
From Quick Fixes to Slow Fixes:
Reimagining Static Analysis Resolutions to Enable

Design Space Exploration
Titus Barik, Yoonki Song, Brittany Johnson, and Emerson Murphy-Hill

Computer Science Department
North Carolina State University, USA

tbarik@ncsu.edu, ysong2@ncsu.edu, bijohnso@ncsu.edu, emerson@csc.ncsu.edu

Abstract—Quick Fixes as implemented by IDEs today prior-
itize the speed of applying the fix as a primary criteria for
success. In this paper, we argue that when tools over-optimize this
criteria, such tools neglect other dimensions that are important
to successfully applying a fix, such as being able to explore
the design space of multiple fixes. This is especially true in
cases where a fix only partially implements the intention of the
developer.

In this paper, we implement an extension to the FindBugs
defect finding tool, called FIXBUGS, an interactive resolution
approach within the Eclipse development environment that
prioritizes other design criteria to the successful application of
suggested fixes. Our empirical evaluation method of 12 developers
suggests that FIXBUGS enables developers to explore alternative
designs and balances the benefits of manual fixing with automated
fixing, without having to compromise in either effectiveness or
efficiency. Our analytic evaluation method with six usability
experts identified trade-offs between FIXBUGS and Quick Fix,
and suggests ways in which FIXBUGS and Quick Fix can offer
complementary capabilities to better support developers.

I. INTRODUCTION

Static analysis tools like FindBugs [1] and Clang [2] can
help developers improve software code quality. Research
on these tools has primarily focused on finding new types
of defects, such as coding errors, style violations [3], and
security vulnerabilities [4]. In our previous study, developers
indicated that the difficulty of understanding static analysis
tool notifications is a considerable barrier to usage, and that
having the tool offer automated suggestions for resolving the
identified defects would ameliorate this difficulty [5]. Moreover,
developers suggested that automatically fixing software defects
is as important to improving software quality as finding them.

The typical ways tools support fixing defects, if they support
automatic fixes at all, is by offering a one-shot, non-interactive
resolution. A one-shot approach is one in which the tool
requires no developer intervention to resolve the defect after
initial selection. As one example, Eclipse [6], ReSharper [7],
and other environments and tools implement such a strategy
through the use of Quick Fixes. A Quick Fix provides a list of
suggestions along with a code preview or description of the
resolution. For instance, the “Add final-modifier to field” Quick
Fix detects occurrences of fields that are potentially missing
the final property. The resolution of this fix is straightforward
and even self-describing: add the final keyword to the

corresponding field. Applying this fix quickly silences analysis
tools that complain about non-final fields.

But just silencing the static analysis tool is often insufficient.
It’s also important that the developer has the opportunity to
evaluate the design space of alternative fixes, which entails
both understanding the impact of the change introduced by the
fix and giving the developer the ability to influence the fix in
the event that the automatic fix pattern only partially supports
their intentions [8], [9]. Such resolutions with a non-trivial
design space are common; when we randomly inspected 131
of the bug defect patterns available within FindBugs, we found
that 80 of them (61%) had more than one plausible change
that would resolve the defect.

Just because the design space of static analysis resolutions
is very large does not mean that the developer must resolve
the problem manually. The IDE can still help by providing
(and withdrawing) relevant tools at the right place and time,
by ensuring that the interactions between different tools
work cohesively, and by leveraging tools’ capabilities while
simultaneously respecting developers’ intentions. How, then,
do we balance the automation provided by development tools
with developers’ need to explore the design space?

In this paper, we present FIXBUGS, an alternative to
traditional Quick Fixes for resolving static analysis warnings.
Through FixBugs, we advocate the idea of slow fixes, which
draw on the analogy of slow food, a reactionary movement
against fast food [10]. Likewise, the design philosophy of
FixBugs rejects the notion that speed is the top priority when
maintaining software.

The two main contributions of this paper are:
• An implementation of the slow fix idea through FIXBUGS,

a tool designed to help developers.
• Two studies of FIXBUGS that demonstrate the benefits

and trade-offs of our approach, compared to manual fixing
and Quick Fixes.

II. MOTIVATING EXAMPLE

We illustrate some of the limitations of existing one-shot
Quick Fix approaches when the tool does not facilitate fix
exploration. Consider a hypothetical developer, Kevin, who
applies a defect finding tool on source code from Apache
Ant [11]. FindBugs detects a Catch Exception defect and



places a bug marker to indicate the defect location to him,
shown in Figure 1. Specifically, this catch block is consid-
ered “dodgy code” because the construct accidentally catches
RuntimeException as well, masking potential defects.

He then clicks on the marker to invoke Quick Fix for the
suggested solutions. Quick Fix, through FindBugs, offers three
suggestions, but since Kevin wants a combination that includes
both throwing and catching exceptions, none of the available
options are entirely suitable.

Because the tool is not designed for exploration, Kevin must
fix the defect manually, or select one of the existing options
that appears closest to his desired solution. Unfortunately, this
comparison is tricky, because the code preview has different
formatting and occludes the original code in the editor. Thus,
Kevin selects the first suggestion, visually identifies what the fix
has changed in his source code, and then manually manipulates
the text to mold the transformed code into his desired code.

In contrast to a one-shot tool, a tool that allows for fix
exploration would continue to provide Kevin with support to
correct the defect, even if the tool is unable to identify a fix
that is immediately satisfactory to Kevin.

III. FIXBUGS WORKFLOW

In this section, we contrast the interaction from the existing
Quick Fix feature with that of FIXBUGS. To do so, let
us consider another hypothetical developer, Julia, who must
resolve the same Catch Exception defect as Kevin but has
FIXBUGS available to her in the IDE. As with Quick Fix, Julia
initiates the tool by clicking on the bug marker icon in the
gutter. From the list of options, she then selects the option to
open FIXBUGS.

From this point forward, the interaction with FIXBUGS is
substantially different from Quick Fix. When FIXBUGS is
invoked, the tool immediately opens a popup with suggestions
and applies a default suggestion (Figure 2). She decides that
the default suggestion isn’t satisfactory, so she abstains from
pressing the close button on the popup, which would exit
FIXBUGS. In this case, no other suggestions are present, and
so Julia uses the drag-and-drop structured editing mode to
move some of the exceptions to other valid drop targets.
For example, when she drags the SecurityException from
the catch block and drops it after the method signature,
FIXBUGS will automatically fill in syntactically correct throws
SecurityException code snippet to support her intentions.

During the task, she also notices a TODO comment which she
does not want (Figure 3). While still within the FIXBUGS tool,
she proceeds to delete this comment. FIXBUGS temporarily
suspends its fix to allow her to make these edits. When finished,
she resumes the task, and FIXBUGS offers a best-effort to
support resumption. If she has changed the code significantly,
resumption is not always possible. In that case, Julia may return
to any of the previous known-good states, using the suggestion
popup.

In short, by supporting design exploration in FIXBUGS, Julia
is supported not only for the initial fix, but until the task is
successfully completed. In addition, the tool enables her to

Fig. 1. The original Quick Fix feature provided by Eclipse.

Fig. 2. Suggested fix for the Catch Exception defect in Figure 1. FIXBUGS
allows developers to throw or to catch exceptions by supporting the drag-
and-drop action. Here, a developer drags a SecurityException. FIXBUGS
displays drop zones in light grey and highlights the closest drop zone with a
thicker border.

Fig. 3. A developer makes edits to the source code while in FIXBUGS.
FIXBUGS will temporarily suspend until the developer presses ‘Resume’.

explore multiple options, and understand the impact of the fix
through color annotations before accepting the change, even
when she has deviated from one of the prepackaged fixes.

IV. APPROACH

In this section, we describe our approach to implementing
fix exploration in a tool we designed and built for the Eclipse
development environment, called FIXBUGS. FIXBUGS is an
extension of FindBugs, a static analysis tool for Java and
detects defects. Of the defects detected by FindBugs that do
not have a single solution, we highlight three that demonstrate
the benefits of enabling design exploration: Catch Exception,
String Concatenation, and Open Stream Exception Path.



A. Catch Exception

Figure 2 contains code that demonstrates the Catch Exception
defect. To resolve this defect, for Java 7 and onwards FIXBUGS
first suggests multi-catch [12] as a default suggestion, which
catches multiple exceptions of different types in a catch clause
and handles the exceptions in the same way. For Java 6 and
earlier, a list of single catch clauses are suggested by default.

FIXBUGS uses colors to map method invocations to their
respective thrown exceptions. Using the mapping, developers
can associate the invoke method with the catching of Il
legalAccess-, IllegalArgument-, and InvocationTarget-
exceptions. Although not demonstrated in Figure 2, if two
or more method invocations throw the same exception, then
FIXBUGS presents the exception in a separate catch clause
with a dark gray highlight.

Suggestion Popups. As shown in Figure 2, when the
developer invokes FIXBUGS, a movable suggestion popup
opens that presents prepackaged solutions to use while fixing
the defect. The “(Original)” option is for reverting to the
original buggy code, which enables comparison of the original
code with the modified code. FIXBUGS enables “My Last
Change” when the developer performs drag-and-drop at least
once. This option helps the developer revert to their changes
made while using FIXBUGS if they want to compare them to,
say, a prepackaged fix.

To provide a default suggestion for the Catch Exception
defect, and other defects in this paper, we mined 24 open
source projects. The data mining revealed that developers, when
dealing with exceptions, append a throws clause to the method
signature 45.1% (4,462) of the time and catch the exception
the remaining 54.9% (5,424) of the time. Consequently, adding
a catch clause is FIXBUGS’ default suggestion.

Drag-and-drop. FIXBUGS continues to support the devel-
oper if they are not satisfied with the prepackaged fixes. The
tool allows them to use drag-and-drop to visually manipulate
where the exceptions should be handled as demonstrated in
Figure 2. FIXBUGS displays a dotted border on each exception
to indicate that exceptions are draggable and to differentiate
between non-draggable items, such as method invocations.
When the developer begins to drag an exception, FIXBUGS
displays allowable drop zones with light grey boxes, and
dynamically highlights the closest drop zone to the current
location of the mouse cursor. After the developer drops the
exception on a preferred drop zone, the drop zones disappear
and FIXBUGS automatically applies the code change. The
exception colors remain until the developer indicates they have
finished.

B. String Concatenation

Figure 4 shows a getAddress method from log4j [13]. The
method contains a for statement (Lines 8 through 13) and
a String object (Line 7) that is concatenated in the loop.
This code is inefficient because string concatenations in a
loop create many temporary objects that must be garbage
collected [14]. To improve efficiency, FindBugs suggests

1 public String getAddress() {
2 String result = null;
3 try {
4 InetAddress addr = InetAddress.getLocalHost();
5 byte[] ip = addr.getAddress();
6 int i = 4;
7 String ipAddr = "";
8 for (byte b : ip) {
9 ipAddr += (b & 0xFF);

10 if (--i > 0) {
11 ipAddr += ".";
12 }
13 }
14 result = ipAddr;
15 } catch (UnknownHostException e) {
16 e.printStackTrace();
17 }
18 return result;
19 }

Fig. 4. Code containing the String Concatenation defect. The getAddress
method has a for loop and a variable of ipAddr that is concatenated in the
loop.

Fig. 5. Suggested fix for the String Concatenation defect shown in Figure 4. In
top right is the suggestion popup. Color annotations help developers determine
the impact of the change on their code.

using a StringBuffer or StringBuilder. The primary dif-
ference between StringBuilder and StringBuffer is that
StringBuilder is not synchronized.

As shown in Figure 5, FIXBUGS provides a default sugges-
tion to use StringBuffer. Mining our open source corpus,
we found that StringBuffer is used more often (70.1%) than
StringBuilder (29.9%).

FIXBUGS first finds the String variable being concatenated
in a loop and creates a StringBuffer variable right before
the loop. Then, FIXBUGS replaces all concatenations in the
loop with the append method before copying the value of the
StringBuffer to the original String.

Color Annotations. FIXBUGS is designed to support
change comprehension after selecting a resolution. Specifically,
FIXBUGS applies color annotations directly on the editor to
denote the parts of code that have been added or changed. In
addition, the gutter shows a green plus icon to indicate added



1 public void read() {
2 try {
3 InputStream in = new FileInputStream("f.txt");
4 Preferences.importPreferences(in);
5 in.close();
6 } catch (IOException e) {
7 e.printStackTrace();
8 } catch (InvalidPreferencesFormatException e) {
9 e.printStackTrace();

10 }
11 }

Fig. 6. Code containing the Open Stream Exception Path defect.

Fig. 7. Suggested fix for the Open Stream Exception Path defect shown in
Figure 6.

code, and a pencil icon to indicate a section of changed code.

C. Open Stream Exception Path

Figure 6 shows an example of FindBugs’ Open Stream Ex-
ception Path defect. The invoked importPreferences method
(Line 4) may throw InvalidPreferencesFormatException
before executing the close method (Line 5). If this exception
is thrown, the stream will not be closed, and a file descriptor
leak will occur. It is better to create a finally block and
call the close method within that block to ensure that the
stream object is closed. Java 7 has an additional approach to
fix this defect, known as “try-with-resources [15]”, for cleaner
resource management. The solutions are illustrated in Figure 7,
with the Split/Variable fix shown.

As with the String Concatenation defect, with this defect
FIXBUGS also supports fix design exploration using suggestion
popups and color annotations. Note that the tool does not
provide String Concatenation or Open Stream Exception Path
with drag-and-drop, because the feature is not relevant to
solving either of these defects.

V. EMPIRICAL EVALUATION METHOD

After we designed and implemented FIXBUGS, a prototype
fix exploration tool, we performed an experiment to evaluate
its usability.1 In this evaluation, we investigated the standard
usability metrics [16] of effectiveness, efficiency, and user
satisfaction, using the following research questions:

1All materials used for the study, including the FIXBUGS source code, are
available at http://go.barik.net/fixbugs.

TABLE I
PARTICIPANTS’ EXPERIENCE IN EMPIRICAL EVALUATION

Participant Dev. (yrs) Java (yrs) Eclipse (yrs)

P1 20 17 10
P2 9 6 2
P3 7 6.5 6
P4 6 6 6
P5 7 3 2
P6 3 3 3
P7 3 2 2
P8 8 5 5
P9 5 5 3
P10 1 1 1
P11 3.5 1 1
P12 1.5 1 1

Mean 6.2 4.7 3.5
Std. Dev. 5.1 4.4 2.7

RQ1 How effective and efficient are Quick Fix and
FIXBUGS in fixing defects against manual ap-
proaches?

RQ2 How satisfied are developers with fixing defects when
using Quick Fix, FIXBUGS, and manual approaches?

A. Study Design

Participants. We recruited 12 graduate students (henceforth,
participants P1-P12) for our study through a flyer and a mailing
list in the Department of Computer Science at our University
(Table I). On average, participants had 6.2 years (sd = 5.1) of
development experience, 4.7 years (sd = 4.4) of experience
with Java, and 3.5 years (sd = 2.7) of experience with Eclipse.
All participants were familiar with Eclipse and seven of them
had used static analysis tools like FindBugs. Only P11 had
no prior experience with the Quick Fix feature. No participant
had seen FIXBUGS prior to the study. Four participants were
women.

Tools. Participants fixed defects in three ways: manually
fixing (MF), using the Eclipse Quick Fix tool (QF), and using
FIXBUGS (FB). During the study, we called Eclipse Quick
Fix “Quick Fix Version 1” and FIXBUGS “Quick Fix Version
2” so as not to bias participants by letting them know which
version we implemented. We compared these approaches on
the three defects described in Section IV: Catch Exception
(CE), String Concatenation (SC), and Open Stream Exception
(OSEP). Although FindBugs did not provide Quick Fixes at
the time of the study for these three defects, we implemented
them ourselves in Eclipse.

Counterbalancing. We used a within-subjects design for
the participants to be exposed to all tools. To control for order
effects, we asked participants to use the tools in six different
orders, because we had three tools.

Tasks. We gave participants 18 tasks (henceforth, T1-T18)
to complete. We gave participants four minutes for each of the
first three tasks, intended as warm-up tasks that minimize the
problem of practice effects [17], and then three minutes for
the remaining tasks. Once time expired, if the defect was not
fixed, we marked the task as incomplete.



Each task contained one of the three defects mentioned
previously. When participants encountered the Catch Exception
defect, we explicitly asked them to throw or catch exceptions
based on a pre-specified list of exceptions.

We chose example code from FindBugs, from a paper
on static analysis tools [18], and from well-known, real-
world, open source projects such as Apache Ant, Apache
Lucene [19], ArgoUML [20], HtmlUnit [21], iText [22],
JHotDraw [23], and log4j [13]. We ordered the tasks using a
metric for readability [24]; the readability of the code generally
decreased over the course of each participant’s session. To allow
participants to focus on fixing the defects, we modified the
code to isolate the defects, and removed extraneous code.

B. Pilot Study

We conducted a pilot study with 12 participants. From the
pilot study, we obtained parameters such as the selection of
training examples, selection of tasks, and time limits for each
task so that the study could be completed within an hour. We
do not include the results of the pilot study in our analysis.

C. Procedure

Training. Our experiment was conducted by two investiga-
tors. The first investigator (third author) conducted the training
session, and a second investigator (second author) conducted
the actual experiment. This was done to reduce participant
response bias by confounding the creator of the tool [25].

We used three examples for the training session. These
examples demonstrated the drag-and-drop, suggestion popups,
and color annotation features of the tool to the participant. We
also explained how to navigate between defects using FindBugs’
“Bug Explorer” and how to browse detailed information in
FindBugs’ “Bug Info” view. The training examples were
contextualized through some of the new features of Java 7, such
as try-with-resources and multi-catch exception. A previous
pilot study showed that participants did not have familiarity
with these features.

This training took about 10-15 minutes. Training was
provided to all participants regardless of prior experience.

Experiment. The second investigator conducted the actual
experiment. During the study, we allowed participants to use
any information from FindBugs and developer community
sites such as StackOverflow [26]. We allowed them to use
any Eclipse Quick Fixes, such as “add throws declaration” or
“surround with try/catch,” because these could have been part
of participants’ workflows in the wild.

We did not allow participants to go back to previous
tasks to prevent them from correcting earlier manual fixes
using information learned from later Quick Fixes. Including
the training tasks, each session took about 45-60 minutes.
Afterwards, we asked each participant to fill out a post-
questionnaire regarding user satisfaction. We did not provide
compensation for participation.

D. Analysis

1) RQ1: How effective and efficient are Quick Fix and
FIXBUGS in fixing defects against manual approaches?: We

considered the effectiveness (tasks successfully completed) and
efficiency (total time taken to complete task) of the tools for
each bug type, and compared these results against the manual
approach. An initial Shapiro-Wilk normality test identified
several of the dimensions as being significantly different from
a normal distribution, and so we used a matched-pairs Wilcoxon
signed rank test (α = .05) for these analyses.

2) RQ2: How satisfied are developers with fixing defects
when using Quick Fix, FIXBUGS, and manual approaches?:
We asked questions about user satisfaction in the post-
questionnaire. Each question used a 5-point Likert scale [27]
ranging from “Strongly disagree (1)” to “Strongly agree (5)”.
We used a Wilcoxon signed rank test to compare responses.

VI. ANALYTIC EVALUATION METHOD

In comparison with empirical user evaluation methods, a
heuristic evaluation is an analytic form of user evaluation [28].
Whereas empirical methods typically measure the participants’
performance directly, such as effectiveness or efficiency, ana-
lytic user evaluation methods have expert observers examine
the interface or aspects of the interaction to identify usability
problems. The output of a heuristic evaluation is a list of
usability issues identified in the context of how these issues
violate recognized design principles, called heuristics [29].
Importantly, the output explains the trade-offs between two or
more user interfaces.

Empirical methods and analytic methods are complementary.
In empirical user evaluation methods, a tool expert is able to
perform and provide feedback on tasks, even if they are not
experts on user interface design. In analytic user evaluation
methods, an expert evaluator can identify user interface design
issues even if they are not experts on the tool itself.

Thus, the use of the analytic, heuristic evaluation allowed
us to investigate an additional research question:

RQ3 What interface trade-offs do usability experts identify
between Quick Fix and FIXBUGS?

A. Study Design

Participants. We recruited expert evaluators using con-
venience sampling. We emailed researchers and engineers
using personal contact lists. Nielsen recommends the use
of three to five expert evaluators [29], and so we contacted
potential evaluators from academic computer science, academic
psychology and human factors, and industrial UX designers
and software engineers. In total, we contacted 11 evaluators and
received six acceptances. All evaluators had doctoral degrees in
their respective specialization. As a thank you for participating,
we offered to acknowledge these researchers in any published
materials which used their responses.

Tasks. We used Nielsen’s methodology for heuristic eval-
uation [29]. Each evaluator received an e-mail containing a
hyperlink to the evaluation materials. The evaluation materials
provided a brief description of each tool, referring simply to
Quick Fix as Quick Fix Version 1 and FIXBUGS as Quick Fix
Version 2. We asked the evaluators to watch four, two-minute
videos of both tools demonstrating actions that we observed



!"

#!"

$%!"

$&!"

%'!"

()" *)" )+" ()" *)" )+" ()" *)" )+" ()" *)" )+",
-.

/
",
0
1
/
2
"3
-2
"4
/
56
2
7
48
"

!"#$%&'

()%*+",%+-)%'

./,%'!"#,+0'

12*,/-)%'3+"4'
5)"+6'

(+"*4'

12*,/-)%'

!9"

%!9"

'!9"

#!9"

&!9"

$!!9"

:
/
;<
"6
="
,
0
41
4"
>
6
.
?
@/
A/
7
"3
9
8"

Fig. 8. Time taken by participants to complete given tasks manually, with
Quick Fix, and with FIXBUGS. Overall, participants fixing defects manually
took longer than participants using Quick Fix and FIXBUGS.

participants taking in the empirical user evaluation. During
the task, we asked each evaluator to go through the interface
and inspect the various interactions in the videos. In addition,
we provided the evaluators with a questionnaire consisting
of the ten usability heuristics defined by Nielsen. For each
heuristic, we asked evaluators to rate adherence using a 5-point
acceptability scale from “Very Poor (1)” to “Very Good (5)” for
each tool. For each heuristic, we asked evaluators to provide
a written rationale for their ratings in a textbox. We expected
the evaluation to take 30-45 minutes to complete. On average,
participants completed the task in 41 minutes.

B. Analysis

To understand the overall sentiment of the evaluator, we
calculated the difference in ratings for each tool and for each
heuristic. For example, if the evaluator marked “Very Good”
for Quick Fix and “Acceptable” for FIXBUGS, we tabulated
their score for that heuristic as −2.

To identify the trade-offs evaluators found between Quick
Fix and FIXBUGS, we framed Nielsen’s heuristics as themes
and conducted a thematic analysis of the responses [30]. To
do so, we first removed all heuristics in which two or more
evaluators indicated the heuristic to be inapplicable to the
current evaluation.2 Next, we used the ATLAS.ti [31] data
analysis software to qualitatively code the data over multiple
iterations. In the first cycle, we used descriptive coding to
classify phrases in the responses as either applicable to Quick
Fix, FIXBUGS, or both. In the second iteration, we used axial
coding for each heuristic to organize and identify common
patterns between the evaluators and tools.

VII. RESULTS

A. RQ1: How effective and efficient are Quick Fix and
FIXBUGS in fixing defects against manual approaches?

In terms of effectiveness, participants manually fixing defects
successfully completed 38 out of the 72 tasks (52.8%), whereas
participants using Quick Fix completed 69 out of 69 tasks3

(100.0%) and participants using FIXBUGS completed all 72
tasks (100.0%).

2However, the full responses for all heuristics can still be found within our
online materials, if the reader is interested.

3Three tasks had to be discarded. For details, see Section VIII (Limitations).

In terms of efficiency, Figure 8 shows the time taken (in
seconds) to complete the task. Overall, the mean time taken
for tasks completed manually was 111.9 seconds (sd = 38.3).
In comparison, the mean times taken using Quick Fix and
FIXBUGS were 65.8 (sd = 45.9) and 54.1 (sd = 35.0) seconds,
respectively.

For the Catch Exception defect, we found that FIXBUGS
outperformed Quick Fix (p < .001) and manual fixing
(p = .001). For the String Concatenation defect, the tools
outperformed manual fixing (QF: p < .001, FB: p < .001),
though FIXBUGS and Quick Fix were not identified to be
significantly different from one another (p = 1). Similarly, for
the Open Stream Exception Path defect, we were unable to
identify any significant differences in task completion time
between FIXBUGS and Quick Fix (p = .957), but again found
that manual fixing took significantly more time than either of
the other tools (QF: p < .001, FB: p < .001).

B. RQ2: How satisfied are developers with fixing defects when
using Quick Fix, FIXBUGS, and manual approaches?

Table II shows the results from our post-questionnaire.
Columns 2 through 4 visually represent the distribution of
ratings for manual fixing, Quick Fix, and FIXBUGS, respec-
tively, where green means strong agreement and red means
strong disagreement. The remaining columns contain p-values
indicating the statistical significance of differences among
manual fixing, Quick Fix, and FIXBUGS.

Participants thought FIXBUGS helped them to quickly and
effectively understand what will happen to the code once a
fix is applied (Q1, QF-FB: p = .006, FB-MF: p = .005). They
felt FIXBUGS minimized the work required to fix defects (Q2,
QF-FB: p = .014, FB-MF: p = .002). Participants also said
that FIXBUGS makes it easy to differentiate between changes
in code, presumably due to the color annotation feature (Q3,
QF-FB: p = .003, FB-MF: p = .003). Both FIXBUGS and Quick
Fix allowed participants to quickly make changes to their code
(Q4, MF-QF: p = .002, FB-MF: p = .003). Participants felt
that all three tools allowed them to solve the defect how they
wanted (Q5, p = .083). Finally, although participants would
use either tool if available, participants indicated a significant
preference for FIXBUGS over Quick Fix (Q6, FB-QF: p =
.014).

C. RQ3: What interface trade-offs do usability experts identify
between Quick Fix and FIXBUGS?

The evaluators have been labeled as E1 through E6, with
their affiliation — academic computer science (CS), academic
psychology (PSY), and industry (IND) indicated in subscripts.
Table III summarizes their relative 5-point Likert responses
between Quick Fix and FIXBUGS for each heuristic to give
an overall sense of each evaluator’s assessments. For example,
E5IND, an industry software engineer, is more critical of
FIXBUGS than the other evaluators.

Visibility of system status. Heuristic: The system should
always keep users informed about what is going on, through
appropriate feedback within reasonable time. Evaluation. E1CS



TABLE II
USER SATISFACTION, BASED ON POST-QUESTIONNAIRES

Question MF QF FB MF-QF (p) QF-FB (p) FB-MF (p)

Q1 {MF, QF, FB} helps me to quickly and effectively understand what
will happen to my code once the fix is applied.

.374 .006 .005

Q2 {MF, QF, FB} reduces the amount of work required to fix a bug. .002 .014 .002

Q3 {MF, QF, FB} makes it easy to differentiate between original, new and
modified code.

.792 .003 .003

Q4 With {MF, QF, FB}, I could quickly make the changes to my code. .002 .655 .003

Q5 {QF, FB} fixed my code the way I wanted it fixed (i.e. made the changes
I wanted made).

– .083 –

Q6 If {QF, FB} was available in my favorite development environment, I would
use it when I programmed.

– .014 –

p-values indicate the likelihood that responses for one of the tools were significantly different than for the others. Overall, our participants preferred
FIXBUGS to both Quick Fix and manual fixing (5-point Likert scale from “Strongly disagree (1)” to “Strongly agree (5)”).

TABLE III
RELATIVE LIKERT SCORES FOR ANALYTIC EVALUATION

CS PSY IND
Heuristic E1 E2 E3 E4 E5 E6
VISIBILITY +2 +1 +1 −4 +1
USER CONTROL/FREEDOM +1 +2 +1 +2 +2 +1
RECOGNITION/RECALL +2 +2 +4 +1
AESTHETIC/MINIMALISTIC +1 +2 −3 −1
RECOGNIZE/DIAGNOSE +1 · +1 +2 −2 +2

Positive scores indicate preference towards FIXBUGS and negative
scores indicate preference towards Quick Fix. A raised dot (·) indicates
that the evaluator did not find the criteria applicable.

summarizes the information and feedback from FIXBUGS
through three features provided by the tool: “1) highlighting
what it thinks are important changes to the code, 2) offering
an explicit toggle to go back and forth between the original
suggestion and last change by the user, and 3) offering drag-
and-drop on the highlighted changes.”

Unlike Quick Fix, the feedback in FIXBUGS makes it
“obvious when the tool is in use and what state” (E3PSY),
and it is easy to tell when FIXBUGS is active and when it is
not. In addition, through the suggestion popup, the developer
can “easily see which option was chosen” (E3PSY), and through
color annotations, the changes are presented within the code,
instead of a preview with different formatting (E3PSY, E6IND).

Other evaluators found the feedback from the two versions to
be about the same in terms of information, but just presented at
different times (E1CS, E2CS, E5IND). Quick Fix has an advantage
in that it provides fairly verbose explanations and examples
of the suggested fix before having to activate the tool at all
(E1CS, E5IND). In contrast, FIXBUGS provides less upfront
information, but elaborates more on the suggested approach
and rationale to solving the problem only after the tool is
invoked (E1CS, E4PSY).

An interesting observation of FIXBUGS is that the syntax of
the language becomes visible through usage of the drag-and-
drop capability (E1CS). For example, in the Catch Exception
defect, the developer does not have to worry about the correct
syntax for the various locations where an exception may be
placed; the tool will automatically make the proper syntax
visible to the developer.

User control and freedom. Heuristic. Users often choose
system functions by mistake and will need a clearly marked
“emergency exit” to leave the unwanted state without having
to go through an extended dialogue. Support undo and redo.
Evaluation. Evaluators generally compared the undo-redo
interactions available in Quick Fix and FIXBUGS (E3PSY,
E6IND, E5IND), and identified that Quick Fix uses the familar
undo-redo operations (e.g., CTRL-Z), a “commonly known
convention” (E6IND, E3PSY, E5IND) available in most text
editors.

In comparison to FIXBUGS, evaluators found that both tools
supported undo and redo, but that FIXBUGS supports these
operations more explicitly (E1CS, E2CS, E4PSY). In particular,
the suggestion popup in FIXBUGS gives the developer “im-
proved control and the ability to easily switch between different
suggestions” (E2CS).

Two evaluators (E6IND, E3PSY) identified design failures in
FIXBUGS. Although the suggestion popup is more useful than
in Quick Fix, “the placement of the suggestion popup is not
intuitive” (E6IND) because it appears on the opposite side of
the screen from the bug marker. As a second failure, E3PSY
noted the lack of an “emergency exit,” in that it is not obvious
in FIXBUGS how the developer should accept or cancel the
change. Unintuitively, clicking the X button finalizes the change,
rather than cancelling it. Adding an explicit “finalize change”
button to FIXBUGS would clarify this issue.

Recognition rather than recall. Heuristic. Minimize the



user’s memory load by making objects, actions, and options
visible. The user should not have to remember information
from one part of the dialogue to another. Instructions for
use of the system should be visible or easily retrievable
whenever appropriate. Evaluation. Quick Fix requires much
more recall and clerical effort than FIXBUGS (E1CS, E2CS,
E3PSY, E4PSY). Lacking color annotations, Quick Fix simply
applies the requested change, and then leaves it to the developer
to maintain an internal “mental model state” of what has
changed (E1CS, E3PSY), to see the impact of the changes the
system suggestions (E4PSY), and to compare changes (E2CS).
To take advantage of the color annotations successfully in
FIXBUGS, however, requires that the developer “learns what
the colors mean” (E6IND). For example, in the Catch Exception
defect, they must recognize that the outline color of the method
corresponds to the fill color of the exception itself.

E3PSY suggests that Quick Fix should actually be better
for recognition than recall, if not for several design flaws.
This is for the simple reason that Quick Fix offers a preview
with the original source code so that both can be compared
simultaneously; in FIXBUGS, this comparison is serialized
(E3PSY, E4PSY), and you can’t look at both at the same time
to compare. Although the current implementation of FIXBUGS
requires recall, this need not be the case. For example, the use
of split-panes could be used to show both versions of the code
side-by-side.

Aesthetic and minimalist design. Heuristic. Dialogues
should not contain information which is irrelevant or rarely
needed. Every extra unit of information in a dialogue competes
with the relevant units of information and diminishes their
relative visibility. Evaluation. Evaluators found that Quick Fix
and FIXBUGS implement aesthetics in different ways (E1CS,
E2CS). In Quick Fix, the information is tailored to the specific
task needing to be carried about, although the developer still
has to dedicate time to read and understand it (E1CS, E5IND).
FIXBUGS uses color annotations on source code as a minimalist
design to identify what will change with the fix, but leaves it
up to the developer to figure out why that suggestion is good
or bad (E1CS).

E6IND noted that standard UI conventions differ between
Quick Fix and FIXBUGS, with Quick Fix being already familiar
and not very different from standard interactions within Eclipse.

Help users recognize, diagnose, and recover from errors.
Heuristic. Error messages should be expressed in plain language
(no codes), precisely indicate the problem, and constructively
suggest a solution. Evaluation. Quick Fix offers verbose
information to diagnose errors, but this information is not
presented in a user-friendly way (E1CS, E4PSY). E1CS suggests
that in Quick Fix, the verbose information isn’t useful to a
developer anyway. In such a case, direct interaction, such as
the structured drag-and-drop that FIXBUGS provides, is more
useful. E5IND differed from the other evaluators, and felt that
the constructive solutions in FIXBUGS require more effort to
obtain from the tool, whereas Quick Fix provides an immediate
preview.

Because of the color annotations, some evaluators found

it easier to recognize “what the system thinks are areas of
concern” (E1CS) with FIXBUGS (E1CS, E4PSY, E6IND). If the
developer makes a mistake during the fix, it is also easier to
recover the original state using the suggestion popup (E3PSY).
E4PSY concludes that, with FIXBUGS, “the suggested edits are
much easier to evaluate, compare, and execute.”

VIII. LIMITATIONS

In this section, we discuss the limitations and threats to
validity in our study, starting with task issues. We inadvertently
included warm-up tasks during the counterbalancing procedure
and could not discard them from our analysis as intended. A
bug in our implementation required us to discard two trials: P8
(T1) and P12 (T1). A third trial, P12 (T15) had to be discarded
because the participant was asked to use Quick Fix, but the
system was accidentally left in manual-only mode. In total,
three tasks were discarded.

Because of the small number of participants, the statistical
power of the the Wilcoxon signed rank test is low. In addition,
the test does not allow for missing data. For the discarded
tasks, we performed mean substitution as an approximation.
Overall, this affected 3 out of 216 tasks. For incomplete manual
tasks, we made the assumption that the task would have been
completed just after the time limit. For T1-T3, this is four
minutes, and three minutes for others. Note this procedure only
gives an advantage to manual fixing, and not to our tools.

A second issue relating to sample size is that the task
efficiency may be confounded with participant experience. To
understand the extent of this threat, we constructed a decision
tree using task data and pre-questionnaire responses as inputs
to the model [32]. The inputs include the tool (MF, QF, FB),
the task (T1-T18), the bug type (CE, SC, OSEP), and the
self-reported experience of the developer for general software
experience, Java experience, and Eclipse experience. The
response variable is the time to complete the task. Because we
are interested in the influence of experience for this particular
data set, we intentionally overtrained the model to maximize
the coefficient of determination, which occurred at R2 = 0.656.
Under this model, the input contributions are: tool (36%), bug
type (18%), task (16%), Java experience (14%), developer
experience (12%), and Eclipse experience (2%). Therefore,
some form of experiences explains 28% of the observed task
efficiency.

Finally, although we named our tools Quick Fix Version 1
and Quick Fix Version 2, the use of a Version 2 label inherently
suggests that it is an improvement over Version 1. And because
participants in our study had prior experience with Eclipse,
they likely guessed that Quick Fix Version 2 was our tool.
Thus, a potential threat is that these participants experienced
social desirability bias [33], and gave more favorable post-
questionnaire responses to our tool than they would have
otherwise. To mitigate this threat, we specifically recruited
psychologists and human factors researchers without prior
experience in programming or Eclipse in our analytic heuristic
evaluation. In our analytic evaluation, we also explicitly asked
respondents to not be concerned with “being too critical of the



tool” and indicated that “strong criticism [was] expected and
encouraged.”

IX. RELATED WORK

Our work is related to research on exploring design spaces,
improving Quick Fix automation, code suggestion and com-
pletion, and visual aides.

Exploring design spaces. Studies have investigated how
analysis tools can help users explore design spaces. For
example, Oney and Brandt [34] explored the effectiveness
of using interactive helpers to aide developers in understanding
and using outside coding examples after they have copied and
pasted the code into their own. Ferriera and colleagues [35]
created a set of guidelines and implemented a tool for increasing
user confidence when identifying uncertainty in charts and
conducting common data exploration. Xie and colleagues [36]
investigated the use of automatic code generation and interac-
tive guidance to support developers writing secure software.
When debugging, Ko and Myers [37] found that developers
significantly benefit when the task aligns with the developers’
intentions. Another type of design exploration, found by
Piorkowski and colleagues [38], occurs when attempting
to balance learning about a defect with fixing the defect.
They discovered that learning and fixing can require different
information and tactics.

Improving Quick Fix automation. Other research has
borrowed from or built on features found in the Eclipse IDE,
such as Quick Fixes, to improve those features’ usability.
Vakilian and colleagues [39] proposed a tool called Keshmesh
for detecting and fixing concurrency defects in Java programs.
Their approach provides code suggestions using Eclipse’s
Quick Fix interface. Muşlu and colleagues [40] recently
proposed Quick Fix Scout to analyze suggested code changes
before applying them and presents the number of remaining
compilation errors in front of the suggested fixes. Given a
fix, it informs the developer of how many errors the fix will
introduce or remove.

Our approach is complementary to improvements in static
analysis algorithms and can take advantage of these technical
improvements. For example, our approach can aid Quick Fix
Scout by directly applying code suggestions to existing code in
the editor (e.g., through color annotations), so that developers
can easily navigate suggestions and observe the impact of
applying a suggestion.

Code suggestion and completion. Mooty and col-
leagues [41] proposed Calcite, which suggests code examples
for constructing a given class or interface. The tool is integrated
into Eclipse and uses the default completion proposal context
menu to allow developers to choose their suggestions. However,
Calcite provides snippets from the web, which could lead
to compilation errors when applied and does not allow for
fix previews. Similar to Calcite, Omar and colleagues [42]
proposed a code completion tool for Eclipse, called Graphite.
They described new user interfaces and the design constraints
for their technique. FIXBUGS is designed to help developers
fix defects, whereas their approach helps developers in creating

objects or regular expressions. Our approach also actively
uses JDT to analyze the underlying context in the editor and
to provide context-sensitive code suggestions to fix defects;
Graphite uses HTML and Javascript to support extensibility.

Visual aides. Henley and Fleming [43] proposed an ap-
proach called Patchworks to reduce the time and errors
introduced when navigating large codebases using existing
tools, such as with the “Outline View” in Eclipse. Dekel
and Herbsleb [44] proposed an approach, called eMoose,
designed to improve API documentation usability by decorating
method invocations with annotations to increase awareness of
important information. Similarly, FIXBUGS decorates code with
annotations to increase awareness of what has been changed.
Moreover, FIXBUGS provides a color mapping between method
invocations and exceptions that the invocations may throw,
and provides two types of border annotations (i.e., solid or
dashed border) to differentiate between draggable and non-
draggable code elements. Cottrell and colleagues [45] proposed
an approach, called Jigsaw, that helps with code reuse tasks
by comparing structural correspondences between originally
copied seed code and paste seed code. Jigsaw uses colors
based on similarity scores to draw developers’ awareness, while
FIXBUGS uses colors to differentiate which part of code is
added, changed, or related from original code.

X. DISCUSSION

A. Implications

The triangulation of our empirical evaluation method and
analytic evaluation method suggest several design techniques
that benefit both Quick Fix and FIXBUGS types of tool
experiences.

1) Enable exploration of alternative design spaces: Al-
though Quick Fixes are fast to invoke and apply, additional
developer effort is required when they wish to evaluate multiple
fixes, for example, by repeatedly undoing and redoing fixes.
In FIXBUGS, a suggestion popup makes it easier to toggle
between multiple fixes. Even when tools supporting exploration
are available in IDEs, the developer must wrangle with the
IDE to bring these tools to their task context. For example, the
color annotations in FIXBUGS could theoretically be achieved
using existing tools, such as IntelliJ’s “Compare Files” [46].
However, to compare a design space, the developer would
first need to take a snapshot of the appropriate source files,
apply a fix, and finally, activate the “Compare Files” tool to
open a separate differences-viewer window. If the developer
performed any of these operations incorrectly, or wanted to
explore an alternative design space, they would need to redo the
sequence of steps. In contrast, the novelty of FIXBUGS is that
it facilitates exploration of a change by automatically providing
the developer with relevant tools during the fix process.
Nevertheless, in cases where the desired fix is unambiguous,
developers don’t seem to benefit from the verbosity provided
by FIXBUGS. In this scenario, a simple tooltip indicating the
change is likely sufficient for the developer.



Fig. 9. Suggested fix for the Missing Argument defect. The variables in green
boxes are candidates for %s. The dotted borders of the variables denote that
the variables can be drag-and-dropped. Currently, aS1 is being dragged and
about to be dropped to replace the already suggested variable s2.

2) Provide direct feedback: The heuristic evaluation revealed
that, strictly speaking, Quick Fix is better for recognition
because it simultaneously displays both the original code as
well as a preview of the intended fix. However, this advantage
is largely negated against the color annotations of FIXBUGS
because the preview is neither formatted the same as the source
code, nor directly displayed in terms of the source the developer
is already editing. Consider using techniques such as a split-
pane view, to enable developers to not only understand what
changes after the fix, but also to identify what the fix changes
with respect to the original source code.

3) Offer structured manipulation: There are times, as with
the Catch Exception defect, when the design space is large
yet the types of manipulations that the developer needs to
make are still structured. In such cases, one can use existing
static analysis techniques to support the developer and provide
smarter editing modes, such as drag-and-drop. Even with
experts, the drag-and-drop approach is faster and less error-
prone than fully manual approaches.

B. Extending FIXBUGS

Using the design techniques we have just outlined, we
illustrate how these techniques can be extended to other static
analysis fixes.

Consider the code example containing a Missing Argument
defect, shown in Figure 9. The problem is that the argument
for %s is missing, and when the method is executed, a runtime
exception will occur. The solution to the defect is to provide
an expression of type String for %s.

For this defect, FIXBUGS first notices the incorrect format
string and draws a green, wavy underline on %s indicating
that an actual argument has been missed. Then, it finds all
candidate variables of that type (String) in the scope of the
MissingArgument class to be used as suggestions. In this
example, candidate suggestions will be fS1, aS1, s1, and s2.

Because the developer is structurally manipulating the code
directly through drag-and-drop, it is less likely that they will
need a split-pane view to compare their change against the

original. To enable design space exploration, users may prefer
other expressions to String variables for the missing argument,
so FIXBUGS allows users to edit code to provide an expression
manually. For example, a developer might want to make
a function call like System.out.printf(‘‘%f %s’’, f1,
bar());.

XI. CONCLUSION

In this paper, we examined how moving beyond speed as a
primary criteria for fixes can benefit developers. Through an
empirical evaluation, we found that developers using FIXBUGS
are able to understand, differentiate, and make changes to
their code, while still maintaining comparable performance
to speed-based Quick Fix tools. Put another way, slow fixes
need not be significantly slower than quick fixes. Despite the
additional actions that slow fixes sometimes require, slow fix
tools such as FIXBUGS make up for this deficiency through
the exploratory affordances that enable developers to better
understand and evaluate the impact of their fixes.

Our analytic evaluation identified trade-offs between the
design of Quick Fix and FIXBUGS, and suggested design
techniques that can be applied to improve both. Our findings
suggest that the design of Quick Fix and FIXBUGS are in many
ways complementary, with Quick Fix remaining the tool of
preference for one-shot fixes, and where minimal or no design
exploration is necessary to apply the fix. FIXBUGS excels in
situations where fixes can be provided, but the permutations of
possible design choices within that space have more variation.

Thinking in terms of quick and slow paradigms can improve
developer tool experiences in other domains. For example,
straightforward refactoring changes such as renaming might
be better suited to fast fixes. When performing a more
complex refactoring, however, such as extracting to a superclass,
developers may appreciate the additional affordances provided
by slow fixes. In short, our tools should sometimes be fast and
sometimes be slow — because developers think both fast and
slow [47].

ACKNOWLEDGMENTS

We thank the expert evaluators, Jing Feng, Christopher G.
Healey, Anne McLaughlin, Kivanç Muşlu, Kenya Oduor, and
Robert St. Amant, for their time and detailed feedback. This
material is based upon work supported by the National Science
Foundation under Grant No. 1217700 and through a Google
Faculty Research Award.

REFERENCES

[1] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not.,
vol. 39, no. 12, pp. 92–106, 2004.

[2] “LLVM/Clang,” http://clang-analyzer.llvm.org/.
[3] “CheckStyle,” http://checkstyle.sourceforge.net/.
[4] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in Java

applications with static analysis,” in SSYM, 2005, pp. 271–286.
[5] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t

software developers use static analysis tools to find bugs?” in ICSE,
2013, pp. 132–141.

[6] “Eclipse,” http://www.eclipse.org/.
[7] “Resharper,” http://www.jetbrains.com/resharper/.



[8] M. Palyart, G. C. Murphy, E. Murphy-Hill, and X. Blanc, “Speculative
reprogramming,” in FSE, 2014, pp. 837–840.

[9] J. Y. Gil, I. Maman, J. Y. Gil, and I. Maman, “Micro patterns in Java
code,” in OOPSLA, 2005, pp. 97–116.

[10] B. Pietrykowski, “You are what you eat: The social economy of the slow
food movement,” Review of Social Economy, vol. 62, no. 3, pp. 307–321,
2004.

[11] “Ant,” http://ant.apache.org/.
[12] “Multi-catch clause,” http://docs.oracle.com/javase/specs/jls/se7/html/

jls-14.html#jls-14.20.
[13] “log4j,” http://logging.apache.org/log4j/.
[14] J. Bloch, Effective Java. Prentice Hall, 2008.
[15] “The try-with-resources statement,” http://docs.oracle.com/javase/specs/

jls/se7/html/jls-14.html#jls-14.20.3.
[16] A. Dix, J. Finlay, G. D. Abowd, and R. Beale, Human-Computer

Interaction, 3rd ed. Prentice-Hall, 2004.
[17] B. A. Sheil, “The psychological study of programming,” ACM Computing

Surveys, vol. 13, no. 1, pp. 101–120, 1981.
[18] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug finding

tools for Java,” in ISSRE, 2004, pp. 245–256.
[19] “Apache Lucene,” http://lucene.apache.org/core/.
[20] “ArgoUML,” http://argouml.tigris.org/.
[21] “HtmlUnit,” http://htmlunit.sourceforge.net/.
[22] “iText,” http://itextpdf.com/.
[23] “JHotDraw,” http://www.jhotdraw.org/.
[24] R. P. L. Buse and W. R. Weimer, “A metric for software readability,” in

ISSTA, 2008, pp. 121–130.
[25] N. Dell, V. Vaidyanathan, I. Medhi, E. Cutrell, and W. Thies, “”Yours is

better!”: Participant response bias in HCI,” in CHI, 2012, pp. 1321–1330.
[26] “StackOverflow,” http://www.stackoverflow.com/.
[27] R. Likert, “A technique for the measurement of attitudes,” Archives of

Psychology, vol. 22, no. 140, pp. 1–55, 1932.
[28] W. D. Gray and M. C. Salzman, “Damaged merchandise? A review

of experiments that compare usability evaluation methods,” Human-
Computer Interaction, vol. 13, no. 3, pp. 203–261, 2009.

[29] J. Nielsen, “Heuristic evaluation,” Usability inspection methods, vol. 17,
no. 1, pp. 25–62, 1994.

[30] J. Saldaña, The Coding Manual for Qualitative Researchers. SAGE
Publications, 2009.

[31] “Atlas.TI,” http://atlasti.com/.

[32] M. Gaudard, P. Ramsey, and M. Stephens, “Interactive data mining and
design of experiments: The JMP partition and custom design platforms,”
North Haven Group, 2006.

[33] R. J. Fisher, “Social desirability bias and the validity of indirect
questioning,” Journal of Consumer Research, pp. 303–315, 1993.

[34] S. Oney and J. Brandt, “Codelets: Linking interactive documentation
and example code in the editor,” in CHI, 2012, pp. 2697–2706.

[35] N. Ferreira, D. Fisher, and A. C. Konig, “Sample-oriented task-driven
visualizations: Allowing users to make better, more confident decisions,”
in CHI, 2014, pp. 571–580.

[36] J. Xie, H. Lipford, and B.-T. Chu, “Evaluating interactive support for
secure programming,” in CHI, 2012, pp. 2707–2716.

[37] A. J. Ko and B. A. Myers, “Finding causes of program output with the
Java Whyline,” in CHI, 2009, pp. 1569–1578.

[38] D. Piorkowski, S. D. Fleming, C. Scaffidi, M. Burnett, I. Kwan, A. Z.
Henley, J. Macbeth, C. Hill, and A. Horvath, “To fix or to learn?
How production bias affects developers’ information foraging during
debugging,” in ICSME, 2015, pp. 11–20.

[39] M. Vakilian, S. Negara, S. Tasharofi, and R. E. Johnson, “Keshmesh: A
tool for detecting and fixing Java concurrency bug patterns,” in SPLASH
(Companion), 2011, pp. 39–40.

[40] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Speculative
analysis of integrated development environment recommendations,” in
OOPSLA, 2012, pp. 669–682.

[41] M. Mooty, A. Faulring, J. Stylos, and B. A. Myers, “Calcite: Completing
code completion for constructors using crowds,” in VL/HCC, 2010, pp.
15–22.

[42] C. Omar, Y. Yoon, T. D. LaToza, and B. A. Myers, “Active code
completion,” in ICSE, 2012, pp. 859–869.

[43] A. Z. Henley and S. D. Fleming, “The Patchworks code editor: Toward
faster navigation with less code arranging and fewer navigation mistakes,”
in CHI, 2014, pp. 2511–2520.

[44] U. Dekel and J. D. Herbsleb, “Improving API documentation usability
with knowledge pushing,” in ICSE, 2009, pp. 320–330.

[45] R. Cottrell, R. J. Walker, and J. Denzinger, “Semi-automating small-scale
source code reuse via structural correspondence,” in FSE, 2008, pp.
214–225.

[46] “IntelliJ IDEA,” http://www.jetbrains.com/idea/.
[47] D. Kahneman, Thinking, Fast and Slow. Macmillan, 2011.


