017).
As HCI researchers, we selected PLDI because it is considered to be a top-tier
conference for programming languages research, because it contains a variety of
program analysis tools, and because these tools tend to have formal properties of
soundness and completeness that are not typically found in prototype tools within
HCI. Discussions with other researchers within PLDI also revealed that researchers
are interested in having their tools adopted by a broader community, but confusing
program analysis output hinders usability of the tools to users outside their own
research groups.

Appraisal. We manually identified papers through multiple passes. In the first
pass, we skimmed titles and abstracts and included any papers which mentioned a
program analysis tool and indicated output intended to be consumed by a program-
mer other than the authors of the tool. In this pass, our goal was to be liberal with
paper inclusion, and to minimize false negatives. We interpreted program analysis
tools in the broadest sense, to include model checkers, verifiers, static analysis
tools, and dynamic analysis tools. In the second pass, we examined the contents of
the paper to identify if the paper contributed or discussed its output. Finally, we
removed papers that were purely related to reducing false positives, unless those
papers used false positives as part of their output to provide additional information
to the programmer. For some papers, the output was measured in terms of manual
patches submitted to bug repositories. We excluded such papers since the output
was manually constructed, and not obtained directly from the tool.

Synthesis and Analysis. We synthesized the papers into a taxonomy of presen-
tation features (Appendix A.4). For analysis, we opted for a narrative-commentary
approach [137] in which we summarized the contributions of each of the papers
with respect to human-friendly presentations.

A.3.3 Limitations
As a form of interim guidance, a scoping review has several important limitations.
First, the review is biased in several ways. Being scoped only to PLDI means

198

Table A.1 Taxonomy of Presentation

Feature Section
Alignment Appendix A.4.1
Clustering and Classification Appendix A.4.2
Comparing Appendix A.4.3
Example Appendix A.4.4
Interactivity Appendix A.4.5
Localizing Appendix A.4.6
Ranking Appendix A.4.7
Reducing Appendix A.4.8
Tracing Appendix A.4.9

that the identified taxonomy is likely to be incomplete. Second, the scoping review
by definition misses key contributions found in other conferences, such as the
International Conference on Software Engineering (ICSE), Foundations of Software
Engineering (FSE), and the Conference on Human Factors in Computing Systems
(CHI), just to name a few. Third, the paper summaries are intended to be accessible
to HCI researchers who may not have formal PL experience. As a result, in the
interest of being broadly accessible, some of the summaries of the papers may be
oversimplified in terms of their PL contributions. Finally, any conclusions made
from this interim work should be treated as provisional and subject to revision as
more comprehensive reviews are conducted.

A.4 Taxonomy of Presentation
In this section, we classify and summarize all of the papers from PLDI from 1988-
2017 that discuss or contribute to program analysis output intended for program-
mers. Intentionally, we labeled the taxonomy features such that they do not commit
to a particular textual or visual affordance. For example, in a text interface, the
feature of ranking (Appendix A.4.7) may be implemented as an enumerated list
of items in the console, with a prompt for selection if interactivity is required. In
a graphical interface, ranking might instead be implemented using a drop-down,
through which the programmer would select their desired option.

The identified taxonomy of presentation features are summarized in Table A.1.

199

Some papers describe output that use multiple features; in these cases, we selected
the feature which we felt best represented the contribution of the output.

A.4.1 Alignment
In alignment, program analysis output is presented in a representation that is
already familiar to the programmer.

Within this feature, Pombrio and Krishnamurthi [293] tackle the problem of
syntactic sugar: programming constructs that make things easier to express, but
are ultimately reducible to alternative constructs. For example, in C, the array
access notation a[i] is syntactic sugar for (the sometimes less convenient notation)
*(a + i). Unfortunately, syntactic sugar is eliminated by many transformation
algorithms, making the resulting program unfamiliar to the programmer. Pombrio
and Krishnamurthi [293] introduce a process of resugaring to allow computation
reductions in terms of the surface syntax. With similar aims, the AutoCorres
tool uses a technique of specification abstraction, to present programmers with a
representation of the program at a human-readable abstraction while additionally
producing a formal refinement of the final presentation [139].

Notions of natural language and readability find their place in several PLDI
papers. Qiu, Garg, Ştefănescu, and colleagues [302] propose natural proofs, in
which automated reasoning systems restrict themselves to using common patterns
found in human proofs. Given a reference implementation, and an error model of
potential corrections, Singh, Gulwani, and Solar-Lezama [350] introduce a method
for automatically deriving minimal corrections to students’ incorrect solutions, in
the form of a itemized list of changes, expressed in natural language. And the AFix
tool uses a variety of static analysis and static code transformations to design bug
fixes for a type of concurrency bug, single-variable atomicity violations [178]. The
bug fixes are human-friendly in that they attempt to provide a fix that, in addition
to other metrics, does not harm code readability. To support readability, the authors
manually evaluated several possible locking policies to determine which ones were
most readable.

Issues of alignment and representation become important to programmers dur-
ing understanding of optimizations in source-level debugging of optimized code [3];
in their approach, Adl-Tabatabai and Gross [3] detect engendered variables that
would cause the programmer to draw incorrect conclusions as a result of internal
optimizations by the compiler. Earlier work by Brooks, Hansen, and Simmons [43]
and Coutant, Meloy, and Ruscetta [76] also provide techniques that allow program-

200

mers to reason about optimized code through mapping the state of the optimized
execution back to the original source. For example, Brooks, Hansen, and Simmons
[43] use highlighting, boxing, reverse video, grey-scale shading, boxing, and under-
lining to animate and convey runtime program behavior, overlaid on the original
source code, to the programmer.

A.4.2 Clustering and Classification
Clustering and classification output aims to organize or separate information in a
way that reduces the cognitive burden for programmers. For example, Narayanasamy,
Wang, Tigani, and colleagues [259] focus on a dynamic analysis technique to automat-
ically classify data races—a type of concurrency bug in multi-threaded programs—as
being potentially benign or potentially harmful. Furthermore, the tool provides the
programmer with a reproducible scenario of the data race to help the programmer
understand how it manifests.

Liblit, Naik, Zheng, and colleagues [217] present a statistical dynamic debugging
technique that isolates bugs in programs containing multiple undiagnosed bugs;
importantly, the algorithm separates the effects of different bugs and identifies
predictors that are associated with individual bugs. An earlier technique using
statistical sampling is also presented by the authors [216]. Ha, Rossbach, Davis,
and colleagues [144] introduce a classification technique in Clarify, a system which
classifies behavior profiles—essentially, an application’s behavior—for black box
software components where the source code is not available. And Ammons, Mandelin,
Bodı́k, and colleagues [9] consider the problem of specifications on programs in that
the specifications themselves need methods for debugging; they present a method for
debugging formal, temporal specifications through concept analysis to automatically
group traces into highly similar clusters.

A.4.3 Comparing
Comparisons occur in program analysis tools when the programmer has a need
to examine or understand differences between two or more versions of their code.
Within this feature, Hoffman, Eugster, and Jagannathan [161] introduce a technique
of semantic views of program executions to perform trace analysis; they apply
their technique to identify regressions in large software applications. Through a
differencing technique, their RPrism tool outputs a semantic “diff” between the
original and new versions, to allow potential causes to be viewed in their full

201

context. Similarly, early work by Horwitz [166] identifies both semantic and textual
differences between two versions of a program, in contrast to traditional diff-tools
that treat source as plain text.

A.4.4 Example
Examples and counterexamples are forms of output that provide evidence for why
a situation can occur or how a situation can be violated. Examples are usually
provided in conjunction with other presentation features.

The Alive-Infer tool infers preconditions to ensure the validity of a peephole
compiler optimization [244]. To the user, it reports both a weakest precondition and
a set of “succinct” partial preconditions. For wrong optimizations, the tool provides
counterexamples. Zhang, Sun, and Su [411] apply a technique of skeletal program
enumeration to generate small test programs for reporting bugs about in GCC and
clang compilers; the generated test programs contain fewer than 30 lines on average.
Still other work with test programs devise a test-case reducer for C compiler bugs
to obtain small and valid test-cases consistently [309]; the underlying machinery is
based on generic fixpoint computations which invokes a modular reducer.

Padon, McMillan, Panda, and colleagues [275] hypothesize that one of the rea-
sons automated methods are difficult to use in practice is because they are opaque.
As Padon, McMillan, Panda, and colleagues [275] state, “they fail in ways that
are difficult for a human user to understand and to remedy.” Their system, Ivy,
graphically displays concrete counterexamples to induction, and allows the user to
interactively guide generation from these counterexamples. Nguyen and Van Horn
implement a tool in Racket to generate counterexamples for erroneous modules and
Isradisaikul and Myers [171] design an algorithm that generates helpful counterex-
amples for parsing ambiguities; for every parsing conflict, the algorithm generates
a compact counterexample illustrating the ambiguity.

PSketch is a program synthesis tool that helps programmers implement concur-
rent data structures; it uses a counter example guided inductive synthesis algorithm
(CEGIS) to converge to a solution within a handful of iterations [352]. Given a
partial program example, or a sketch, PSketch outputs a completed sketch that
matches a given correctness criteria.

For type error messages, Lerner, Flower, Grossman, and colleagues [211] pursue
an approach in which the type-checker itself does not produce error messages, but
instead relies on an oracle for a search procedure that finds similar programs that
do type-check; to bypass the typically-inscrutable type error messages, their system

202

provides examples of code (at the same location) that would type check.
And for memory-related output, Cherem, Princehouse, and Rugina [62] im-

plement an analysis algorithm for detecting memory leaks in C programs; their
analysis uses sparse value-flows to present concise error messages containing only
a few relevant assignments and path conditions that cause the error to happen.

A.4.5 Interactivity
We identified several papers whose tools support interactivity. That is, the pro-
grammer can interact with the tool either before the output is produced, in order
to customize the output—or work with the output of the tool in a mixed-initiative
fashion, where both the programmer and the tool collaborate to arrive at a solution.

Within this feature, Parsify is a program synthesis tool that synthesizes a parser
from input and output examples. The tool interface provides immediate visual
feedback in response to changes in the grammar being refined, as well as a graphical
mechanism for specifying example parse trees using only textual selections [215].
As the programmer adds production rules to the grammar, Parsify uses colored
regions overlaid on the examples to convey progress to the programmer.

Live programming is a user interface capability that allows a programmer to
edit code and immediately see the effect of the code changes. Burckhardt, Fahndrich,
Halleux, and colleagues [50] introduce a type and effect formalization that separates
the rendering of UI components as a side effect of the non-rendering logic of the pro-
gram. This formalization enables responsive feedback and allows the programmer
to make code changes without needing to restart the debugging process to refresh
the display.

Dillig, Dillig, and Aiken [98] present a technique called abductive inference—that
is, to find an explanatory hypothesis for a desired outcome—to assist programmers in
classifying error reports. The technique computes small, relevant queries presented
to a user that capture exactly the information the analysis is missing to either
discharge or validate the error.

LeakChaser identifies unnecessarily-held memory references which often result
in memory leaks and performance issues in manages languages such as Java [405].
The tool allows an iterative process through three tiers which assist programmers at
different levels of abstraction, from transactions at the highest-level tier to lifetime
relationships at the lowest level tier.

Chameleon assists programmers in choosing an abstract collection implemen-
tation in their algorithm [331]. During program execution, Chameleon computes

203

trace metrics using semantic profiling, together with a set of collection selection
rules, to present recommended collection adaptation strategies to the programmers.
Similarly, the PetaBricks tool makes algorithm choice a first-class construct of the
language [11].

Dincklage and Diwan [99] identify how tools can benefit from guidance from
the programmer in cases where incorrect tool results would otherwise compromise
its usefulness. For example, many refactoring operations in the Eclipse IDE are
optimistic, and do not fully check that the result is fully legal. They propose a
method to produce necessary and sufficient reasons, that is, a why explanation,
for a potentially undesirable result; the programmer can then—through applying
predicates—provide feedback on whether the given analysis result is desirable.

Finally, MrSpidey is a user-friendly, static debugger for Scheme [121]; the pro-
gram analysis computes value set descriptions for each term in the program and
constructs a value flow graph connecting the set descriptions; these flows are made
visible to the programmer through a value flow browser which overlays arrows over
the program text. The programmer can interactively expose portions of the value
graph.

A.4.6 Localizing
Tools present the relevant program locations for an error, or localize errors, through
two forms: 1) a point localization, in which a program analysis tool tries to identify a
single region or line as relevant to the error, and 2) as slices, where multiple regions
are responsible for the error.

Point. Zhang, Myers, Vytiniotis, and colleagues [410] implement, within the
GHC compiler, a simple Bayesian type error diagnostic that identifies the most likely
source of the type error, rather than the first source the inference engine “trips over.”
The BugAssist tool implements an algorithm for error cause localization based on a
reduction to the maximal satisfiability problem to identify the cause of an error from
failing execution traces [186]. The Breadcrumbs tool uses a probabilistic calling
context (essentially, a stack trace) to identify the root cause of bug, by recording
extra information that might be useful in explaining a failure [37].

Slices. Program slicing identifies parts of the program that may affect a point
of interest—such as those related to an error message; Sridharan, Fink, and Bodik
[356] propose a technique called thin slicing which helps programmers better iden-
tify bugs because it identifies more relevant lines of code than traditional slicing.
Analogous to thin slicing, Zhang, Gupta, and Gupta [412] developed a strategy for

204

pruning dynamic slices to identify subsets of statements that are likely responsible
for producing an incorrect value; for each statement executed in the dynamic slice,
their tool computes a confidence value, with higher values corresponding to greater
likelihood that the execution of the statement produced a correct value.

A.4.7 Ranking
Ranking is a presentation feature that orders the output of the program analysis
in a systematic way. For example, random testing tools, that is, fuzzers, can be
frustrating to use because they “indiscriminately and repeatedly find bugs that may
not be severe enough to fix right away” [61]. Chen, Groce, Zhang, and colleagues [61]
propose a technique that orders test cases in a way that diverse, interesting cases
(defined through a machine technique called furthest point first) are highly ranked.
And the AcSpec tool prioritizes alarms for automatic program verifiers through
semantic inconsistency detection in order to report high-confidence warnings to the
programmer [36].

Coppa, Demetrescu, and Finocchi [74] present a profiling methodology and
toolkit for helping programmers discover asymptotic inefficiencies in their code. The
output of the profiler is, for each executed routine of the program, a set of tuples that
aggregate performance costs by input size—these outputs are intended to be used
as input to performance plots. The Kremlin tool makes recommendations about
which parts of the program a programmer should spend effort parallelizing; the tool
identifies these regions through a hierarchical critical path analysis and presents
to the programmer an ordered (by speedup) parallelism plan as a list of files and
lines to modify [128].

Perelman, Gulwani, Ball, and colleagues [284] provide ranked expressions for
completions in API libraries through a language of partial expressions, which allows
the programmer to leave “holes” for the parts they do not know.

A.4.8 Reduction
Reduction approaches take a large design space of allowable program output and
reduce that space using some systematic rule. Within this feature, Logozzo, Lahiri,
Fähndrich, and colleagues introduce a static analysis technique of Verification
Modulo Versions (VMV), which reduces the number of alarms reported by verifiers
while maintaining semantic guarantees [224]. Specifically, VMV is designed for

205

scenarios in which programmers desire to fix new defects introduced since a previous
release.

A.4.9 Tracing
Tracing is a form of slicing that involves flows of information, and understanding
how information propagates across source code. As one example, Ohmann, Brooks,
D’Antoni, and colleagues [271] present a system that answers control-flow queries
posed by programmers as formal languages. The tool indicates whether the query
expresses control flow that is possible or impossible for a given failure report. As
another example, PIDGIN is a program analysis and understanding tool that allows
programmers to interactively explore information flows—through program depen-
dence graphs within their applications—and investigate counterexamples [179].
Taint analysis is another information-flow analysis that establishes whether values
from unstructured parameters may flow into security-sensitive operations [372];
implemented as TAJ, the tool additionally eliminates redundant reports through
hybrid thin slicing and remediation logic over library local points. Other techniques,
such as those by Rubio-González, Gunawi, Liblit, and colleagues [318], use data-flow
analysis techniques to track errors as they propagate through file system code.

To support algorithmic debugging, Faddegon and Chitil [116] developed a library
in Haskell, that, after annotating suspected functions, presents a detailed com-
putational tree. Computational trees are essentially a trace to help programmers
understand how a program works or why it does not work. The tool TraceBack pro-
vides debugging information for production systems by providing execution history
data about program problems [13]; it uses first-fault diagnosis to discover what
went wrong the first time the fault is encountered.

MemSAT helps programmers debug and reason about memory models: given an
axiomatic specification, the tool outputs a trace—sequences of reads and writes—of
the program in which the specification is satisfied, or a minimal subset of the
memory model and program constraints that are unsatisfiable [367].

The Merlin security analysis tool infers information flows in a program to identify
security vulnerabilities, such as cross-site scripting and SQL inject attacks [222].
Internally, the inference is based on modeling a data propagation graph using
probabilistic constraints.

206

A.5 Discussion
Lack of user evaluations in PL. Although we identified and classified papers
within PLDI in terms of a taxonomy of presentation, our investigation confirms that
papers either perform no usability evaluation with programmers, or the claims of us-
ability of the tool are made through intuition—using the authors of the paper as sub-
jects. For example, consider the presentation feature of alignment (Appendix A.4.1),
in which several assumptions are made about how output should be presented
in familiar representations to the programmer. All of these assumptions appear
to be intuitive—give output in the same level of syntactic sugar as their source
code for consistency, use proof constructions commonly found in human proofs, and
support readability. Unfortunately, none of these assumptions are tested with actual
programmers, reminding us of the concerns noted by Hanenberg and others in the
introduction. It seems likely that some of these assumptions are actually incorrect,
which may explain the lack of adoption in practice and the confusing tool output
programmers report for many of these sophisticated program analysis tools.

Lack of operational tools in HCI. At the same time, HCI researchers per-
form usability studies on user interfaces, yet the experiments they conduct are
understandably evaluated against representative tool experiences, rather than
the multiplicity of corner cases that occur in practice. Consequently, even if the
user interfaces are found to be effective or usable for some measures, the tools
themselves cannot actually be used in practice. Regrettably, this means that user
interface advances remain within academic papers, and do not ever make it to
actual programmers without significant investment in tools that may not even be
possible to build due to fundamental, technical limitations.

Bridging PL and HCI. In our view, both deficiencies in PL and HCI can be
reduced by fostering collaborations between the disciplines. A cross-disciplinary
approach to tool development would enable usable program analysis tools, by having
a pipeline from program analysis tools to user evaluations in HCI. HCI contribu-
tions could then feedback to PL to further improve the output of program analysis
tools. But doing so requires a cross-disciplinary community that can provide such
opportunities for collaboration. We suggest that PLATEAU has the potential to
become this community.

207

A.6 Conclusions
In this paper, we conducted a scoping review of PLDI from the period of 1988-2017.
In the review, we identified and cataloged papers for program analysis tools that
discussed or made contributions to the presentation of output towards programmers.
Admittedly, a scoping review is only a starting point for investigation, and can only
provide interim guidance. Nevertheless, our hope is that the scoping review we
have conducted can serve to bootstrap future, comprehensive systematic literature
reviews. We are open to feedback on practical methods to realizing that goal.

A.7 Acknowledgments
This material is based upon work supported by the National Science Foundation
under Grant No. 1714538.

208

B | An Interaction-First
Approach for Helping
Developers Comprehend and
Resolve Error Notifications

B.1 Abstract
Error notifications and their resolutions, as presented by modern IDEs, are still
cryptic and confusing to developers. We propose an interaction-first approach to
help developers more effectively comprehend and resolve compiler error notifications
through a conceptual interaction framework. We propose novel taxonomies that
can serve as controlled vocabularies for compiler notifications and their resolutions.
We use preliminary taxonomies to demonstrate, through a prototype IDE, how the
taxonomies make notifications and their resolutions more consistent and unified.1

B.2 Introduction
Programming is a cognitively demanding task [391]. One demanding subtask is the
cycle of comprehending feedback as presented through compiler error notifications

1This chapter was previously published in: T. Barik, J. Witschey, B. Johnson, and colleagues,
“Compiler error notifications revisited: An interaction-first approach for helping developers more
effectively comprehend and resolve error notifications,” in Companion Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE Companion 2014, Hyderabad, India:
ACM, 2014, pp. 536–539.

209

and articulating appropriate resolutions for each. In our experience, it seems nearly
every developer has stories about impenetrable error notifications that caused them
consternation. Unfortunately, today’s integrated development environments (IDEs)
emit cryptic and confusing messages, leaving their resolutions equally elusive, even
for experts [257, 370].

When the IDE was itself a new idea, researchers recognized its potential to
present and resolve compiler messages in innovative ways, by taking advantage
of graphics and multiple windows [48]. Consider quick fixes, which augment text-
based notifications by offering candidate resolutions. While more useful than text
notifications alone, even quick fixes do not fully realize the potential of the IDE.
Quick fixes only offer one mechanism for all errors, one that may not be appropriate
for every error.

This leads us to ask: How should error notifications be presented, and for what
errors? Does a single notification style work for all errors? Should every error have a
unique notification, or is the best solution somewhere in between, where some errors
should be presented in the same way? Do the resolutions offered by these tools
actually align with the way developers articulate them? We suggest a principled
approach to understanding this space will help us develop more effective tools.

We propose two taxonomies that formalize an interaction framework from human-
computer interaction (HCI) research. These taxonomies model notifications and
resolutions and can be used as a controlled vocabulary, which can be reasoned
about both cognitively and computationally. Though preliminary, we believe this
research is useful and will provide tool developers with new tools to design consistent,
unified presentations of notifications and their resolutions. We show how abstract
representations of notifications can be computationalized, or expressed in a form
that machines can interpret, and how this representation supports tools that help
developers comprehend and resolve error notifications. To demonstrate how tools
can implement our formalism, we introduce a language-agnostic prototype system
in which new visualizations, as well as quick fixes and other resolution strategies,
can be implemented.

B.3 Related Work
Though researchers have previously identified the problems developers encounter
when interpreting and resolving error notifications [47, 172, 409], few provide con-
crete solutions. As early as the 1960s, researchers designed systems to support

210

Output

Input

DeveloperCompiler

observation

articulationperformance

presentation
IDE

Figure B.1 The interaction framework, instantiated for IDEs.

developer comprehension of compiler error messages [168, 221, 252], but much of
this work has focused on text-only solutions that do not take advantage of IDEs.
Other researchers have written guidelines for the development of error notifica-
tions [246, 274, 337], but these guidelines cannot be directly understood by machines.
There has also been recent research on systems to help developers comprehend and
resolve errors [152, 231, 257]. In particular, Hartmann and colleagues use a social
recommender system which provides suggestions to developers that cognitively
align with their comprehension and resolution process [152]. However, a limitation
of this system is that the suggestions require a corpus of human-generated fixes.

B.4 Our Approach
We describe Abowd and Beale’s interaction framework [1], how it models the inter-
action between developers and IDEs (Section B.4.1), and through which we identify
areas for improvement. We propose two cognitively and computationally expressive
taxonomies for building tools that allow developers to more effectively comprehend
and resolve error notifications (Section B.4.2).

B.4.1 First Principles: Interaction Framework
Traver considered the difficulty of error message comprehension and resolution
from an HCI perspective [370]. This perspective offers a useful insight: Traver
describes modern compiler use, as enabled by IDEs, as a specialized instantiation of
the Abowd and Beale’s interaction framework [1]. However, conventional tools are
modeled by the framework only incidentally, and not by design. We believe designing
tools for interaction in a principled way will help us make better tools. We briefly

211

describe here the framework (Figure B.1) and its applicability to IDEs.
This framework comprises four components: a compiler, a developer, an input,

and an output. The input and output constitute the interface, which, for developers,
is the IDE. For example, imagine a compiler has identified an error in some C#
code. The compiler presents this error to the developer through the IDE, and the
IDE can augment this presentation by, e.g., visually underlining the offending code.
This notification must then be observed and comprehended by the developer. The
developer must then articulate a resolution through the IDE, either as a manual
edit to the code or through an automated tool in the IDE. The IDE then invokes
the compiler, which performs the compilation process, and the cycle repeats. Abowd
and Beale call these four steps translations. This framework exposes interdepen-
dence between the translations: if the developer observes a cryptic message and
misinterprets it, they are more likely to articulate an incorrect resolution.

B.4.2 Formalizing Translations: Taxonomies
While all four translations in the interaction cycle are important, we think research
on some of these translations have made greater computational progress than
others. In our opinion, the translations that have made less progress with regards
to improving error notifications are presentation and articulation. As with other
translations, there are likely many useful formalizations. We chose taxonomies
from knowledge management theory as a starting point for designing our formal-
ization, because they help people retrieve, manage, and improve complex problem
spaces [127]. We intend to develop a notification taxonomy describing information
content to include in the presentation of errors, and a resolution taxonomy describing
how programmers articulate error resolutions to the compiler.

B.4.2.0.1 Presentation: A Notification Taxonomy

We have conducted preliminary research on the first taxonomy by randomly sam-
pling and categorizing roughly 40% of the 500 possible OpenJDK compiler error
notifications. The notifications are categorized based on information needed for
developer comprehension. We categorized error notifications in a way that identifies
the important information that would help a developer understand the underlying
error irrespective of any potential resolution strategies. A subset of this taxonomy,
which is still in preliminary stages of development, is shown in Figure B.2.

One category in this taxonomy is a Clash, which informs a developer that two

212

Errors

Inheritance Relationship

Improper Name

Generated Code

Data Flow

Clash

Bad Practice
Dead Code

Unsafe Operation

Figure B.2 A partial taxonomy for categorizing notifications by presentation.

elements cannot coexist in the program. As a result, a notification for a Clash should
inform the developer which two program elements are in conflict. For instance, two
local variables declared in the same scope in Java with the same name would cause
a Clash.

B.4.2.0.2 Articulation: A Resolution Taxonomy

This taxonomy describes strategies developers use to articulate resolutions to errors.
By observing and capturing developer resolution strategies, we can potentially
generate interfaces which help developers articulate resolutions more naturally and
at the appropriate level of abstraction. Table B.1 shows a subset of these taxonomy
elements as tasks, and how they might be used as GUI widgets or operations. The
ChooseOneOf task occurs because a developer must delete all but one of a set
of elements from a program, as when a method has been inadvertently assigned
both public and private qualifiers. In this case, the compiler can populate the
ChooseOneOf task with the two qualifiers as arguments. This task may be offered
as a resolution through an error notification during presentation. Future empirical
studies will evaluate the appropriateness of these tasks.

213

(a) Pattern matches are overlapped

(b) Name clash: Methods have same erasure

Figure B.3 A prototype IDE for notifications and resolutions. The prototype leverages the
notification and resolution taxonomies to reuse visualization components. The resolver is a
single component, and generates appropriate resolutions using the resolution taxonomy.
The text with a red, dashed border is generated code added by the system to help explain
the error.

214

Table B.1 A Partial Taxonomy of Developer Resolution Tasks

Semantic Task Description GUI Example
ChooseOneOf(X,Y, . . .) Chooses an argument from the

provided arguments.
Dropdown

Merge(X,Y, . . .) Merges a set of identical argu-
ments.

Radio button

Remove(X) Removes a subtree from the
source, e.g., dead code.

Radio button

Replace(X,Y) Replaces the first argument with
the second.

Radio button or
text field

Move(X) Moves the argument to a different
location in the code.

Drag and drop

B.5 Emerging Results
We present a prototype IDE, shown in Figure B.3. The prototype consists of a text
editor pane that can be augmented with visualizations, a resolver pane that the IDE
can use to present candidate resolutions, and a traditional console pane containing
the raw text error message. Internally, the prototype leverages the presentation and
articulation taxonomies by passing notifications as error objects. For this paper, it is
sufficient to think of these objects as elements from the taxonomies augmented with
additional semantic information such as line number, location, or other relevant
information for use by the IDE. Here, we demonstrate the use of these taxonomies
with two examples.

The IDE in Figure B.3a presents an overlapping pattern error in Haskell, where
the first ‘1’ pattern overlaps the second ‘1’ completely, such that the second ‘1’ case can
never execute. This error is presented to the IDE as a Clash error object (Figure B.2).
It displays the clash between the conflicting cases with a red bracket. The error
object also contains resolution tasks (Table B.1) for the developer to articulate:
Merge, Replace (for the first conflicting pattern), and Replace (for the second
conflicting pattern). With this information, the IDE presents a set of resolution
tasks, with graphical widgets (radio buttons, text fields, and so on) as appropriate
for articulating each task.

In this example, the developer has chosen the third resolution, so the IDE also
displays, in green, the effect of articulating a Replace task: a strike-through for

215

the case that will change, along with boxed text indicating what the case will be
changed to.

A second, more complex Java example, is shown in Figure B.3b. This error is
tricky in that it results from generics-related type information that is available at
compilation time but not at runtime – this is called type erasure. Roughly, during the
compilation process, parameterized classes are turned into raw classes – for example,
Param<Integer> and Param<String> will both resemble Param, at which point, their
signatures would be the same (or have the same erasure, according to OpenJDK)
and the runtime would not be able to tell them apart because both are still available
(neither hides the other).

At first glance this notification may appear to be a completely different error
than that in Figure B.3a. However, if we consider it from a user-centric perspective,
we can reduce it to a Clash error – a clash between method signatures after type
erasure. Because the effect of the error is not apparent in the source code, but is
manifested in the compiled code, we also consider it a Generated Code notification.

The error text provided by OpenJDK describes this error, but in a cryptic way.
Our visualization is clearer because it directly shows the effect of the type erasure
using red arrows labeled erasure and inserts a representation of the generated
code, which is displayed in a box with a red, dashed border to differentiate it from
the developer’s code. The IDE also displays red brackets, as before, to show that
the methods are in conflict after erasure. Without this visualization, a developer
would have thought through the erasure step of compilation and come to the same
conclusion, but our visualization reduces the cognitive burden by performing this
reasoning for them.

Our taxonomy helped us recognize the semantic similarity between these two
notifications. Then, we used it to represent them both computationally. Our visu-
alization can reuse the same infrastructure for the Clash semantics of the errors,
despite being different errors in different languages. In addition, our example demon-
strates the composability of the notification semantics, which allows Figure B.3b
to augment the Clash visualization with an explanation that the Clash occurs in
Generated Code.

This demonstrates the immediate benefit of using these taxonomies – they give
consistent and unified semantics to notifications and resolutions. This, in turn,
allows IDE developers to add presentation and articulation features to their tools
for minimal incremental cost.

216

B.6 Challenges
The discovery of tasks within the resolution taxonomy may reveal non-reusable
tasks that are only applicable to a particular error notification. If special cases occur
frequently, then it will negate the advantages of unification that taxonomies would
otherwise provide. We must make design tradeoffs in the number of categories. A
small number of highly abstract categories allows for greater consistency between
notifications, but at the cost of detailed information about individual errors. It is
also possible that some elements of these taxonomies cannot be computationalized.
For example, consider possible Bad Practice notifications relating to “code smells”,
which are not necessarily errors, but may indicate general flaws [125]. Resolving
code smells is often wholly subjective, preventing any computational solution. So
far, we have only used the OpenJDK in creating our taxonomies, though we intend
to incorporate more languages in the future. Though we expect our taxonomies to
capture a broad range of languages, new language features may require revisions
to the taxonomies. A final challenge of our approach is that its effectiveness is
constrained by the accuracy of error diagnostics provided by the compiler.

B.7 Conclusions
We think our taxonomies will provide developers and compilers with controlled
and expressive vocabularies with which to communicate about errors and their
resolutions. The taxonomies give consistent and unified semantics to error objects,
which in turn allows IDE developers to easily add presentation and articulation
features to their tools. More importantly, the taxonomies allow IDE developers to
also design presentation and articulation of notifications in a consistent and unified
way. In doing so, tools can offer error notifications and resolutions that align more
closely with the way in which developers observe and resolve notifications in their
programming activities.

B.8 Acknowledgments
This material is based upon work supported by the National Science Foundation
under Grant No. 1217700. We thank the Software Engineering group at ABB
Corporate Research for their funding and support.

217

C | Study Materials for “Do
Developers Read Compiler
Error Messages?” (Chapter 4)

C.1 Interview Protocol

C.1.1 Outline
1. Pre-participant steps.

2. Initial steps (namely, calibration).

3. Tasks (5 minutes x 10 tasks = 50 minutes).

4. Post-questionnaire.

C.1.2 Pre-arrival Steps
1. Open both GazeControl and GazeAnalysis. Make sure the screen is on the

proper one (GazeControl). Make a new project for each participant with name
PXXX (which you obtain from the init script). You will pause in between tasks.

2. Open Eclipse and reset to defaults.

3. Note if the participant has glasses.

218

C.1.3 Arrival Steps
1. Have participant sign consent form.

2. Have participant sit in chair and get comfy. Hand them training picture and
tell them these are all the places a notification would appear. Ask them not to
move too much.

3. Adjust eye tracker. Calibrate eye tracker (in GazeControl) using 9 point align-
ment. If any lines are outside the blue area, redo those points. Also check 9 of
9, each area should have a red and green point/line. If there are way too many
(n>3), try entire recalibration. If still bad after 3 attempts, dismiss participant.

4. Sanity Check: In Gaze Analysis, you should see eyes on screen and the right
desktop. The camera will also be live. Pull up Eclipse (with okay code).

5. Secondary offset: Find what version of Eclipse is running (Go to help, about
Eclipse)). Then have them read the one warning aloud.

C.1.4 Instructions for Participant
In this experiment, we are interested in how developers identify and resolve compiler
defects.

In this experiment, you will be identifying and resolving 10 compiler defects,
which are presented as compiler error messages. You’ll get five minutes for each
task. If you finish early, you may indicate this me and we can move to the next
task. After two minutes, if you feel that you will not be able to complete this task,
regardless of any additional time, you may also ask me to move on to the next task.

You should attempt to provide a reasonable solution for the defect that you
feel best captures the intention of the code (for example, deleting all the files in
the project might remove the compiler defect, but that is highly unlikely to be an
acceptable resolution). Note that you are not expected to successfully fix all the
defects, and that some defects may be more difficult than others.

As a limitation of the eye tracking equipment, please leave the Eclipse window
full-screen, and do not use any resources (such as a web browser) outside of the
Eclipse IDE. You may use any of the features available within Eclipse to help you
with troubleshooting, but do not change any of the Eclipse preferences or install
any new Eclipse packages.

219

Figure C.1 Notifications sheet provided to participants to familiarize them with all
notification sources in the Eclipse IDE.

[Show notifications sheet to user] (Figure C.1)

Do you have any questions at this time?

C.1.5 Post-study questionnaire
Give participant the questionnaire after they have completed the tasks.

C.1.6 Closing
You just took a study on how people understand and resolve compile error messages.
At this time, you can also decline to participant in the study. Otherwise, do you
have any questions?

220

C.2 Tasks
Faults are injected into Apache Commons 4.4.0. We present each fault using a
unified diff format.1

1http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html

221

http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html

C.2.1 Task 1: SUBLIST

C.2.1.1 Source Listings

@@ -134,5 +134,5 @@

@Override
- public List<E> subList(final int fromIndex, final int toIndex) {
+ public List<E> sublist(final int fromIndex, final int toIndex) {

final List<E> sub = decorated().subList(fromIndex, toIndex);
return new LazyList<E>(sub, factory);

Listing C.1 Injected fault in LazyList.java.

135 @Override
136 public List<E>

:::::::::::::::
sublist(final

:::::
int

:::::::::::::
fromIndex,

:::::::
final

:::::
int

::::::::::
toIndex) {

137 final List<E> sub = decorated().subList(fromIndex, toIndex);
138 return new LazyList<E>(sub, factory);
139 }

Listing C.2 Partial source listing for LazyList.java (in IDE).

C.2.1.2 Error Message

Description. The method sublist(int, int) of type LazyList<E> must override or

implement a supertype method

Resource. LazyList.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/list
Location. line 136

Type. Java Problem

222

C.2.2 Task 2: NODECACHE

C.2.2.1 Source Listings

@@ -107,4 +106,0 @@
- public boolean isEmpty() {
- return size() == 0;
- }
-

Listing C.3 Injected fault in AbstractLinkedList.java.

58 public class
:::::::::::::::::::::::
CursorableLinkedList<E> extends AbstractLinkedList<E>

implements Serializable {↪→

59

60 /** Ensure serialization compatibility */
61 private static final long serialVersionUID = 8836393098519411393L;
62

63 /** A list of the cursor currently open on this list */
64 private transient List<WeakReference<Cursor<E>>> cursors;

Listing C.4 Partial source listing for CursorableLinkedList.java (in IDE).

42 public class
:::::::::::::::::::::::::
NodeCachingLinkedList<E> extends AbstractLinkedList<E>

implements Serializable {↪→

43

44 /** Serialization version */
45 private static final long serialVersionUID = 6897789178562232073L;
46

47 /**
48 * The default value for {@link #maximumCacheSize}.
49 */
50 private static final int DEFAULT_MAXIMUM_CACHE_SIZE = 20;

Listing C.5 Partial source listing for NodeCachingLinkedList.java (in IDE).

C.2.2.2 Error Messages (2 Items)

Description. The type CursorableLinkedList<E> must implement the inherited abstract

method List<E>.isEmpty()

Resource. CursorableLinkedList.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/list

223

Location. line 58

Type. Java Problem

Description. The type NodeCachingLinkedList<E> must implement the inherited abstract

method List<E>.isEmpty()

Resource. NodeCachingLinkedList.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/list
Location. line 42

Type. Java Problem

224

C.2.3 Task 3: IMPORT

C.2.3.1 Source Listings

@@ -21,12 +21,12 @@
import java.util.Map;
import java.util.NoSuchElementException;

-import org.apache.commons.collections4.OrderedIterator;
-import org.apache.commons.collections4.OrderedMap;
-import org.apache.commons.collections4.OrderedMapIterator;
-import org.apache.commons.collections4.ResettableIterator;
-import org.apache.commons.collections4.iterators.EmptyOrderedIterator;
-import org.apache.commons.collections4.iterators.EmptyOrderedMapIterator;
+import org.apache.commons.collections3.OrderedIterator;
+import org.apache.commons.collections3.OrderedMap;
+import org.apache.commons.collections3.OrderedMapIterator;
+import org.apache.commons.collections3.ResettableIterator;
+import org.apache.commons.collections3.iterators.EmptyOrderedIterator;
+import org.apache.commons.collections3.iterators.EmptyOrderedMapIterator;

/**
* An abstract implementation of a hash-based map that links entries to create an

Listing C.6 Injected fault in AbstractLinkedMap.java.

22 import java.util.NoSuchElementException;
23

24 import
:::::::::::::::::::::::::::::::::::::
org.apache.commons.collections3.OrderedIterator;

25 import
:::::::::::::::::::::::::::::::::::::
org.apache.commons.collections3.OrderedMap;

26 import
:::::::::::::::::::::::::::::::::::::
org.apache.commons.collections3.OrderedMapIterator;

27 import
:::::::::::::::::::::::::::::::::::::
org.apache.commons.collections3.ResettableIterator;

28 import
:::::::::::::::::::::::::::::::::::::
org.apache.commons.collections3.iterators.EmptyOrderedIterator;

29 import
:::::::::::::::::::::::::::::::::::::
org.apache.commons.collections3.iterators.EmptyOrderedMapIterator;

Listing C.7 Partial source listing for AbstractLinkedMap.java (in IDE).

C.2.3.2 Error Messages (48 Items)

Description. The import org.apache.commons.collections3 cannot be resolved

Resource. AbstractLinkedMap.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/map
Location. line 24

225

Type. Java Problem

Description. The import org.apache.commons.collections3 cannot be resolved

Resource. AbstractLinkedMap.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/map
Location. line 25

Type. Java Problem

Description. The import org.apache.commons.collections3 cannot be resolved

Resource. AbstractLinkedMap.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/map
Location. line 26

Type. Java Problem

Description. The import org.apache.commons.collections3 cannot be resolved

Resource. AbstractLinkedMap.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/map
Location. line 27

Type. Java Problem

Description. The import org.apache.commons.collections3 cannot be resolved

Resource. AbstractLinkedMap.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/map
Location. line 28

Type. Java Problem

Description. The import org.apache.commons.collections3 cannot be resolved

Resource. AbstractLinkedMap.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/map
Location. line 29

Type. Java Problem

(...42 other secondary errors introduced by missing import statements across files

(.java): AbstractLinkedMap, LRUMap, LRUMapTest, LinkedMap, and LinkedMapTest.)

226

C.2.4 Task 4: QUEUEGET

C.2.4.1 Source Listings

@@ -106,11 +106,11 @@
public E peek() {

return decorated().peek();
}

public E element() {
- return decorated().element();
+ return decorated().get();

}

public E remove() {
return decorated().remove();

}

Listing C.8 Injected fault in PredicatedQueue.java.

110 public E element() {
111 return decorated().

::::
get();

112 }
113

114 public E remove() {
115 return decorated().remove();
116 }

Listing C.9 Partial source listing for PredicatedQueue.java (in IDE).

C.2.4.2 Error Message

Description. The method get() is undefined for the type Queue<E>

Resource. PredicatedQueue.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/queue
Location. line 111

Type. Java Problem

227

C.2.5 Task 5: SETADD

C.2.5.1 Source Listing

@@ -82,3 +82,3 @@
for (final E value : values) {

- decorated.decorated().add(transformer.transform(value));
+ decorated.decorated().add(0, transformer.transform(value));

}

Listing C.10 Injected fault in TransformedSet.java.

76 public static <E> Set<E> transformedSet(final Set<E> set, final
Transformer<? super E, ? extends E> transformer) {↪→

77 final TransformedSet<E> decorated = new TransformedSet<E>(set,
transformer);↪→

78 if (transformer != null && set != null && set.size() > 0) {
79 @SuppressWarnings("unchecked") // set is type E
80 final E[] values = (E[]) set.toArray(); // NOPMD - false

positive for generics↪→

81 set.clear();
82 for (final E value : values) {
83 decorated.decorated().

::::
add(0, transformer.transform(value));

84 }
85 }
86 return decorated;
87 }

Listing C.11 Partial source listing for TransformedSet.java (in IDE).

C.2.5.2 Error Message

Description. The method add(E) in the type Collection<E> is not applicable for

the arguments (int, capture#8-of ? extends E)

Resource. TransformedSet.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/set
Location. line 83

Type. Java Problem

228

C.2.6 Task 6: KEYSETKV

C.2.6.1 Source Listing

@@ -144,3 +144,3 @@
public Set<Map.Entry<K, V>> entrySet() {

- final Set<Map.Entry<K, V>> set = map.entrySet();
+ final Set<Map.Entry<V, K>> set = map.entrySet();

// unmodifiable set will still allow modification via Map.Entry objects

Listing C.12 Injected fault in FixedSizeMap.java.

143 @Override
144 public Set<Map.Entry<K, V>> entrySet() {
145 final Set<Map.Entry<V, K>> set =

::::::::::::::::
map.entrySet();

146 // unmodifiable set will still allow modification via Map.Entry objects
147 return

:::
UnmodifiableSet.unmodifiableSet(set);

148 }

Listing C.13 Partial source listing for FixedSizeMap.java (in IDE).

Error Messages (2 Items)

Description. Type mismatch: cannot convert from Set<Map.Entry<K,V>> to Set<Map.Entry<V,K>>

Resource. FixedSizeMap.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/map
Location. line 145

Type. Java Problem

Description. Type mismatch: cannot convert from Set<Map.Entry<V,K>> to Set<Map.Entry<K,V>>

Resource. FixedSizeMap.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/map
Location. line 147

Type. Java Problem

229

C.2.7 Task 7: CLAZZ

C.2.7.1 Source Listing

@@ -550,7 +550,7 @@
public T create() {

try {
return clazz.newInstance();

- } catch (final Exception ex) {
+ } catch (final IllegalAccessException ex) {

throw new FunctorException("Cannot instantiate class: " + clazz, ex);
}

}

Listing C.14 Injected fault in MultiValueMap.java.

550 public T create() {
551 try {
552 return

:::::::::::::::::::::::
clazz.newInstance();

553 } catch (final IllegalAccessException ex) {
554 throw new FunctorException("Cannot instantiate class: " + clazz, ex);
555 }
556 }

Listing C.15 Partial source listing for MultiValueMap.java (in IDE).

C.2.7.2 Error Message

Description. Unhandled exception type InstantiationException

Resource. MultiValueMap.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/map
Location. line 552

Type. Java Problem

230

C.2.8 Task 8: NEXT

C.2.8.1 Source Listing

@@ -152,6 +152,18 @@
last = null;
canRemove = false;

}
+
+ /**
+ * Gets the next key from the <code>Map</code>.
+ *
+ * @return the next key in the iteration
+ * @throws java.util.NoSuchElementException
+ */
+ public K next() {
+ last = iterator.next();
+ canRemove = true;
+ return last.getKey();
+ }

/**
* Gets the iterator as a String.

Listing C.16 Injected fault in EntrySetMapIterator.java.

74 public K
::::::::
next() {

75 last = iterator.next();
76 canRemove = true;
77 return last.getKey();
78 }
79

80 //---
81 /**
82 * Removes the last returned key from the underlying <code>Map</code>.

162 public K
::::::::
next() {

163 last = iterator.next();
164 canRemove = true;
165 return last.getKey();
166 }
167

168 /**
169 * Gets the iterator as a String.

Listing C.17 Partial source listing for EntrySetMapIterator.java (in IDE).

231

C.2.8.2 Error Message

Description. Duplicate method next() in type EntrySetMapIterator<K,V>

Resource. EntrySetMapIterator.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/iterators
Location. line 74

Type. Java Problem

Description. Duplicate method next() in type EntrySetMapIterator<K,V>

Resource. EntrySetMapIterator.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/iterators
Location. line 162

Type. Java Problem

232

C.2.9 Task 9: READOBJSTATIC

C.2.9.1 Source Listing

@@ -94,3 +94,3 @@
@SuppressWarnings("unchecked")

- private void readObject(final ObjectInputStream in) throws ... {
+ private static void readObject(final ObjectInputStream in) throws ... {

in.defaultReadObject();

Listing C.18 Injected fault in UnmodifiableQueue.java.

throws IOException, ClassNotFoundException has been truncated to throws ... due
to page length limitations.

94 @SuppressWarnings("unchecked")
95 private static void readObject(final ObjectInputStream in) throws

IOException, ClassNotFoundException {↪→

96 in.defaultReadObject();
97 setCollection((Collection<

::
E>) in.readObject());

98 }

Listing C.19 Partial source listing for UnmodifiableQueue.java (in IDE).

C.2.9.2 Error Message

Description. Cannot make a static reference to the non-static type E

Resource. UnmodifiableQueue.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/queue
Location. line 97

Type. Java Problem

233

C.2.10 Task 10: SWITCH

C.2.10.1 Source Listing

@@ -1241,3 +1241,3 @@
// case 0: has already been dealt with

- default:
+ default case 0:

throw new IllegalStateException("Invalid map index: " + size);

Listing C.20 Injected fault in Flat3Map.java.

1236 case 1:
1237 buf.append(key1 == this ? "(this Map)" : key1);
1238 buf.append('=');
1239 buf.append(value1 == this ? "(this Map)" : value1);
1240 break;
1241 // case 0: has already been dealt with
1242

:::::::::
default case 0:

1243 throw new IllegalStateException("Invalid map index: " + size);

Listing C.21 Partial source listing for Flat3Map.java (in IDE).

C.2.10.2 Error Message

Description. Syntax error on token "default", : expected after this token

Resource. Flat3Map.java
Path. /commons-collections4/src/main/java/org/apache/commons/collections4/map
Location. line 1242

Type. Java Problem

234

C.3 Post-study Questionnaire
Post-questionnaire

Participant ID: _________

What is your gender?

[] Male [] Female

What is your age? _______

How knowledgeable are you about the Java programming language?

[] Not knowledgeable about Java

[] Somewhat knowledgeable about Java

[] Knowledgeable about Java

[] Very knowledgeable about Java

How familiar are you with Eclipse?

[] Not familiar with Eclipse

[] Somewhat familiar with Eclipse

[] Familiar with Eclipse

[] Very familiar with Eclipse

How many months and years of industry programming experience do you have?

___ years ___ months

235

D | Study Materials for “How Do
Developers Visualize
Compiler Error Messages?”
(Chapter 5)

D.1 Interview Protocol

D.1.1 Pre-tasks
1. For this experiment, we will use the following outline: IRB (2 minutes), Ques-

tionnaire (2 minutes), Task 1 (25 minutes), Survey (5 minutes), Task 2 (25
minutes).

2. Give participant IRB Consent Form.

3. Give participant Demographics Questionnaire.

4. Start audio and state: “Participant . You indicated that we may ”
(optional elected for recording). Get confirmation. Write this number down
somewhere.

D.1.2 Task 1
1. Have printout of all tasks, for either control or treatment group.

2. Give them the tasks alphabetically: Apple, Brick, Kite, Melon, Trumpet, Zebra.

236

D.1.2.1 Instructions to Participant

For the first task, you will be examining six screens that are representative of an
IDE. On the top of the screen, you will see a source file. Each source file has one or
more errors. Below the source file, you will see the compiler output of the error. The
source file also has visual annotations to assist with the error message. In your IDE,
you will see visualizations as shown in your Legend file (if in treatment). [Take 1
minute to look over this].

You’ll have 30 seconds to just read over the message. You may or may understand
every message, and that’s okay too. Then, to the best of your ability you will explain
what you think the problem is to me. At the same time, I’d like to use the provided
sheet to draw and visually annotate your explanation on top of the source code.
As a guideline, if you find yourself pointing to something that might be worth
annotating in some way. You will have at most 2 minutes to give your explanation.

At the end of each exercise, you will have two short questions on your perceptions
about the problem.

D.1.3 Questionnaire
You will now take a short survey (5 minutes) that evaluates the visual annotations
that you’ve just seen. This survey introduces some new concepts so please read it
carefully. You can use the source code and your notes to help with completing this
evaluation.
[Take materials from participant.]

If you need a break, you can have one now.

D.1.4 Task 2
1. In the ActivePresenter recording software, start recording.

2. Turn off the toolbar so the participant can’t accidentally close it.

3. When ready to start, type begin.bat to prepare source code capture. You can
go ahead and do this before giving the instructions.

In this task, you will write 6 programs on a computer. You will have five minutes
for each problem. You will be given an expected compiler error message that you’ve
already seen in Task 1. Unlike before, you will now have to write source code to

237

generate a particular error message. For this exercise, you will work on your own.
You should generate an error message that is close to the provided error message,
though there may be some small variations in line number. You will not need to
create an additional files to solve this problem.

[Show them the interface]. Explain the compile command. Do not use any other
commands. Remind them to save.

When you’re done, ask the investigator to check your answer. The rules of this
experiment don’t allow me to provide you with assistance on this problem, but if
something unexpected breaks, feel free to ask.

D.1.5 Wrap-up
You just took a study on how people understand messages. At this time, you can
also decline to participant in the study. Otherwise, do you have any questions?

D.2 Questionnaire
All questions are optional.

What is your gender?

[] Male [] Female

What is your age?

How knowledgeable are you about the Java programming language?

[] Not knowledgeable about Java

[] Somewhat knowledgeable about Java

[] Knowledgeable about Java

[] Very knowledgeable about Java

What Integrated Development Environment (IDE) or text editor do you

primarily use when programming in Java?

238

How many months and years of industry programming experience do you

have?

___ years ___ months

How would you rate your overall programming ability?

[] Novice

[] Intermediate

[] Advanced

[] Expert

239

D.3 Visual Markings Cheatsheet

Sym-
bol

Description

code The starting location of the error.

code Indicates issues related to the error.

Arrows can be followed. They indicate the next relevant location to check.

1
Enumerations are used to number items of potential interest, especially
when the information doesn’t fit within the source code.

? The compiler expected an associated item, but cannot find it.

Conflict between items.

code
Explanatory code or code generated internally by the compiler. The code
is not in the original source.

Indicates code coverage. Green lines indicate successfully executed code.
Red lines indicate failed or skipped lines.

D.4 Dimensions Survey for All Six Tasks
For all of the questions below, 1 = lowest and 5 = highest (circle one).

240

Hidden Dependencies
A hidden dependency is a relationship between two components such that one of
them is dependent on the other, but that dependency is not fully visible. For example,
Excel spreadsheets often contain cells are referenced from other sheets and so you
can’t easily tell if modifying a given cell will or will not have an impact elsewhere
(many hidden dependencies). The LabView programming language (shown below)
makes data flow explicit, and so there are fewer hidden dependencies:

1

3

+

On a scale of 1-5, how prevalent are these dependencies in the annotations you just
evaluated?

1 2 3 4 5

Consistency
Things are consistent when similar semantics are expressed in similar syntactic
forms, that is, things that look similar either behave similarly or mean similar
things. For example, the green triangle that means “play” is a nearly universal
signal, so it is very consistent. The grammar rules for English have lots of exceptions
and irregular words, so they are less consistent.

On a scale of 1-5, how consistent were the annotations you just evaluated?

1 2 3 4 5

Hard Mental Operations
When it feels like you have to juggle many things in your head to keep things straight
or to properly use something, that is an indication of hard mental operations. For
example, if you had to file your taxes without being able to write anything down

241

except your final amounts, doing taxes would require many hard mental operations.
If you use tax-assistant software that keeps track of the intermediate steps for you
and makes sure the correct boxes are filled, there are fewer hard mental operations.

On a scale of 1-5, to what extent did the annotations require hard mental operations?

1 2 3 4 5

Role Expressiveness
A system with high role expressiveness has an intuitive design and feel - it is easy
to tell why the respective design decisions were chosen. For example, a well orga-
nized machine shop has all the supplies and tools for a given task in the same
spot - painting supplies on one table, cutting machines near each other, drill bits
next to the drill, etc. The QWERTY keyboard layout has been criticized for having
low role expressiveness because of the scattered keys and a lack of cohesive grouping.

On a scale of 1-5, how was the role expressiveness of the annotations you saw
previously?

1 2 3 4 5

D.5 Pages
The following pages contain the material forms that the participants get.

D.5.1 Explanatory Visualizations

242

Screen Listing for Apple.java

1 class Apple {

2 public public String toString () {
3 return "Red";
4 }
5 }

Compiler Output

Apple.java :2: error: repeated modifier
public public String toString () {

ˆ
1 error

243

Screen Listing for Brick.java

1 class Brick {
2 void m(int i, double d) { }
3 void m(double d, int m) { }
4
5 {
6 m(1, 2);
7 }
8 }

1

2

1

2

m((int) 1, (double) 2);

m((double) 1, (int) 2);

Compiler Output

Brick.java :6: error: reference to m is ambiguous ,
both method m(int ,double) in Brick and method m(double ,int) in Brick match

m(1, 2);
ˆ

1 error

244

Screen Listing for Kite.java

1 class Toy {
2 Toy() throws Exception {}
3 }
4
5 class Kite extends Toy {

Kite() { super (); }
6 }

?

Compiler Output

Kite.java :5: error: unreported exception Exception in default constructor
class Kite extends Toy {
ˆ
1 error

245

Screen Listing for Melon.java

1 class Melon {
2 final int i;
3
4 Melon(boolean b) {
5 if (b)
6 i = 3;
7 }
8 }

1 2

i = 3 i = ?

b = true b = false

Compiler Output

Melon.java :7: error: variable i might not have been initialized
}
ˆ

1 error

246

Screen Listing for Trumpet.java

1 import java.io.*;
2
3 class Trumpet {
4
5 void play() {
6 try {

7 if (true) {
8 throw new FileNotFoundException ();
9 }

10 else {
11 throw new EOFException ();
12 }
13 }

14 catch(FileNotFoundException fnf) { }

15 catch(EOFException eof) { }

16 catch(IOException ex) { }
17 }
18 } ?

Compiler Output

Trumpet.java :16: warning: unreachable catch clause
catch(IOException ex) { }
ˆ

thrown types FileNotFoundException ,EOFException have already been caught
1 warning

247

Screen Listing for Zebra.java

1 class Zebra {
2 static class Stripe <X> {}
3
4 static class BlackStripe <X extends Number > extends Stripe <X> {

5 BlackStripe(X x) {}
6 }
7
8 Stripe <String > sf1 = new BlackStripe <>("Marty");
9 }

Compiler Output

Zebra.java :8: error: cannot infer type arguments for BlackStripe <>;
Stripe <String > sf1 = new BlackStripe <>(" Marty ");

ˆ
reason: inferred type does not conform to declared bound(s)

inferred: String
bound(s): Number

1 error

248

D.5.2 Baseline Visualizations

249

Screen Listing for Apple.java

1 class Apple {
2

:::::::
public

:::::::
public String toString () {

3 return "Red";
4 }
5 }

Compiler Output

Apple.java :2: error: repeated modifier
public public String toString () {

ˆ
1 error

250

Screen Listing for Brick.java

1 class Brick {
2 void m(int i, double d) { }
3 void m(double d, int m) { }
4
5 {
6

:
m
::::
(1,

::::
2);

7 }
8 }

Compiler Output

Brick.java :6: error: reference to m is ambiguous ,
both method m(int ,double) in Brick and method m(double ,int) in Brick match

m(1, 2);
ˆ

1 error

251

Screen Listing for Kite.java

1 class Toy {
2 Toy() throws Exception { }
3 }
4
5

::::::
class

::::::
Kite

::::::::::
extends

::::
Toy {

6 }

Compiler Output

Kite.java :5: error: unreported exception Exception in default constructor
class Kite extends Toy {
ˆ
1 error

252

Screen Listing for Melon.java

1 class Melon {
2

::::::
final

:::::
int

::
i;

3
4 Melon(boolean b) {
5 if (b)
6 i = 3;
7 }
8 }

Compiler Output

Melon.java :7: error: variable i might not have been initialized
}
ˆ

1 error

253

Screen Listing for Trumpet.java

1 import java.io.*;
2
3 class Trumpet {
4
5 void play() {
6 try {
7 if (true) {
8 throw new FileNotFoundException ();
9 }
10 else {
11 throw new EOFException ();
12 }
13 }
14 catch(FileNotFoundException fnf) { }
15 catch(EOFException eof) { }
16

::::::
catch

:
(

:::::::::::::
IOException

::::
ex

:
) { }

17 }
18 }

Compiler Output

Trumpet.java :16: warning: unreachable catch clause
catch(IOException ex) { }
ˆ

thrown types FileNotFoundException ,EOFException have already been caught
1 warning

254

Screen Listing for Zebra.java

1 class Zebra {
2 static class Stripe <X> {}
3
4 static class BlackStripe <X extends Number > extends Stripe <X> {
5 BlackStripe(X x) {}
6 }
7
8 Stripe <String > sf1 = new BlackStripe <>

:::
("

::::::
Marty

::
");

9 }

Compiler Output

Zebra.java :8: error: cannot infer type arguments for BlackStripe <>;
Stripe <String > sf1 = new BlackStripe <>(" Marty ");

ˆ
reason: inferred type does not conform to declared bound(s)

inferred: String
bound(s): Number

1 error

255

D.5.3 Printed

256

Participant ID:

Annotations for Apple.java

1 class Apple {

2 public public String toString () {

3 return "Red";

4 }

5 }

Compiler Output

Apple.java :2: error: repeated modifier
public public String toString () {

ˆ
1 error

Questionnaire

1. Have you ever encountered this error message before?
[] Yes [] No [] Unsure

2. How confident are you about the accuracy of your explanation for
this error message?

[] Not at all confident
[] Somewhat confident
[] Moderately confident
[] Highly confident
[] Completely confident

257

Participant ID:

Annotations for Brick.java

1 class Brick {

2 void m(int i, double d) { }

3 void m(double d, int m) { }

4

5 {

6 m(1, 2);

7 }

8 }

Compiler Output

Brick.java :6: error: reference to m is ambiguous ,
both method m(int ,double) in Brick and method m(double ,int) in Brick match

m(1, 2);
ˆ

1 error

Questionnaire

1. Have you ever encountered this error message before?
[] Yes [] No [] Unsure

2. How confident are you about the accuracy of your explanation for
this error message?

[] Not at all confident
[] Somewhat confident
[] Moderately confident
[] Highly confident
[] Completely confident

258

Participant ID:

Annotations for Kite.java

1 class Toy {

2 Toy() throws Exception { }

3 }

4

5 class Kite extends Toy {

6 }

Compiler Output

Kite.java :5: error: unreported exception Exception in default constructor
class Kite extends Toy {
ˆ
1 error

Questionnaire

1. Have you ever encountered this error message before?
[] Yes [] No [] Unsure

2. How confident are you about the accuracy of your explanation for
this error message?

[] Not at all confident
[] Somewhat confident
[] Moderately confident
[] Highly confident
[] Completely confident

259

Participant ID:

Annotations for Melon.java

1 class Melon {

2 final int i;

3

4 Melon(boolean b) {

5 if (b)

6 i = 3;

7 }

8 }

Compiler Output

Melon.java :7: error: variable i might not have been initialized
}
ˆ

1 error

Questionnaire

1. Have you ever encountered this error message before?
[] Yes [] No [] Unsure

2. How confident are you about the accuracy of your explanation for
this error message?

[] Not at all confident
[] Somewhat confident
[] Moderately confident
[] Highly confident
[] Completely confident

260

Participant ID:

Annotations for Trumpet.java

1 import java.io.*;

2

3 class Trumpet {

4

5 void play() {

6 try {

7 if (true) {

8 throw new FileNotFoundException ();

9 }

10 else {

11 throw new EOFException ();

12 }

13 }

14 catch(FileNotFoundException fnf) { }

15 catch(EOFException eof) { }

16 catch(IOException ex) { }

17 }

18 }

261

Participant ID:

Compiler Output

Trumpet.java :16: warning: unreachable catch clause
catch(IOException ex) { }
ˆ

thrown types FileNotFoundException ,EOFException have already been caught
1 warning

Questionnaire

1. Have you ever encountered this error message before?
[] Yes [] No [] Unsure

2. How confident are you about the accuracy of your explanation for
this error message?

[] Not at all confident
[] Somewhat confident
[] Moderately confident
[] Highly confident
[] Completely confident

262

Participant ID:

Annotations for Zebra.java

1 class Zebra {

2 static class Stripe <X> {}

3

4 static class BlackStripe <X extends Number > extends Stripe <X> {

5 BlackStripe(X x) {}

6 }

7

8 Stripe <String > sf1 = new BlackStripe <>("Marty");

9 }

Compiler Output

Zebra.java :8: error: cannot infer type arguments for BlackStripe <>;
Stripe <String > sf1 = new BlackStripe <>(" Marty ");

ˆ
reason: inferred type does not conform to declared bound(s)

inferred: String
bound(s): Number

1 error

Questionnaire

1. Have you ever encountered this error message before?
[] Yes [] No [] Unsure

2. How confident are you about the accuracy of your explanation for
this error message?

[] Not at all confident
[] Somewhat confident
[] Moderately confident
[] Highly confident
[] Completely confident

263

E | Study Materials for “How
Should Compilers Explain
Problems to Developers?”
(Chapter 6)

We conducted a comparative evaluation through an online survey instrument.

E.1 Survey

E.1.1 Demographic Information
How many years of professional programming experience do you have?

How proficient are you with the following programming languages? (Not proficient,
Somewhat proficient, Proficient, Very proficient)

C

C#

C++

Java

Python

Objective-C

Swift

264

The following questions will ask you to compare two error messages for a trivial
code snippet that generates the error. There are five code snippets in total. We’ve
removed the extraneous parts of the error message to allow you focus on the message
text for the error. The error messages are for Java, but it’s okay if you aren’t an
expert on Java programming.

(The errors and options are presented to the developer in randomized order.)

E.1.2 E1
Given the following code snippet:

class Foo {
Foo() {

final int x;

for (int i = 0; i < 5; ++i) {
x = i;

}
}

}

Which error message would you prefer to see from your compiler?

1. Variable x might be assigned in loop.
2. The blank final variable "x" cannot be assigned within the body of a

loop that may execute more than once.↪→

E.1.3 E2
Given the following code snippet:

class Foo {
char variable;
int varname;

void foo() {
System.out.println(varnam);

}
}

Which error message would you prefer to see from your compiler?

265

1. cannot find symbol

symbol: variable varnam

location: class Foo

2. No field named "varnam" was found in type "Foo". However, there is an
accessible field "varname" whose name closely matches the name
"varnam".

↪→

↪→

E.1.4 E3
Given the following code snippet:

class Foo {
static void f() {
}

void bar() {
Foo f = new Foo();
f.f();

}
}

Which error message would you prefer to see from your compiler?

1. static method should be qualified by type name, Foo, instead of by an
expression↪→

2. Invoking the class method "f" via an instance is discouraged because
the method invoked will be the one in the variable's declared type,
not the instance's dynamic type.

↪→

↪→

E.1.5 E4
Given the following code snippet:

class A {
void remove(int x) { }

class B {
void remove() {

remove(3);
}

}
}

Which error message would you prefer to see from your compiler?

266

1. method remove in class A.B cannot be applied to given types

required: no arguments

found: int

reason: actual and formal argument lists differ in length

2. The method "void remove(int x);" contained in the enclosing type "A" is
a perfect match for this method call. However, it is not visible in
this nested class because a method with the same name in an
intervening class is hiding it.

↪→

↪→

↪→

E.1.6 E5
Given the following code snippet:

class A {
class B {

static String s;
}

}

Which error message would you prefer to see from your compiler?

1. Illegal static declaration in inner class A.B. Modifier 'static' is
only allowed in constant variable declarations.↪→

2. This static variable declaration is invalid, because it is not final,
but is enclosed in an inner class, "B".↪→

E.1.7 Stack Overflow
Almost done. Just a few questions on how you use Stack Overflow.
How often do you turn to Stack Overflow for help when you encounter a confusing
compiler error message?

() Never

() Rarely

() Sometimes

() Often

() Always or nearly always

How often do the Stack Overflow answers help you resolve the compiler error
message?

267

() Never

() Rarely

() Sometimes

() Often

() Always or nearly always

268

F | Error Message Design
Guidelines

Table F.1 Chronological Summary of Guidelines for Designing Error Messages

Reference Guidelines

Moulton and Muller
(1967)

All errors other than logical errors are to be detected
and described to the programmer

All compilation and execution diagnostic messages
and descriptions of errors are to be in terms of the
source language

The formation of error messages and the analysis of
errors are to be made in such a way that they will
provide the user with as much information as
possible, giving him direct cues aiding the
correction of errors

As many errors as possible are to be detected during
compilation

Provision is to be made for the use of diagnostic
routines for tracing control of execution of a
program and auditing the assignment of values to
variables

Horning (1974) User-directed
Source-oriented

269

Reference Guidelines

Specific
Localize the problem
Complete
Readable
Restrained and polite

Dean (1982) Set human goals for messages:
Be tolerant of “user errors”
Help people correct errors as easily as they make

them
Give people control over the messages they

receive
Do not make messages arbitrarily short
Identify messages that people need

Apply psychology in writing messages:
Anticipate people’s expectations
Help people fit the pieces together
Do not force people to re-read
Put people at ease

Write messages for the audience and the situation
Report on the program’s reaction to the input
Report on the program’s assumption about input
Report on a program error or adverse condition
Request for a go-ahead
Request to choose among alternatives
Request for missing information
Request for correction or clarification of input

Edit the messages for appropriate language, using:
good writing, vocabulary that is familiar, standard
conversational language, consistent messages,
and standard punctuation.

270

Reference Guidelines

Shneiderman (1982) Have a positive tone indicating what must be done
Be specific and address the problem in the user’s

terms
Place the user in control of the situation
Have a neat, consistent, and comprehensible format

Brown (1983) Exploit the capabilities of the display (e.g., color,
reverse-video) to identify the offending symbol

Print several lines of the source, both before and
after the point of error, to supply a contextual
window

Allow the user the option of increasing the size of
the contextual window

Provide some visual scale to show where in the
program the error occurred

Integrate with an editing facility to correct the
source

Kantorowitz and Laor
(1986)

A message that proposes how to correct an
encountered error is most useful, but should only
be produced when there is a high degree of
certainty for its correctness

For errors that may be corrected in more than one
way no attempt should be made to guess which of
them is the right one

Pieces of code that the compiler cannot analyse
correctly because of an error should be underlined.
The programmer will then know that unreported
errors may exist in these unchecked pieces of code

The error messages should reflect a simple error
handling mechanism that the programmer may
readily understand

Shaw (1989) The nature of the error is stated

271

Reference Guidelines

The errant data are identified
Corrective action is prescribed

Natl. Cryptologic School
(1990)

Design error messages for the intended users
Write error messages that are specific and

constructive
Avoid anthropomorphism
Write error messages using a positive tone
Put the main idea first
Make error messages timely
Be consistent in grammatical form, terminology,

abbreviation, and visual format and placement
Provide multiple levels of error messages

Traver (2010) Clarity & brevity
Specificity
Context-insensitivity
Locality
Proper phrasing:

Positive tone
Constructive guidance
Programmer language

Murphy-Hill and Black
(2012)

Expressiveness
Locatability
Completeness
Estimability
Relationality
Perceptibility
Distinguishability

Murphy-Hill, Barik, and
Black (2013)

Restraint
Relationality

272

Reference Guidelines

Partiality
Nondistracting
Estimability
Availability
Unobtrusiveness
Context-sensitivity
Lucidity

Sadowski, Gogh, Jaspan,
Soderberg, and Winter
(2015)

The error message should be easy to understand
and the fix should be clear

The error message should have very few false
positives

The error message should be for something that has
the potential for significant impact

The error message should occur with a small but
noticeable frequency. There is no point in
detecting errors that never actually occur

273

G | Error Message Samples

This appendix contains samples of concrete error messages for the categories of
program analysis tools presented in Chapter 3.

G.1 Template Diagnostic

G.2 Python
Python [376] is an interpreted programming language. A notable characteristic of
the language is that whitespace is significant. An important design philosophy of
the language is readability, as described in the Zen of Python [286].

Here’s an example of a Python 3 “Hello world”, containing a missing parentheses
around print:

>>> print "Hello world"
File "<stdin>", line 1

print "Hello world"
^

SyntaxError: Missing parentheses in call to 'print'. Did you mean
print("Hello world")?↪→

This example is executed in the Python REPL. An alternative REPL is ipython,
which colorizes the error output:

In [1]: print "Hello world"
File "<ipython-input-1-3c090b498326>", line 1

print "Hello world"
^

SyntaxError: Missing parentheses in call to 'print'. Did you mean
print("Hello world")?↪→

274

G.2.1 Eclipse Compiler for Java
Consider the following source file:

1 class Brick {
2 void m(int i, double d) { }
3 void m(double d, int m) { }
4

5 {
6 m(1, 2);
7 }
8 }

The output of Oracle JDK:

Brick.java:6: error: reference to m is ambiguous

m(1, 2);

^

both method m(int,double) in Brick and method m(double,int) in Brick match

1 error

The output of Eclipse Compiler for Java (ecj):

1. ERROR in Brick.java (at line 6)

m(1, 2);

^

The method m(int, double) is ambiguous for the type Brick

1 problem (1 error)

The output of the IBM Jikes compilers:

Found 1 semantic error compiling "Brick.java":

6. m(1, 2);
^-----^

*** Semantic Error: Ambiguous invocation of method "m". At least two methods
are accessible from here: "void m(int i, double d);" declared in type
"Brick" and "void m(double d, int m);" declared in type "Brick".

↪→

↪→

275

G.2.2 Infer
Infer [169] is a static program analysis tool for Java, C, and Objective-C. The tool
is based on academic research on compositional shape analysis [52]. Essentially,
shape analysis is a form of program analysis that attempts to infer descriptions
of the data structure. The analysis rests on a generalized form of abduction, or
inference of explanatory hypotheses.

For example, given the following source file:

1 /*
2 * Copyright (c) 2015 - present Facebook, Inc.
3 * All rights reserved.
4 *
5 * This source code is licensed under the BSD style license found in the
6 * LICENSE file in the root directory of this source tree. An additional grant
7 * of patent rights can be found in the PATENTS file in the same directory.
8 */
9

10 class Hello {
11 int test() {
12 String s = null;
13 return s.length();
14 }
15 }

Infer will detect a possible null dereference:

Hello.java:13: error: NULL_DEREFERENCE
object `s` last assigned on line 12 could be null and is dereferenced at

line 13.↪→

11. int test() {
12. String s = null;
13. > return s.length();
14. }
15. }

Summary of the reports

NULL_DEREFERENCE: 1

G.2.3 Dafny
Dafny [210] uses verification-condition generation to present error messages as a
template diagnostic. The developer interacts with Dafny in much the same way as
they would a compiler. For example, consider the following Dafny program:

276

1 function Fibonacci(n: int): int
2 decreases n
3 {
4 if n < 2 then n else Fibonacci(n+2) + Fibonacci(n+1)
5 }

Dafny identifies a violation in the program given the indicated decreases n termi-
nation measure:

stdin.dfy(4,23): Error: failure to decrease termination
measure

verifier finished with 0 verified, 1 error

G.3 Extended Explanations

G.3.1 Error Prone
The Error Prone [114] tool adds checks to the existing Java compilation pipeline.
Consider the following Java source file:

public class ShortSet {
public static void main (String[] args) {

Set<Short> s = new HashSet<>();
for (short i = 0; i < 100; i++) {

s.add(i);
s.remove(i - 1);

}
System.out.println(s.size());

}
}

The error produced by Error Prone for the above code listing is:

ShortSet.java:6: error: [CollectionIncompatibleType] Argument 'i - 1'
should not be passed to this method; its type int is not compatible with its
collection's type argument Short

s.remove(i - 1);
^

(see http://errorprone.info/bugpattern/CollectionIncompatibleType)
1 error

Notably, the error message provides an additional link with extended explanations
for the problem.

277

G.3.2 Rust
Rust is a systems programming language sponsored by Mozilla Research [233]. The
Rust development team has made significant investments in providing user-friendly
error messages. Consider the following Rust program:

1 fn foo() {
2 }
3

4 fn foo() {
5 }

In Rust, the following error is emitted:

error[E0428]: the name `foo` is defined multiple times
--> hello.rs:4:1
|

1 | fn foo() {
| -------- previous definition of the value `foo` here

...
4 | fn foo() {

| ^^^^^^^^ `foo` redefined here
|
= note: `foo` must be defined only once in the value namespace of this module

If additional explanation is needed, the developer can invoke the --explain flag with
the E0428 error code. Rust will then present the following extended explanation:

A type or module has been defined more than once.

Erroneous code example:

```
struct Bar;
struct Bar; // error: duplicate definition of value `Bar`
```

Please verify you didn't misspell the type/module's name or remove/rename the
duplicated one. Example:

```
struct Bar;
struct Bar2; // ok!
```

278

G.4 Type Errors

G.4.1 elm
The designers of the Elm compiler emphasize usable error messages. Consider the
following source code:

import Html exposing (..)

import Html.Attributes exposing (..)

alice =

img [src "/users/alice/pic"] []

bob =

img = [src "/users/bob/pic"] []

userPics =

[alice, bob, "/users/chuck/pic"]

The error message from this source listing is as follows:

-- TYPE MISMATCH --- types/list.elm

The 3rd element of this list is an unexpected type of value.

15| [alive, bob, "/users/chuck/pic"]

All elements should be the same type of value so that we can iterate over the

list without running into unexpected values.

As I infer the type of values flowing through your program, I see a conflict

between these two types:

Html

String

279

G.4.2 Helium
Helium is an educational compiler platform that implements a subset of the Haskell
programming language [157]. Consider the following Haskell program:

myFilter :: (a -> Bool) -> [a] -> [a]
myFilter p [] = [] myFIlter p (x:xs) =

if p x
then x : myFilter p xs
else myFilter p xs

The above program is legal Haskell, but Helium identifies potentially dangerous
constructions:

(4,1): Warning: Tab character encountered;
may cause problems with the layout rule

Hint: Configure your editor to replace tabs by spaces
(3,1) : Warning: Missing type signature:

myFIlter :: (a -> Bool) -> [a] -> [a]
(2,10): Warning: Variable "p" is not used
(2,1), (3,1): Warning: Suspicious adjacent functions

"myFilter" and "myFIlter"

G.5 Examples and Counterexamples

G.5.1 CBMC
CBMC is a bounded model checking tool for C, C++, and Java. Consider the follow
C program, which has a faulty array access:

int main(int argc, char **argv) {
puts(argv[2]);

}

Specifically, the argument count argc must be greater than or equal to three, other-
wise the argument located in argv[2] is uninitialized. That is, if the command line
is gcc -o myprog myprog.c, then argc = 4,

280

1 CBMC version 5.6 64-bit x86_64 linux
2 Parsing file1.c
3 file <command-line> line 0: <command-line>:0:0: warning: "__STDC_VERSION__"

redefined↪→

4 <built-in>: note: this is the location of the previous definition
5 Converting
6 Type-checking file1
7 file file1.c line 2 function main: function `puts' is not declared
8 Generating GOTO Program
9 Adding CPROVER library (x86_64)

10 file <command-line> line 0: <command-line>:0:0: warning: "__STDC_VERSION__"
redefined↪→

11 <built-in>: note: this is the location of the previous definition
12 file <builtin-library-puts> line 7: warning: implicit function declaration

"puts"↪→

13 old definition in module file1 file file1.c line 2 function main
14 signed int (void)
15 new definition in module <built-in-library> file <builtin-library-puts> line

7↪→

16 signed int (const char *s)
17 Removal of function pointers and virtual functions
18 Partial Inlining
19 Generic Property Instrumentation
20 Starting Bounded Model Checking
21 size of program expression: 54 steps
22 simple slicing removed 17 assignments
23 Generated 7 VCC(s), 2 remaining after simplification
24 Passing problem to propositional reduction
25 converting SSA
26 Running propositional reduction
27 Post-processing
28 Solving with MiniSAT 2.2.1 with simplifier
29 898 variables, 2390 clauses
30 SAT checker: instance is SATISFIABLE
31 Solving with MiniSAT 2.2.1 with simplifier
32 898 variables, 0 clauses
33 SAT checker inconsistent: instance is UNSATISFIABLE
34 Runtime decision procedure: 0.004s
35

36 ** Results:
37 [main.overflow.1] pointer arithmetic overflow on + in argv + (signed long

int)2: SUCCESS↪→

38 [main.pointer_dereference.1] dereference failure: pointer NULL in
argv[(signed long int)2]: SUCCESS↪→

39 [main.pointer_dereference.2] dereference failure: pointer invalid in
argv[(signed long int)2]: SUCCESS↪→

40 [main.pointer_dereference.3] dereference failure: deallocated dynamic object
in argv[(signed long int)2]: SUCCESS↪→

281

41 [main.pointer_dereference.4] dereference failure: dead object in
argv[(signed long int)2]: SUCCESS↪→

42 [main.pointer_dereference.5] dereference failure: dynamic object bounds in
argv[(signed long int)2]: SUCCESS↪→

43 [main.pointer_dereference.6] dereference failure: object bounds in
argv[(signed long int)2]: FAILURE↪→

44

45 Trace for main.pointer_dereference.6:
46

47 State 18 thread 0
48 --
49 INPUT argc: 1 (00000000000000000000000000000001)
50

51 State 19 thread 0
52 --
53 argv'[1]=((char *)NULL)

(00)↪→

54

55 State 22 file file1.c line 1 thread 0
56 --
57 argc=1 (00000000000000000000000000000001)
58

59 State 23 file file1.c line 1 thread 0
60 --
61 argv=argv'

(0000001000)↪→

62

63 Violated property:
64 file file1.c line 2 function main
65 dereference failure: object bounds in argv[(signed long int)2]
66 16l + POINTER_OFFSET(argv) >= 0 && OBJECT_SIZE(argv) >= 24 +

POINTER_OFFSET(argv) || DYNAMIC_OBJECT(argv)↪→

67

68

69 ** 1 of 7 failed (2 iterations)
70 VERIFICATION FAILED

int main(int argc, char **argv) {
puts(argv[2]);

}

1 CBMC version 5.6 64-bit x86_64 linux
2 Parsing file1-fix.c
3 file <command-line> line 0: <command-line>:0:0: warning: "__STDC_VERSION__"

redefined↪→

4 <built-in>: note: this is the location of the previous definition
5 Converting
6 Type-checking file1-fix
7 file file1-fix.c line 3 function main: function `puts' is not declared

282

8 Generating GOTO Program
9 Adding CPROVER library (x86_64)

10 file <command-line> line 0: <command-line>:0:0: warning: "__STDC_VERSION__"
redefined↪→

11 <built-in>: note: this is the location of the previous definition
12 file <builtin-library-puts> line 7: warning: implicit function declaration

"puts"↪→

13 old definition in module file1-fix file file1-fix.c line 3 function main
14 signed int (void)
15 new definition in module <built-in-library> file <builtin-library-puts> line

7↪→

16 signed int (const char *s)
17 Removal of function pointers and virtual functions
18 Partial Inlining
19 Generic Property Instrumentation
20 Starting Bounded Model Checking
21 size of program expression: 59 steps
22 simple slicing removed 20 assignments
23 Generated 7 VCC(s), 2 remaining after simplification
24 Passing problem to propositional reduction
25 converting SSA
26 Running propositional reduction
27 Post-processing
28 Solving with MiniSAT 2.2.1 with simplifier
29 933 variables, 2524 clauses
30 SAT checker: instance is UNSATISFIABLE
31 Runtime decision procedure: 0.003s
32

33 ** Results:
34 [main.overflow.1] pointer arithmetic overflow on + in argv + (signed long

int)2: SUCCESS↪→

35 [main.pointer_dereference.1] dereference failure: pointer NULL in
argv[(signed long int)2]: SUCCESS↪→

36 [main.pointer_dereference.2] dereference failure: pointer invalid in
argv[(signed long int)2]: SUCCESS↪→

37 [main.pointer_dereference.3] dereference failure: deallocated dynamic object
in argv[(signed long int)2]: SUCCESS↪→

38 [main.pointer_dereference.4] dereference failure: dead object in
argv[(signed long int)2]: SUCCESS↪→

39 [main.pointer_dereference.5] dereference failure: dynamic object bounds in
argv[(signed long int)2]: SUCCESS↪→

40 [main.pointer_dereference.6] dereference failure: object bounds in
argv[(signed long int)2]: SUCCESS↪→

41

42 ** 0 of 7 failed (1 iteration)

void f(int a, int b, int c) {
int temp;
if (a > b) {temp = a; a = b; b = temp;}

283

if (b > c) {temp = b; b = c; c = temp;}
if (a < b) {temp = a; a = b; b = temp;}
assert (a<=b && b<=c);

}

1 CBMC version 5.6 64-bit x86_64 linux
2 Parsing file2.c
3 file <command-line> line 0: <command-line>:0:0: warning: "__STDC_VERSION__"

redefined↪→

4 <built-in>: note: this is the location of the previous definition
5 Converting
6 Type-checking file2
7 file file2.c line 7 function f: function `assert' is not declared
8 Generating GOTO Program
9 Adding CPROVER library (x86_64)

10 Removal of function pointers and virtual functions
11 Partial Inlining
12 Generic Property Instrumentation
13 Starting Bounded Model Checking
14 size of program expression: 63 steps
15 simple slicing removed 2 assignments
16 Generated 1 VCC(s), 1 remaining after simplification
17 Passing problem to propositional reduction
18 converting SSA
19 Running propositional reduction
20 Post-processing
21 Solving with MiniSAT 2.2.1 with simplifier
22 867 variables, 3180 clauses
23 SAT checker: instance is SATISFIABLE
24 Runtime decision procedure: 0.005s
25

26 ** Results:
27 [f.assertion.1] assertion a <= b && b <= c: FAILURE
28

29 Trace for f.assertion.1:
30

31 State 17 file file2.c line 1 thread 0
32 --
33 INPUT a: 124955 (00000000000000011110100000011011)
34

35 State 19 file file2.c line 1 thread 0
36 --
37 INPUT b: 256027 (00000000000000111110100000011011)
38

39 State 21 file file2.c line 1 thread 0
40 --
41 INPUT c: 124954 (00000000000000011110100000011010)
42

43 State 24 file file2.c line 1 thread 0

284

44 --
45 a=124955 (00000000000000011110100000011011)
46

47 State 25 file file2.c line 1 thread 0
48 --
49 b=256027 (00000000000000111110100000011011)
50

51 State 26 file file2.c line 1 thread 0
52 --
53 c=124954 (00000000000000011110100000011010)
54

55 State 27 file file2.c line 2 function f thread 0
56 --
57 temp=0 (00000000000000000000000000000000)
58

59 State 30 file file2.c line 4 function f thread 0
60 --
61 temp=256027 (00000000000000111110100000011011)
62

63 State 31 file file2.c line 4 function f thread 0
64 --
65 b=124954 (00000000000000011110100000011010)
66

67 State 32 file file2.c line 4 function f thread 0
68 --
69 c=256027 (00000000000000111110100000011011)
70

71 Violated property:
72 file file2.c line 7 function f
73 assertion a <= b && b <= c
74 a <= b && b <= c
75

76

77 ** 1 of 1 failed (1 iteration)
78 VERIFICATION FAILED

G.5.2 Java Pathfinder
Java Pathfinder (JPF) is a system to verify executable Java bytecode programs.
The model checker in JPF uses the standard output from the source program to
generate a trace. This is shown in the below example:1

/*
* Copyright (C) 2014, United States Government, as represented by the
* Administrator of the National Aeronautics and Space Administration.

1https://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/random_example

285

https://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/random_example

* All rights reserved.
*
* The Java Pathfinder core (jpf-core) platform is licensed under the
* Apache License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of the
* License at
*
* http://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

import java.util.Random;

public class Rand {
public static void main (String[] args) {

System.out.println("computing c = a/(b+a - 2)..");
Random random = new Random(42); // (1)

int a = random.nextInt(2); // (2)
System.out.printf("a=%d\n", a);

//... lots of code here

int b = random.nextInt(3); // (3)
System.out.printf(" b=%d ,a=%d\n", b, a);

int c = a/(b+a -2); // (4)
System.out.printf("=> c=%d , b=%d, a=%d\n", c, b, a);

}
}

The error message is presented as:
> bin/jpf Rand
JavaPathfinder v4.1 - (C) 1999-2007 RIACS/NASA Ames Research Center
==
system under test
application: Rand.java

==
search started: 1/01/18 11:48 PM
a=1

b=0
c=-1

286

==
results
no errors detected

==
search finished: 1/01/18 11:48 PM
>

The trace that is returned depends on the internal properties of the model checking
algorithm.

G.5.3 Valgrind
Valgrind [374] automatically detect many memory management and threading
bugs, and profile programs in detail at runtime. For example, given the following C
program:

#include <stdio.h>

int main() {
int x;
printf("x = %d\n", x);

}

Valgrnid will identify that x is uninitialized, and present the error as a trace:

==105087== Memcheck, a memory error detector
==105087== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==105087== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==105087== Command: ./a.out
==105087==
==105087== Conditional jump or move depends on uninitialised value(s)
==105087== at 0x4E900E1: vfprintf (vfprintf.c:1642)
==105087== by 0x4E98E35: printf (printf.c:33)
==105087== by 0x108667: main (uninit.c:5)
==105087==
==105087== Use of uninitialised value of size 8
==105087== at 0x4E8CC9B: _itoa_word (_itoa.c:179)
==105087== by 0x4E9141F: vfprintf (vfprintf.c:1642)
==105087== by 0x4E98E35: printf (printf.c:33)
==105087== by 0x108667: main (uninit.c:5)
==105087==
==105087== Conditional jump or move depends on uninitialised value(s)
==105087== at 0x4E8CCA5: _itoa_word (_itoa.c:179)
==105087== by 0x4E9141F: vfprintf (vfprintf.c:1642)

287

==105087== by 0x4E98E35: printf (printf.c:33)
==105087== by 0x108667: main (uninit.c:5)
==105087==
==105087== Conditional jump or move depends on uninitialised value(s)
==105087== at 0x4E91521: vfprintf (vfprintf.c:1642)
==105087== by 0x4E98E35: printf (printf.c:33)
==105087== by 0x108667: main (uninit.c:5)
==105087==
==105087== Conditional jump or move depends on uninitialised value(s)
==105087== at 0x4E9018F: vfprintf (vfprintf.c:1642)
==105087== by 0x4E98E35: printf (printf.c:33)
==105087== by 0x108667: main (uninit.c:5)
==105087==
==105087== Conditional jump or move depends on uninitialised value(s)
==105087== at 0x4E90210: vfprintf (vfprintf.c:1642)
==105087== by 0x4E98E35: printf (printf.c:33)
==105087== by 0x108667: main (uninit.c:5)
==105087==
x = 0
==105087==
==105087== HEAP SUMMARY:
==105087== in use at exit: 0 bytes in 0 blocks
==105087== total heap usage: 1 allocs, 1 frees, 1,024 bytes allocated
==105087==
==105087== All heap blocks were freed -- no leaks are possible
==105087==
==105087== For counts of detected and suppressed errors, rerun with: -v
==105087== Use --track-origins=yes to see where uninitialised values come from
==105087== ERROR SUMMARY: 6 errors from 6 contexts (suppressed: 0 from 0)

G.5.4 Frama-C
[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no

preprocessing)↪→

[kernel] Parsing swap.c (with preprocessing)
[wp] Running WP plugin...
[rte] annotating function swap
[wp] 8 goals scheduled
[wp] [Qed] Goal typed_swap_assert_rte_mem_access_2 : Valid
[wp] [Qed] Goal typed_swap_assert_rte_mem_access_3 : Valid
[wp] [Alt-Ergo] Goal typed_swap_assert_rte_mem_access : Valid
[wp] [Alt-Ergo] Goal typed_swap_post_B : Valid
[wp] [Alt-Ergo] Goal typed_swap_post_A : Unknown (Qed:3ms) (58ms)
[wp] [Qed] Goal typed_swap_assign_part2 : Valid
[wp] [Qed] Goal typed_swap_assign_part1 : Valid
[wp] [Alt-Ergo] Goal typed_swap_assert_rte_mem_access_4 : Valid
[wp] Proved goals: 7 / 8

288

Qed: 4 (0.52ms-2ms-7ms)
Alt-Ergo: 3 (7ms-16ms) (18) (unknown: 1)

--
Function swap

--

Goal Post-condition 'A' in 'swap':
Let x = Mint_0[a].
Let x_1 = Mint_0[b].
Assume {

Type: is_sint32(x) /\ is_sint32(x_1) /\
is_sint32(Mint_0[b <- x][a <- x][b]).

(* Heap *)
Have: (region(a.base) <= 0) /\ (region(b.base) <= 0) /\ linked(Malloc_0).
(* Pre-condition *)
Have: valid_rw(Malloc_0, a, 1) /\ valid_rw(Malloc_0, b, 1).
(* Assertion 'rte,mem_access' *)
Have: valid_rd(Malloc_0, a, 1).
(* Assertion 'rte,mem_access' *)
Have: valid_rd(Malloc_0, b, 1).

}
Prove: x_1 = x.
Prover Alt-Ergo returns Unknown (Qed:3ms) (58ms)

--

Goal Post-condition 'B' in 'swap':
Let x = Mint_0[a].
Let x_1 = Mint_0[b <- x][a <- x][b].
Assume {

Type: is_sint32(x) /\ is_sint32(Mint_0[b]) /\ is_sint32(x_1).
(* Heap *)
Have: (region(a.base) <= 0) /\ (region(b.base) <= 0) /\ linked(Malloc_0).
(* Pre-condition *)
Have: valid_rw(Malloc_0, a, 1) /\ valid_rw(Malloc_0, b, 1).
(* Assertion 'rte,mem_access' *)
Have: valid_rd(Malloc_0, a, 1).
(* Assertion 'rte,mem_access' *)
Have: valid_rd(Malloc_0, b, 1).

}
Prove: x_1 = x.
Prover Alt-Ergo returns Valid (Qed:3ms) (16ms) (18)

--

Goal Assertion 'rte,mem_access' (file swap.c, line 8):
Assume {

(* Heap *)
Have: (region(a.base) <= 0) /\ (region(b.base) <= 0) /\ linked(Malloc_0).

289

(* Pre-condition *)
Have: valid_rw(Malloc_0, a, 1) /\ valid_rw(Malloc_0, b, 1).

}
Prove: valid_rd(Malloc_0, a, 1).
Prover Alt-Ergo returns Valid (Qed:2ms) (12ms) (12)

--

Goal Assertion 'rte,mem_access' (file swap.c, line 9):
Prove: true.
Prover Qed returns Valid (0.52ms)

--

Goal Assertion 'rte,mem_access' (file swap.c, line 10):
Prove: true.
Prover Qed returns Valid (0.68ms)

--

Goal Assertion 'rte,mem_access' (file swap.c, line 10):
Assume {

(* Heap *)
Have: (region(a.base) <= 0) /\ (region(b.base) <= 0) /\ linked(Malloc_0).
(* Pre-condition *)
Have: valid_rw(Malloc_0, a, 1) /\ valid_rw(Malloc_0, b, 1).
(* Assertion 'rte,mem_access' *)
Have: valid_rd(Malloc_0, a, 1).

}
Prove: valid_rd(Malloc_0, b, 1).
Prover Alt-Ergo returns Valid (Qed:7ms) (7ms) (13)

--

Goal Assigns (file swap.c, line 5) in 'swap' (1/2):
Effect at line 9
Prove: true.
Prover Qed returns Valid (0.61ms)

--

Goal Assigns (file swap.c, line 5) in 'swap' (2/2):
Effect at line 10
Prove: true.
Prover Qed returns Valid (0.58ms)

--

290

H | Rational TypeScript

The following source code listing implements the duplicate function implementation
error, TS2393, by extending the TypeScript Compiler API:

1 import * as ts from "byots";
2 import chalk from "chalk";
3 import minimist from "minimist";
4

5 const log = console.log;
6

7 interface IErrorReconstruction {
8 diagnosticCode: string;
9 fileName: string;

10 name: string;
11 lineAndCharacters: ts.LineAndCharacter[];
12 lengths: number[];
13 snippets: string[];
14 positions: number[];
15 }
16

17 function getUntilNewLine(s: string): string {
18 return s.slice(0, s.indexOf("\n"));
19 }
20

21 function compile(fileNames: string[], options: ts.CompilerOptions,
22 displayType?: string): void {
23 const program = ts.createProgram(fileNames, options);
24 // const emitResult = program.emit();
25

26 const allDiagnostics = ts.getPreEmitDiagnostics(program);
27

28 const duplicateFunctionError: IErrorReconstruction = {
29 diagnosticCode: "TS2393",
30 fileName: "",
31 lengths: [],
32 lineAndCharacters: [],
33 name: "",

291

34 positions: [],
35 snippets: [],
36 };
37

38 allDiagnostics.forEach((diagnostic: ts.Diagnostic) => {
39 // Code 2393 = Duplicate function implementation.
40 if (diagnostic.file && diagnostic.code === 2393) {
41 const token = ts.getTokenAtPosition(diagnostic.file,

diagnostic.start!, true);↪→

42 const functionName = (token as any).escapedText;
43

44 if (duplicateFunctionError.name === "") {
45 duplicateFunctionError.name = functionName;
46 } else if (duplicateFunctionError.name !== functionName) {
47 // There are multiple duplicate function problems.
48 // Skip this one for now.
49 return;
50 }
51

52 const position = diagnostic.start!;
53 const diagnosticStart =
54 diagnostic.file.getLineAndCharacterOfPosition(
55 diagnostic.start!);
56

57 const startLinePosition =
58 ts.getPositionOfLineAndCharacter(
59 diagnostic.file,
60 diagnosticStart.line, 0);
61 const theLine = getUntilNewLine(
62 diagnostic.file.text.slice(startLinePosition));
63

64 duplicateFunctionError.fileName = diagnostic.file.fileName;
65 duplicateFunctionError.lineAndCharacters.push(diagnosticStart);
66 duplicateFunctionError.lengths.push(diagnostic.length!);
67 duplicateFunctionError.positions.push(position);
68 duplicateFunctionError.snippets.push(theLine);
69 }
70 });
71

72 if (duplicateFunctionError.name) {
73 if (displayType === "text") {
74 // displayText(duplicateFunctionError);
75 } else {
76 displayDiagram(duplicateFunctionError);
77 }
78 }
79 }
80

81 function displayDiagram(e: IErrorReconstruction): void {

292

82 const first = e.lineAndCharacters[0];
83 const second = e.lineAndCharacters[1];
84

85 // Lines are zero-indexed, but presented to user as one-indexed.
86 const firstLineLength = (first.line + 1).toString().length;
87 const secondLineLength = (second.line + 1).toString().length;
88 const linePad = secondLineLength + 1;
89

90 log(chalk.redBright(`error[${e.diagnosticCode}]`) +
91 chalk.whiteBright(`: duplicate implementation of function

\`${e.name}\``));↪→

92

93 log(`${" ".repeat(linePad - 1)}` +
94 `${chalk.blueBright("--> ")}` + chalk.white() +
95 `${e.fileName}:${second.line + 1}:${second.character + 1}`);
96

97 log(chalk.blueBright(`${" ".repeat(linePad)}|`));
98

99 log(chalk.blueBright(`${first.line + 1}${" ".repeat(linePad -
firstLineLength)}`) +↪→

100 chalk.redBright(`×`) +
101 ` ${e.snippets[0]}`);
102

103 log(chalk.blueBright(`${" ".repeat(linePad)}| ${"
".repeat(first.character)}`)↪→

104 + chalk.blueBright(`${"-".repeat(e.lengths[0])} previous
implementation of \`foo\` here`));↪→

105

106 if (second.line === first.line + 1) {

107 log(chalk.blueBright(`${" ".repeat(linePad)}|`));
108 } else if (second.line === first.line + 2) {

109 log(chalk.blueBright(`${" ".repeat(linePad)}|`));
110 } else {
111 log(chalk.blueBright("..."));
112 }
113

114 log(chalk.blueBright(`${second.line + 1} `) + chalk.redBright(`× `) +
`${e.snippets[1]}`);↪→

115

116 log(chalk.blueBright(`${" ".repeat(linePad)}| `) +
117 chalk.redBright(`${"

".repeat(first.character)}${"~".repeat(e.lengths[1])}`) +↪→

118 chalk.redBright(` \`${e.name}\` reimplemented here`));
119

120 log(chalk.blueBright(`${" ".repeat(linePad)}|`));
121 log(chalk.blueBright(`${" ".repeat(linePad)}=`) +
122 chalk.whiteBright(` hint: `) +

293

123 `\`${e.name}\` must be implemented only once within the same
namespace`);↪→

124

125 log(chalk.blueBright(`${" ".repeat(linePad)}=`) +
126 chalk.whiteBright(` hint: `) +
127 `To overload a function, see

https://www.typescriptlang.org/docs/handbook/functions.html`);↪→

128 }
129

130 const argv = minimist(process.argv.slice(2), {string: "display"});
131

132 compile(argv._, {
133 module: ts.ModuleKind.CommonJS,
134 noEmitOnError: true,
135 noImplicitAny: true,
136 target: ts.ScriptTarget.ES5,
137 }, argv.display);

The above implementation indirectly loads the typescript package through byots.
byots is a “Bring your own TypeScript” package for NPM that exposes many of the
normally-internal APIs and makes them available for the toolsmith. In particular,
our implementation relies on the getTokenAtPosition to retrieve the corresponding
AST Node at a specified source code location. However, without byots, this useful
function is not available.

We iterate over the allDiagnostics collection (Line 38) to obtain metadata about
all TS2393 errors. To keep the source code listing to a manageable length, the
implementation silently discards all other errors. The algorithm also makes the
assumption that there are only two duplicate functions, within a single file. There
is some clerical effort in this function to reconstruct the linear positions within
the source code representation and translate them to line and character positions
suitable for the error messages.

The function displayDiagram renders the error message metadata to the console.
Again, most of this implementation is simple clerical effort to correctly align the
duplicate functions, to render the corresponding line numbers, and to position the
explanatory text. The chalk package enables ANSI color support, at the expense of
making the source code a bit more noisy.

294

I | Sudoku Puzzle

2 3 9 7
1

4 7 2 8
5 2 9

1 8 7
4 3

6 7 1
7

9 3 2 6 5

295

	List of Tables
	List of Figures
	List of Listings
	My Thesis
	Introduction
	Problem
	Examples
	Portable C Compiler
	GNU Compiler Collection
	Oracle Java Compiler (OpenJDK)
	clang Compiler (LLVM)
	eslint for JavaScript

	Objectives and Significance
	Theoretical Framework
	Research Paradigm
	Epistemology
	Theoretical Perspective
	Methodology
	Methods

	How to Read the Dissertation
	Who Did What
	Contributions

	Background
	Overview of Program Analysis Tools
	Text Representations of Program Analysis
	Output as Source Location and Template Diagnostic
	Output as Extended Explanations (–explain)
	Output as Type Errors
	Output as Examples and Counterexamples

	Visual Representations of Program Analysis
	Errors Developers Make
	Design Guidelines for Error Messages

	Do Developers Read Compiler Error Messages?
	Abstract
	Introduction
	Motivating Example
	Methodology
	Research Questions
	Study Design
	Procedure
	Data Collection and Cleaning

	Analysis
	RQ1: How effective and efficient are developers at resolving error messages for different categories of errors?
	RQ2: Do developers read error messages?
	RQ3: Are compiler errors difficult to resolve because of the error message?

	Verifiability
	Results
	RQ1: How effective and efficient are developers at resolving error messages for different categories of errors?
	RQ2: Do developers read error messages?
	RQ3: Are compiler errors difficult to resolve because of the error message?

	Discussion
	Limitations
	Related Work
	Conclusion
	Acknowledgments

	How Do Developers Visualize Compiler Error Messages?
	Abstract
	Introduction
	Motivating Example
	Pilot Study
	Explanatory Visualizations of Error Messages
	Methodology
	Research Questions
	Participants
	Selection Criteria for Mockups
	Mockup Construction Procedure
	Investigator Training
	Experimental Procedure

	Results
	RQ1: Visualizations Lead to More Correct Explanations
	RQ2: Availability of Explanatory Visual Annotations Promotes More Frequent Use of Annotations During Self-Explanation
	RQ3: Explanatory Visualizations Reveal Hidden Dependencies
	RQ4: Higher Rated Explanations Lead to Better Mental Models, and Better Recall Correctness

	Threats to Validity
	Related Work
	Future Work
	Conclusion

	How Should Compilers Explain Problems to Developers?
	Abstract
	Introduction
	Background on Explanations
	Methodology
	Research Questions
	Phase I: Study Design for Comparative Evaluation
	Phase II: Study Design for Stack Overflow

	Analysis
	RQ1: Are compiler errors presented as explanations helpful to developers?
	RQ2: How is structure of explanations in Stack Overflow different from compiler error messages?
	RQ3: How is the content of explanations in Stack Overflow different from compiler error messages?

	Results
	RQ1: Are compiler errors presented as explanations helpful to developers?
	RQ2: How is structure of explanations in Stack Overflow different from compiler error messages?
	RQ3: How is the content of explanations in Stack Overflow different from compiler error messages?

	Limitations
	Related Work
	Design Criteria and Guidelines
	Barriers to Error Message Comprehension

	Design Principles
	Conclusion

	Related Work
	Program Comprehension in Debugging
	Plans
	Beacons
	Information Foraging Theory
	Relation to Rational Reconstruction

	Human Factors in Error and Warning Design
	Expert Systems
	Preventing Errors with Structure Editors
	Error Messages for Novices
	Error Message Types and Distributions
	Mini-Languages
	Enhancing Compiler Error Messages

	Conclusion
	Error: Expected Declaration or Statement at End of Input
	Design Guidelines
	Toward Engineering a Compiler
	Approach
	Example: Duplicate Function Implementation
	Formative Evaluation

	Future Work
	Epilogue

	Bibliography
	Appendices
	What Do We Know About Presenting Human-Friendly Output from Program Analysis Tools?
	Abstract
	Introduction
	Methodology
	What is a Scoping Review?
	Execution of SALSA Framework
	Limitations

	Taxonomy of Presentation
	Alignment
	Clustering and Classification
	Comparing
	Example
	Interactivity
	Localizing
	Ranking
	Reduction
	Tracing

	Discussion
	Conclusions
	Acknowledgments

	An Interaction-First Approach for Helping Developers Comprehend and Resolve Error Notifications
	Abstract
	Introduction
	Related Work
	Our Approach
	First Principles: Interaction Framework
	Formalizing Translations: Taxonomies

	Emerging Results
	Challenges
	Conclusions
	Acknowledgments

	Study Materials for ``Do Developers Read Compiler Error Messages?'' (sec:pub-icse)
	Interview Protocol
	Outline
	Pre-arrival Steps
	Arrival Steps
	Instructions for Participant
	Post-study questionnaire
	Closing

	Tasks
	Task 1: SUBLIST
	Task 2: NODECACHE
	Task 3: IMPORT
	Task 4: QUEUEGET
	Task 5: SETADD
	Task 6: KEYSETKV
	Task 7: CLAZZ
	Task 8: NEXT
	Task 9: READOBJSTATIC
	Task 10: SWITCH

	Post-study Questionnaire

	Study Materials for ``How Do Developers Visualize Compiler Error Messages?'' (sec:pub-vissoft)
	Interview Protocol
	Pre-tasks
	Task 1
	Questionnaire
	Task 2
	Wrap-up

	Questionnaire
	Visual Markings Cheatsheet
	Dimensions Survey for All Six Tasks
	Pages
	Explanatory Visualizations
	Baseline Visualizations
	Printed

	Study Materials for ``How Should Compilers Explain Problems to Developers?'' (sec:pub-ase)
	Survey
	Demographic Information
	E1
	E2
	E3
	E4
	E5
	Stack Overflow

	Error Message Design Guidelines
	Error Message Samples
	Template Diagnostic
	Python
	Eclipse Compiler for Java
	Infer
	Dafny

	Extended Explanations
	Error Prone
	Rust

	Type Errors
	elm
	Helium

	Examples and Counterexamples
	CBMC
	Java Pathfinder
	Valgrind
	Frama-C

	Rational TypeScript
	Sudoku Puzzle

