
How should static analysis tools
explain anomalies to developers?

A Communication Theory of Computationally Supporting
Developer Self-Explanations for Static Analysis Anomalies

Titus Barik?

North Carolina State University
http://go.barik.net/proposal

tbarik@ncsu.edu

Abstract Despite the advanced static analysis tools available within
modern integrated development environments (IDEs) for detecting anoma-
lies, the error messages these tools produce to describe these anomalies
remain perplexing for developers to comprehend. This thesis postulates
that tools can computationally expose their internal reasoning processes
to generate assistive error explanations in a way that approximates how
developers explain errors to other developers and to themselves. Com-
pared with baseline error messages, these error explanations significantly
enhance developers’ comprehension of the underlying static analysis
anomaly. The contributions of this dissertation are: 1) a theoretical frame-
work that formalizes explanation theory in the context of static analysis
anomalies, 2) a set of experiments that evaluate the extent to which
evidence supports the theoretical framework, and 3) a proof-of-concept
IDE extension, called Radiance, that applies my identified explanation-
based design principles and operationalizes these principles into a usable
artifact. My work demonstrates that tools stand to significantly benefit
if they incorporate explanation principles in their design.

1 Prelude

Dave: Hello, HAL. Do you read me, HAL?
HAL: Affirmative, Dave. I read you.
Dave: Open the pod bay doors, HAL.
HAL: I’m sorry, Dave. I’m afraid I can’t do that.
Dave: What’s the problem?
HAL: I think you know what the problem is just as well as I do.

— Scene from 2001: A Space Odyssey

? Thesis proposal submitted to the graduate faculty of North Carolina State University
in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

http://go.barik.net/proposal

2 Titus Barik

Figure 1. An ambiguous method error within the Eclipse IDE. Understanding this
error requires recognizing that Line 2 and Line 3 are also related to the anomaly. The
error description text fails to provide a rationale for why the method is ambiguous.

2 Motivating Example

Kevin is a professional software engineer at Google who mostly programs in Java
within the Eclipse IDE. While working on his code base (Figure 1), he adds a
method m(double d, int i) to a source file in the program (Line 3).1 When
he calls the method (Line 6), he is surprised that the compiler’s static analysis
has sprinkled an error into his IDE. Kevin thinks, “How can the method be
ambiguous? And ambiguous to what? I haven’t even had a chance to add any
functionality to the method.”

Fortunately, Kevin has learned through years of experience some clever
programmatic tricks that allow him to nudge the otherwise terse IDE to be more
forthcoming. One of these tricks is to comment out pieces of code to force the

1 For presentation purposes, I’ve condensed the source file so that the essential program
elements fit in a single screen capture. In Kevin’s actual program, there are many
interspersed program elements.

How should static analysis tools explain anomalies to developers? 3

compiler to indirectly spit out its internal reasoning. Thus, he decides to comment
out the method declaration that he just added (Line 3). He explains to himself,
“if the ambiguous method anomaly disappears, this would mean that the IDE
analysis knows about some other method definition in the code that satisfies
the call.” The error message is indeed removed, and Kevin is satisfied with this
explanation. He uses the Open Declaration feature in the IDE to quickly find
the conflicting method (Line 2), and undoes his code back to the error-generating
state.

Kevin now understands what program elements are contributing to the
problem, although he’s frustrated that the IDE made him jump through many
hoops to find the elements. “Why didn’t you tell me about these program locations,
which are clearly relevant to the problem?” Kevin mutters to his unrelenting
IDE.

Unfortunately, Kevin still doesn’t have any clarity into why the IDE thinks
this is a problem. He renames his method m (Line 6) to m test, thinking that the
ambiguity might be due to the name of the method.Again, the error message goes
away, but Kevin isn’t satisfied with his explanation. “This would make sense if it
were a language like Go, which doesn’t have method overloading, but I’m sure
that Java does.” He dismisses this explanation as being not all that plausible.

He thinks up yet another explanation just to check his sanity, even though he
doesn’t find this explanation to be all that plausible either. “Perhaps the problem
is because the arguments to the method are constants.” He’s seen problems like
this happen in C++ due to pass-by-reference semantics, so he quickly changes
the call to:

double d = 1;
int m = 2;
m(d, n);

The IDE is now silenced. However, the victory is a hollow one as Kevin feels
sheepish about submitting these program additions for a code review without
understanding what’s actually causing the anomaly in the first place. His past
experiences have taught him that acquiescing the IDE doesn’t always address
the actual anomaly, but instead punts the problem somewhere down the line. As
yet another explanation, he wonders if the anomaly could have something to do
with the types of the arguments, but can’t quite put his finger on it.

Kevin asks himself, “Can someone explain this to me?” and looks around
the room inquisitively. But he’s the only one working this Saturday morning.
Perplexed and frustrated, Kevin thinks it would have been nice if that “someone”
could be the IDE.

3 What went wrong?

Automatic type promotion is the missing piece that Kevin would have needed to
understand the error, and it is in fact a test the compiler itself has to perform to
in order to generate the error.

4 Titus Barik

As explained in the Java Language Specification (JLS), §15.12.2: Compile-
Time Step 2: Determining Method Signature2, the error is essentially the result
of automatic type promotion, ultimately yielding a scenario where “it is possible
that no method is the most specific, because there are two or more methods that
are maximally specific . . . the method invocation is ambiguous, and a compile-
time error occurs.” A battery of tests, such as identify matching arity methods
applicable by strict invocation (§15.12.2.2), that is, matching and promoting
actual types to formal types, can be used to to determine applicable methods for
specificity.

Basically what’s happening is that the first argument is an int, but it can
also be promoted to double. The same is true of the second argument. Depending
on which of the two arguments we choose to promote, either the method on Line
2 or the method on Line 3 would apply. Since the compiler has no built-in rule
indicating which is preferable, it cannot automatically resolve this conflict.

Because the compiler didn’t give a complete explanation to Kevin, he was
forced to produce multiple plausible, yet incorrect, explanations himself to identify
the cause of the anomaly.

It turns out that Kevin’s explanation difficulties wouldn’t be unique to
the Eclipse IDE. For this particular anomaly, I generated conceptually similar
anomalies within other compilers, and for multiple languages, both at the console
and in the IDE. In C#, the Visual Studio IDE and console output indicate that
there are two possible method definitions in the code that cause the ambiguity,
but fail to indicate to the developers where those definitions are. The same is true
of the Oracle Java compiler, in the console and through the IntelliJ IDE. C++, for
GCC and LLVM do a bit better here: they indicate to the developer the method
definitions and the actual positions in the code where the ambiguity occurs.
However, none of the tools we found explained the reason for the ambiguity, a
result of automatic type promotion, to the developer.

4 Objectives and Significance

Modern software development typically occurs within an integrated development
environment (IDE), such as Eclipse, Visual Studio, and IntelliJ.3 One task
developers perform within this IDE is understanding anomalies that static analysis
tools identify within the environment. These anomalies are presented to the
developer through the IDE as error messages. In modern IDEs, the error message
payload consists of two components. First, it consists of a textual error description
of the problem in a list box or console panel as we would typically associate with
the concept of message. Second, the payload consists of visual indicators, such as
the

::
red

:::::
wavy

:::::::::
underline, that indicate the “primary” location of the error, and

other icons or markers in the gutter or margin of the editor.
Despite the sophisticated reasoning processes available to static analysis tools

(e.g., abstract interpretation) in identifying an anomaly, developers continue to

2 http://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.12.2.2
3 http://pypl.github.io/IDE.html

http://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.12.2.2
http://pypl.github.io/IDE.html

How should static analysis tools explain anomalies to developers? 5

have difficulty understanding the messages they produce [Bro83,KK03,APM+07].
Consequently, static analysis anomalies remain perplexing for developers to
resolve [Tra10].

In this proposal, I argue that static analysis error messages should be re-
framed as assistive error explanations, in which an explanation is a “set of
assumptions which, together with background knowledge, logically entails a set
of observations” [NM90]. That is, let us assert that an error message is in fact
an explanation, irrespective of whether or not it actually is presented as such in
current IDEs. Furthermore, let us assert, using Kass and Leake’s taxonomy of
explanations, that error explanations are more precisely material explanations,
where, “if [an] anomalous event contradicts an active expectation of the explainer,
it is explained by identifying aspects of the material situation that made the
expectation fail . . . a [material] explanation must build up from basic laws a
causal chain that explains the event” [KL87]. In the case of static analysis tools,
the materials for the explanation are the explicit program elements visible in the
source code, and the basic laws are the syntax, semantics, and pragmatics of the
programming language — as well as the rules of the reasoning systems — that
are causally chained to explain the presence of an anomaly.

Positioning error messages as error explanations isn’t just an intellectual
or philosophical exercise — doing so allows us to leverage existing scientific
theories about explanation and adapt and apply those theories to the domain
of static analysis anomalies. For example, treating messages as explanations
enables us to apply the cognitive theory of self-explanation, a cognitive process
by which humans self-generate explanations to themselves and to others in order
to understand a situation [CBL+89], to the design of tools.

Consider precisely how framing error messages as error explanations provides
perspective into static analysis comprehension difficulties:

Problem: Static analysis tools are black boxes.
As described by the authors of the Roslyn compiler, “source code goes in one
end, magic happens in the middle, and object files or assemblies come out
the other end. As static analysis tools perform their magic, they build up
deep understanding of the code they are processing, but that knowledge is
unavailable to anyone but the static analysis tool implementation wizards. The
information is promptly forgotten after the translated output is produced.”4

In other words, because compilers do not expose their internal reasoning
processes to the developer, the developer must essentially self-generate a
plausible explanation for why a particular anomaly has occurred, despite the
fact that the explanation was already known to the tool. As Bret Victor
points out in his talk “Inventing on Principle” (CUSEC 2012), “If we’re
writing our code on a computer, why are we simulating what a computer
would do in our head? Why doesn’t the computer just do it, and show us?”

Problem: IDEs are hampered in their expressiveness.
Modern integrated developments have limited visualizations available to them

4 https://github.com/dotnet/roslyn/wiki/Roslyn%20Overview

https://github.com/dotnet/roslyn/wiki/Roslyn%20Overview

6 Titus Barik

for presenting a static analysis error [BLCMH14,BWJMH14]. For example,
the Roslyn5 compiler internally computes rich diagnostics, such as static
data flow analysis, but this high fidelity information is silently dropped
as the information is narrowly funneled textually through the notification
presentation engine. Although compilers have significantly more information
to share about a diagnostic, much of this information appears to be discarded
because visualizations in the IDE are not rich enough to fully express what
the static analysis tool needs to explain.

Problem: No ground truth for representation of error messages.
Even if static analysis tools exposed their internal reasoning, and if IDEs were
modified to be more expressive, the research community currently lacks an
underlying theoretical framework to articulate what information is necessary
to communicate [SS86]. Explanation theory allows us to state that the
information that is necessary to communicate an anomaly is the information
that is necessary to satisfy the requirements of a material explanation. Then,
to understand how developers form material explanations, we can investigate
how developers spontaneously explain errors messages to themselves and to
other developers.

In short, the objective of this work is to understand how static analysis tools
should explain anomalies to the developers. The significance of this work is that
static analysis explanations have the potential to substantially improve developer
comprehension of static analysis anomalies. The expected contributions of this
work are:

1. A theoretical framework that formalizes and guides the research process,
making explicit the concepts and connections under investigation (Section 7).

2. A set of experiments that evaluate the extent to which evidence supports
the theoretical framework (Section 9). The experiments are derived from
theories of explanation and adapted to the domain of static analysis anomaly
comprehension. The experiments provide coverage over the concepts and
connections of the theoretical framework.

3. A tool called Radiance, implemented as an Eclipse extension, that opera-
tionalizes the findings from the experiments into a usable artifact (Section 8).
The artifact demonstrates that it is computationally feasible and practical to
incorporate findings about static analysis explanations into modern develop-
ment environments, and that doing so significantly enhances the developers’
comprehension of static analysis anomalies.

5 https://github.com/dotnet/roslyn

https://github.com/dotnet/roslyn

How should static analysis tools explain anomalies to developers? 7

B′ C′

IDE Developer

CBA

X

M(X,R) =
Explanation EC

Self-explanation Es
(Abductive reasoning)

Static analysis tool

Es|(EC ≈ ESI)

ES|(EC ≉ ESI)

3a2a

Message

X

M(X) =
Ideal explanation ESI

2b
CBA X

XA

Exposed reasoning R|X

Anomaly X

Failed self-explanation

Successful self-explanation

3c

3b

1a

1b

1c

1d

Human Oracle

Figure 2. The proposed theoretical framework for self-explanation.

5 My Thesis

The comprehensibility and utility of error messages for static analysis anoma-
lies can be significantly improved by reframing error messages as material
explanations that approximate how developers explain anomalies to other
developers and to themselves.

This thesis statement can be also be stated as a research question: How should
static analysis tools explain anomalies to developers?

6 Theory: A Static Analysis Explanation Framework

I propose a theoretical framework that models static analysis error messages,
and the developers’ understanding of such messages, as a material explanation
problem (Figure 2). Logically, the framework consists of two primary agents who
participate in this communication: 1) at the origin (1a), the IDE acts as the
sender of the explanation, and 2) at the termination (3a), the developer uses
the IDE’s explanation, along with their own self-explanations, to understand a
particular anomaly. With these agent end points, we can further characterize this
framework in detail by following the flow of concepts that are involved between
them.

7 Description of Theoretical Framework

In 1a, the IDE can interface with a variety of static analysis tools, including the
IDE’s own compiler. For example, in the Eclipse IDE, such analysis tools might

8 Titus Barik

include the Eclipse Compiler for Java, or a third-party extension like FindBugs.
Through event handlers or other extension points, the static analysis tool is
triggered (1b). During some of these triggers, the source code is a state such that
the tool detects an anomaly (1c), which we label X. Note that at this point in
time, we have not actually specified how to communicate the anomaly, simply
that one has been detected.

Next, given X, the tool introspectively obtains additional information that
is relevant to constructing an explanation (1d). For example, in the case of a
duplicate variable within the same scope, we may wish to expose the names of
the variables, their types, the locations of the variables in the source code, and
so on. Alternatively, if this additional information is inexpensive to expose, we
can collect it at (1b) and simply discard it when the anomaly isn’t detected. In
either case, we obtain a data structure R representing the underlying information
pertinent to an explanation.

In 2a, the IDE encodes a message, M(X,R), which uses the anomaly and the
additional reasoning information for the developer. I assert, within this framework,
that such information should be presented in the form of an explanation, EC . In
current IDEs, such an explanation conventionally comes in the form of a textual
error description with wavy underline annotations within the source code. But
for the moment, we leave M(X,R) as an abstract function that should return an
explanation which we have yet to define.

Let us also posit the existence of a “human oracle” (2b). In parallel to
2a, this oracle has the ability to encode, through M(X), a theoretically ideal
explanation for a developer. Note that, unlike EC , the oracle does not depend on
R, since the oracle has perfect omniscience. That is to say, ESI is a ground truth.
Unfortunately, we are not worthy enough to ever directly observe this oracle.
However, by observing experienced developers, we may be able to approximate
ESI .

Finally, the developer decodes the explanation received through their IDE (3a).
To perform this decoding, the developer uses self-explanation (and other cognitive
processes), along with the provided explanation EC from the IDE, to self-generate
explanations that can plausibly account for the anomaly. On the one hand, in 3b,
the developer is more likely to be successful in her own self-explanation, ES , if it
is supported by an IDE explanation, EC , that approximately equals the ideal
explanation, ESI . On the other hand, the developer is more likely to produce a
failed explanation if EC does not approximately equal ESI .

Through research questions and experiments, the dissertation will validate
the extent to which the obtained evidence supports and justifies this theoretical,
static analysis explanation framework.

8 Radiance: An Eclipse Plug-in for Computationally
Supporting Developer Self-Explanations

Radiance implements my research findings as an integrated theory of self-
explanation for static analysis anomalies, and operationalizes these findings

How should static analysis tools explain anomalies to developers? 9

 Eclipse
File Edit Navigate Object Format Search Project Run Window Help

X.java

public class X extends Y {

 void m(int i, double d) { }

 {

 m(1, 2);
 }
}

Y.java

public class Y {

 void m(double d, int m) { }
} Method call is ambiguous.1

If m((int) 1, (double) 2), calls:

If m((double) 1, (int) 2), calls:

2

3

4 Both methods are candidates. Need exactly one valid option.

Error List Output

The method m(int, double) is ambiguous for the type X. Explain this message.

Figure 3. Explanations in the Eclipse IDE.

as a proof-of-concept tool implementation within the Eclipse IDE. The tool will
demonstrate that developers benefit from explanatory error messages when such
messages are grounded in self-explanation, through support from research studies
(Section 9) that cover my theoretical model (Figure 2).

8.1 Design Principles

In this section, we articulate the design principles of the Radiance tool.

Support gap-filling. Research on self-explanation has found that a key failure
in successful self-explanation is in gap-filling, a process in which the explainer
incorrectly believes that he or she has the complete domain knowledge needed to
understand a problem, leading to incorrect solutions [VJ93]. I argue that modern
IDEs fail to support gap-filling because they treat source code at the level of files
and classes, when successful understanding of a static analysis anomaly involves
thinking in terms of arbitrary subsets of source code, or fragments.

Software engineering researchers recognize the cognitive benefits of tools
that support thinking in terms of fragments for a variety of software engineering
activities [BZR+10,DR10,HF14,CKM06,BLMH15]; perhaps the most well-known
information-fragment tool is Code Bubbles [BZR+10]. I argue that tools that
support thinking in terms of information fragments facilitate self-explanation
because they make relevant program elements more pronounced while masking
unnecessary program elements. Consequently, Radiance implements the “bubbles”
metaphor as its mechanism to support gap-filling.

10 Titus Barik

Table 1. Opportunities for Improvement: Explicit Relationality

Static Analysis All Relational Pct (%)

Eclipse JDK (Luna) 598 250 41.8%
Microsoft C# 5.0 (Roslyn) 1107 282 25.5%
Microsoft F# 3.1 1136 198 17.4%
Microsoft TypeScript 1.0 538 116 21.6%
Oracle OpenJDK 7 487 126 25.9%

Explicate relationships. A second design principle in my tool is derived from
Legare’s definition of self-explanation as an “attempt to understand a casual
relation by identifying relevant functional or mechanistic information” [Leg14].
In the context of code, a tool that supports self-explanation must make explicit
the relations between program elements (that is, the mechanistic information,
or what), and provide one or more techniques to help the developer reason and
make informed decisions about why specification of the source code is a problem
(that is, the functional information, or why). It is therefore not enough to simply
identify the program elements; the tool must also explain how these elements
relate to each other. Radiance explicates relationships by using a box-and-arrows
annotation scheme with enumerated labels [BLCMH14]. At each enumeration,
explanatory information about the corresponding program element or elements
are presented to the developer.

As a preliminary investigation, I analyzed the error message corpora of several
compilers, such as Java, C#, and TypeScript, for explicit relations. A message has
a relation if it requires two or more program elements to construct the message.
Across all compilers, roughly 25% of messages have explicit relations (Table 1)
as a lower-bound. Through self-explanation theory, I argue that developers can
benefit if error messages are made more relational.

Prefer diagrammatic representations over sentential representations.
If source code is the primary artifact through which developers transform their
ideas to computation, it stands to reason that static analysis messages should
be contextualized to and presented around the source code. My own research
in understanding how developers visualize static analysis anomalies found that
developers frequently make annotations directly on top of the source code when
explaining errors to themselves. Furthermore, adding diagrams to text (e.g.,
source code) over text alone has been found to promote the self-explanation
effect [AT03].

Moreover, additional research in diagrams by Larkin and Simon compared sen-
tential representations against diagrammatic representations [LS87]. In sentential
representations, expressions form a a sequence corresponding to sentences in a
natural language description of the problem. Sentential representations resemble
the predominantly textual error messages that IDEs provide today. In contrast, in
diagrammatic representations, expressions correspond to components of a diagram

How should static analysis tools explain anomalies to developers? 11

Figure 4. The scan-build analyzer in LLVM supports only a limited number of static
analysis anomalies, but displays explanations directly on the source code.

describing the problem whereby each expression contains the information that
is stored at one particular locus in the diagram, including information about
relations with the adjacent loci. Thus, diagrammatic representations are indexed
by location in a two-dimensional, graphical plane.

Larkin and Simon found that in the diagrammatic representation, as a result
of organization by location and location-adjacent information cues, “problem
solving can proceed through a smooth traversal of the diagram, and may require
very little search or computation of elements that had been implicit [in the
sentential representation]” [LS87].

Today, some tools such as Code Lens in Visual Studio and scan-build for
LLVM (Figure 4) present information directly overlaid on the source code, and it is
thus worth investigating whether such visual overlays are beneficial to developers.
Given the findings of Larkin and Simon, it is surprising that existing IDEs
do not leverage affordances such as diagrams or location-adjacent explanations
on the source code editor to a greater extent. Radiance prefers diagrammatic
representations to sentential representations by providing explanations that are
directly overlaid on the source code, and positioning information fragments
logically by treating the editor pane as a graphical plane.

12 Titus Barik

8.2 Developer Interaction

Let’s once again visit our friend Kevin, the frustrated developer we encountered
in our motivating example from (Section 2). Recall that Kevin was attempting to
understand and resolve an ambiguous method error, but was unable to successfully
do so for several reasons. We can now more fully describe these reasons in terms
of self-explanation and my design guidelines.

First, Eclipse did not present Kevin with all of the relevant program elements
(Figure 1). To gap-fill this incomplete information, Kevin employed some tricks
to interrogate the compiler into giving him more information. Second, the error
in the IDE failed to provide a causal explanation for why the compiler has
generated this particular message. Consequently, Kevin attempted to simulate
the internal reasoning of the compiler, but failed to identify type promotion as
the underlying cause of the error during self-explanation. Third, even though
the source code was his primary artifact of interest, he had to find information
about his error through several locations in the IDE and manually relate their
corresponding program elements in his source code editor. Although the IDE
used some visual annotations, such as gutter markers, to help identify relevant
program elements, this representation is not congruent with how developers
diagrammatically self-explain errors to themselves (Section 9.1) [BLCMH14].

Kevin’s experience would have been significantly improved through the use of
Radiance, because the tool incorporates design guidelines that are important for
self-explanation (Figure 3). Using Radiance, he would notice that this particular
error is supported by Radiance, and would have activated the feature through
the “Explain this message” button.

By providing a casual chain of sequential steps against relevant information
fragments, Kevin would more effectively gap-fill by simply following the explana-
tory narrative given by the tool. Unlike Eclipse, in Radiance the relationships
are shown explicitly through the use of arrows. Importantly, Radiance contex-
tualizes its explanation in terms of the source code Kevin is already familiar
with, and presents this explanation as a visual overlay on top of the source code
that he is already examining. Furthermore, this diagrammatic representation
aligns with the representation he would use if he had produced such a diagram
himself. Finally, Radiance does not return a single, one-shot, line-oriented error
message. Instead, Radiance progressively provides explanation through exposing
its reasoning process and annotates points in the casual chain with its findings.

Because Radiance better supported Kevin’s self-explanation process, Kevin
would have been able to come to a correct judgment about the underlying cause
of the error.

8.3 Implementation details

Radiance will be a proof-of-concept implementation, to be deployed as an Eclipse
plug-in. As a proof-of-concept implementation, the tool is expected to correctly
generate explanatory messages, but will do so using naive algorithms. For static
analysis errors, Radiance will do nothing in the event of a successful compilation.

How should static analysis tools explain anomalies to developers? 13

1 class X {
2 void m(int i, double d) { }
3 void m(double d, int m) { }
4

5 {
6 m(1, 2);
7 }
8 }

1

2

1

2

m((int) 1, (double) 2);

m((double) 1, (int) 2);

Figure 5. Explanatory visualization in IDEs. Expressive representations are enabled
by exposing compiler internals for use by the IDE.

In the event of a detected anomaly, Radiance will rerun the compilation, but
in this second invocation the tool will pass a flag to the Eclipse Compiler for
Java (ECJ) so that it can collect pertinent information about the anomaly. In
this case, the ECJ compiler will be instrumented to collect information for a
finite set of anomalies that are intended to be explained through Radiance. Upon
completion, Radiance will override the editor pane with a canvas that supports a
Code Bubble-like presentation.

What type of static analysis tool anomalies will be explained? There
exists a diversity of tools, languages, and static analysis techniques within both
the industrial and academic communities. My approach for explanations for static
analysis anomalies focuses on areas of static analysis in which empirical studies
have demonstrated developer difficulties — through modern, practical tools that
are currently used in industry [SSE+14]. Using this criteria, a starting point for
investigation is the Eclipse IDE, and its associated Eclipse JDT compiler.

9 Experiments and Evaluations

This section describes the experiments and evaluations I will conduct to support
my theoretical framework (Figure 2). The current status of each experiment, and
the completed or proposed semester of completion, is indicated in parentheses.
The brackets in the section header indicate a short-form project code name for
the experiment.

9.1 [Diagrams] How do developers visualize compiler error messages?
(Completed, Spring 2014)

Study rationale. Modern IDEs, such as Eclipse, IntelliJ, and Visual Studio,
offer a number of visualizations to assist developers in more effectively com-

14 Titus Barik

prehending static analysis error messages. For example, in addition to the full
error message text found in a console output or dedicated error window, such
notifications may include an indicator in one or more margins, along with a red
wavy underline, to indicate a relevant location of the error. I hypothesize that
existing visualizations do not align with the way in which developers self-explain
error messages. Specifically, compiler authors have suggested that existing tools
do not expose important internal reasoning processes of the compiler that are
necessary to self-explain a provided anomaly.6 Within my theoretical framework
(Figure 2), this study covers the Message (2a), Developer (3a), and the resulting
quality of the explanations that developers are able to offer (3b and 3c).

Research questions.

RQ0 (Pilot) What visual annotations do developers use when they explain error
messages to each other?

RQ1 Do explanatory visualizations result in more correct self-explanations by
developers?

RQ2 Do developers adopt conventions from our visual annotations in their own
self-explanations?

RQ3 What aspects differentiate explanatory visualizations from baseline visualiza-
tions?

RQ4 Do better self-explanations enable developers to construct better mental
models of error notifications?

Methodology. Data collection. In a bootstrap pilot study, we asked third-year
Software Engineering students to pair with another student for an explainer-
listener activity. During this activity, one student (designated explainer) was
asked to verbally explain the error message to the other student while visually
annotating a source code listing during their explanation. For this process, each
student was given a sheet of paper with a source code listing and the correspond-
ing static analysis error message. The source code listings were unadorned and
lacked any visual annotations. We collected their marked sheets, and created
a taxonomy of visual annotations based on our observations. Source code was
typically annotated as box-and-arrow diagrams, similar to those identified by
Cherubini and colleagues in their own explanation experiment on how software de-
velopers draw diagrams for code on the whiteboard [CVDK07] (RQ0). With this
taxonomy, we then conducted a controlled lab study, recruiting 28 participants (23
male, 5 female) from another third-year Software Engineering course. Approach.
We created six paper-and-pencil mockups of explanatory visualizations from
error-related unit tests in the OpenJDK diagnostics frameworks7. An example of
such a visualization is shown in Figure 5. As a proof-of-concept, we intentionally

6 https://github.com/dotnet/roslyn/wiki/Roslyn%20Overview
7 The framework contains a sample source code listing for almost every compiler error

within Java. The source files may be downloaded at http://hg.openjdk.java.net/
jdk7/tl/langtools/, and then by browsing to test/tools/javac/diags/examples/

https://github.com/dotnet/roslyn/wiki/Roslyn%20Overview
http://hg.openjdk.java.net/jdk7/tl/langtools/
http://hg.openjdk.java.net/jdk7/tl/langtools/

How should static analysis tools explain anomalies to developers? 15

selected the mockups that we believed could benefit most from visual annotations.
We constructed 12 mockups in total: six for the control group (baseline visualiza-
tions) and six for the treatment group (explanatory visualizations). Participants
were randomly assigned to the baseline or explanatory group. We conducted
the experiment in two phases. In the first phase, for each group, we sequentially
provided participants with six error messages. We gave participants 30 seconds
to individually examine the paper mockup, and then instructed participants to
think-aloud and verbally explain, that is, self-explain, the cause of the error.
We encouraged participants to visually annotate the unadorned mockup during
their explanation. In the second phase, we used a recall-correctness experimental
design inspired by Shneiderman, which acts as proxy for measuring programming
comprehension (for details, see [Shn77]). In this experimental design, we asked
participants to write source code listings on a computer from scratch in order to
generate a provided compiler error; all six provided errors came from an error
that they had previously explained during the first phase of the experiment. Be-
tween the first and second phase of the experiments, participants were also given
Cognitive Dimensions of Notations questionnaire [GP96], which we simplified
and adapted for error messages. Analysis. For RQ1, we conducted an inter-rater
reliability exercise in which the first and second authors independently rated the
participants’ explanations, without consideration of group. For each of the 168
tasks, we assigned a 4-point Likert-style score using a rubric. For RQ2, we coded
the annotation types used for each task, partitioned into control and treatment
groups. For RQ3, we used the Cognitive Dimensions questionnaire to statistically
identify differences between the baseline visualizations and explanatory visualiza-
tions. For RQ4, we algorithmically analyzed the participant source code listings
and tagged them as correct or incorrect, based on whether the listing generated
the provided compiler error.

Results. The results of this study are published in VISSOFT 14 [BLCMH14].
For RQ1, we confirmed that participants gave significantly better explanations
in the treatment group (n1 = n2 = 84, Z = 2.23, p = .026). For RQ2, we found
that the treatment group used significantly more visual annotation types in their
explanations than the control group (n1 = n2 = 84, Z = 2.15, p = .032), which
indicates that participants adopted our explanatory visualizations into their
own explanations. Furthermore, participants in both groups used and applied
annotations found in our explanatory visualizations, despite the fact that we
did not expose the control group to our visualizations. This indicates that these
annotations are intuitive and useful for participants. For RQ3, we found that the
distribution of responses to our Cognitive Dimensions instrument were signifi-
cantly different for hidden dependencies (n1 = n2 = 14, Z = −2.64, p = .008).
Thus, explanatory visualizations reveal more of the hidden dependencies, that is,
the internal reasoning process of the compiler, than the baseline visualizations.
For RQ2, we were unable to replicate the findings of the recall-correctness task
from Shneiderman, which suggested that better comprehension would result in
better recall correctness [Shn77]. We speculate that our failure to replicate this

16 Titus Barik

@throws;java.util.NoSuchElementException;...

*/

public;E;next();{

;;;;last;=;iterator.next();

;;;;canRemove;=;true;

;;;;return;last.getKey();

}

/**

;*;Removes;the;last;returned;key...

(a)

@throws;java.util.NoSuchElementException;...

*/

public;E;next();{

;;;;last;=;iterator.next();

;;;;canRemove;=;true;

;;;;return;last.getKey();

}

/**

;*;Removes;the;last;returned;key...

(b)

@throws;java.util.NoSuchElementException;...

*/

public;E;next();{

;;;;last;=;iterator.next();

;;;;canRemove;=;true;

;;;;return;last.getKey();

;;;;last;=;iterator.next();

;;;;canRemove;=;true;

;;;;return;last.getKey();

}

/**

;*;Removes;the;last;returned;key...

(c)

Figure 6. A red circle indicates a fixation point, whose size is proportional to the
duration of the fixation. In this figure, the developer is attempting to comprehend a
notification about a duplicate method error. (a) Developer rapidly and unconsciously
changes their eye fixation, or saccades, between the onscreen method and the duplicate
method they expect to see below it. (b) Developer spends significant time on relevant
portion of the code. (c) Developer engages in a stable but suboptimal copy and paste
approach, bringing the method contents in closer proximity to examine the differences
between the two method more easily.

experiment was the result of think-aloud, because the action of performing a
think-aloud can artificially promote the self-explanation effect [CC05].

9.2 [Gazerbeams] What can eye gaze tell us about failures in
self-explanation during compiler error comprehension?
(In-Progress, Summer 2016)

Study rationale. Seo and colleagues conducted an empirical study at Google
to characterize the reasons for build errors that occur during the development
process [SSE+14]. I capitalize on this prior work for two reasons.

First, unlike prior investigations that focus on helping novices through teach-
ing environments [AB15,MFK11,HMRM03,NPM08], Seo and colleagues study
relatively expert developers using Eclipse. Alarmingly, the compiler errors that
experts frequently encounter are not all that different from the errors novices get,
although experts do make fewer trivial syntax errors [AB15,SSE+14]. Although
some learning does co-occur with self-explanation [FHdJ90], given this expert
population, approaches that attempt to address a lack of conceptual knowledge
on the part of the developer appear insufficient to moderate the self-explanation
effect [JPMHH15].

How should static analysis tools explain anomalies to developers? 17

Second, the authors rank the errors through a conventional probability-impact
risk function (R = PI), computed as the frequency (probability) multiplied by
the median resolution time (impact). This provides me with a target compiler
error distribution to investigate in my theoretical framework (Figure 2).

A limitation of the data-driven Google study is that although it pinpoints
problematic compiler errors for developers, the study methodology does not
provide explanatory power for understanding why these particular compile errors
are perplexing for developers. This study seeks to address this limitation, and
investigates how and why M(X,R) in modern IDEs (Figure 2) fail to support
developers.

Research questions. The study attempts to understand why some developers
are able to correctly resolve a defect (“successful developers”) while others are
not (“unsuccessful developers”).

RQ1 How does the sequence of information that developers use when understand-
ing a static analysis anomaly differ between successful and unsuccessful
developers?

RQ2 What features of the static error messages do developers actually use, and to
what extent?

RQ3 VanLehn and Jones [VJ93] found that the gap-filling explanations (“when
[students] seem not to discover their own ignorance”) accounted for most of
the self-explanation effect. Does gap-filling explain the difference between
successful and unsuccessful developers?

RQ4 Using validated eye tracking measures for cognitive processes, such as for
split-attention, cueing or signaling, cognitive load, confidence, and self-
explanation [AA13], which measures best explain the differences between
successful and unsuccessful developers?

Proposed methodology. Data collection. We collected data from 60 partic-
ipants from undergraduate and graduate Software Engineering courses at our
University. During the user study, the investigator calibrated an eye tracker which
recorded eye fixations during their session. Approach. Through ten randomly
assigned tasks, participants were asked to identify and make program modifi-
cations to remove a compiler anomaly within the Eclipse IDE. We selected the
compiler errors to cover the space of difficult errors as identified by Seo and
colleagues [SSE+14]. For the tasks, we manually injected these compiler errors
by permuting Apache Common collections library8. We injected compiler errors
into collections that were likely to be known to the participants, such as lists,
hash tables, and queues, in order to minimize the time needed to understand the
functionality of the code itself. Analysis. First, I will code the eye tracking data
into an event-sequence form that is suitable for subsequent analysis. To do so,
I will use a combination of manual and automated techniques. For example, I

8 http://commons.apache.org/proper/commons-collections/

http://commons.apache.org/proper/commons-collections/

18 Titus Barik

will use algorithms in OpenCV to identify the underlying region of the IDE that
the participant is fixating on at a given time. I will use manual inspection to
determine, for a given error, whether the participant successfully resolved the
error. To address RQ1, I will then conduct an analysis that interprets events as
a string-based sequence analysis problem, which will allow me to apply sequence
mining techniques to analyze the data. I will also perform a link analysis [Din95],
as commonly used in human factors research. For RQ2, I will use the sequence
data to identify which affordances developers use during comprehension. For
RQ3, I will identify the relevant program elements necessary to successfully solve
the problem, and determine whether or not unsuccessful participants see that
information. For RQ4, I will apply existing eye tracking algorithms for different
cognitive processes and determine the extent to which each process can explain
the underlying behavior of the participants.

9.3 [Stack Overflow] How do developers explain static analysis
anomalies to other developers through computer-mediated
communications? (Proposed, Summer 2016)

Study rationale. The purpose of this experiment is to provide support for the
Human Oracle (2b) in my theoretical framework (Figure 2). I propose that Stack
Overflow provides a suitable approximation of an ideal explanation, ESI .

For example, consider a typical communication exchange in Figure 7. A user
asks a question about an ambiguous method compiler anomaly (Figure 7a). The
user asks the question using terms such as “trying to understand” and “getting
an error”, which are indicative of a question requiring an explanation. The
question has also been tagged with java and method-overloading and contains
the quoted compiler error (The method sum(int, long) is ambiguous for type
Overloading OverRiding).

The answer in Figure 7b is a good explanation. Perhaps this is because the
answer is given in the context of the original code, that is, sum(int i, long j),
and because it enumerates the space of possible ambiguities and describes why
each interpretation is ambiguous. The explanation also concludes by giving a
generalization of the specific-instance of the problem: “the compiler always needs
exactly one valid option.”

In contrast, the answer in Figure 7c is a poor explanation. Perhaps this is
because it refers to a program element (5), but the reader is unable to determine
which 5 from the question it is referring to. It may also be a poor explanation
because it simply restates, rather than clarifies, the error description of the
original question (“For this reason, method call is ambiguous”).

In addition to the illustrated example, prior work supports the position that
Stack Overflow contains pertinent and high-quality explanations of static analysis
anomalies. For example, Parnin and colleagues found that developers may be
getting as much as half of their documentation from Stack Overflow, and that
developers continuously reference Stack Overflow questions during development

How should static analysis tools explain anomalies to developers? 19

(a) Question submitted by user about an ambiguous method compiler
error.

(b) Highest rated answer, from user with 1080 reputation, and further
clarified by user with 10.4k reputation.

(c) Lowest rated answer, from user with 26 reputation.

Figure 7. A Stack Overflow communication exchange for a question about an ambiguous
method compiler error, and two selected answers.

20 Titus Barik

via search.9 One of the reasons they may do so, as identified by Mamykina and
colleagues, is that the site provides high-quality answers as a result of its carefully-
crafted reputation system [MMM+11]. Finally, Nasehi and colleagues identified
debugging and corrective question types as one of the main concerns of posters, and
found that explanations accompanying source code example were an important
characteristic of high-quality Stack Overflow answers [NSMB12]. Together, these
findings give us confidence that Stack Overflow contains high-quality explanations
for static analysis anomalies that approximate ESI .

Research questions.

RQ1 What questions do developers ask when they want to understand a static
analysis error?

RQ2 What plausible self-explanations have they already generated when they
frame their question to other developers (that is, when in the explanation
process did they get “stuck”)?

RQ3 What features of a response make for a good explanation?
RQ4 What features of a response make for a poor explanation?

Proposed methodology. Data collection. I use a labeled data set from Stack
Overflow, where the ranking of the response, as well as the reputation of the
user who posted the response, is used as a proxy to identify high-quality and
low-quality responses. To find questions in Stack Overflow, I will use existing
tags (compiler-errors), the text of the error message (“ambiguous method”),
and common phases (“can someone explain”). Approach. I will use a qualitative
attribute coding scheme that categorizes the features present in both styles of
questions and answers [Sal09]. Analysis. For RQ1, I will catalog the types of
questions that developers ask within their posts to StackOverflow. For RQ2, I
will qualitatively classify the types of self-explanations developers generate before
getting stuck. For RQ3 and RQ4, I will a identify a set of features. For example,
one feature may be whether or not the answer refers to any source code in the
original question as part of its explanation. Given the ratings of each question
and answer, I will then construct a multiple linear regression model that weights
the importance of these features to identify the important features in responses
to questions.

9.4 [Rust] How do compiler authors design and instrument static
analysis messages in their tools? (Out of Scope)

Study rationale. It’s easy to criticize the state of static analysis error messages.
Certainly, the research community today isn’t plagued by a dearth of complaints
about perplexing messages [Tra10,JSMHB13]. But such criticism puts the lens
on the end-user and the tool itself, while marginalizing the actual developers

9 http://blog.ninlabs.com/2013/03/api-documentation/

http://blog.ninlabs.com/2013/03/api-documentation/

How should static analysis tools explain anomalies to developers? 21

(a) Rust community member improves error message about close delimiter.

(b) Rust community member checks in code to improve error message on module resolve
failure.

Figure 8. The Rust community is actively working on improving error messages gener-
ated by the rustc compiler. Such a community is ideal for action research.

who build them. These static analysis authors have spent significant time and
energy, commercially or in open source communities, to make such tools available.
Surprisingly, Traver has observed that “there seems to not be any formal study on
why commercial compilers have neglected the area of diagnostics” and speculates
that “higher priority has been paid to other product features such as compilation
speed or the speed or the resulting executable program” [Tra10].

22 Titus Barik

Traver’s speculation sounds plausible, but it’s a “just-so story.” I propose
to conduct an empirical study to learn how static analysis authors: a) decide
when to indicate an anomaly, b) consider how to present the anomaly to the
end-user, c) invest or allocate effort in implementing the anomaly detection, and
collaborate with other authors during this process throughout the static analysis
tool development lifecycle.

Understanding static analysis errors from the perspective of the static analysis
author will illuminate the static analysis internals (1a-1d), as well as the message
explanation (2a) in my theoretical framework (Figure 2).

Research questions.

RQ1 At what points in the software development lifecycle do static analysis authors
work with static analysis anomalies?

RQ2 How do static analysis authors make decisions about which anomalies to
implement?

RQ3 How do static analysis authors evaluate their error messages?
RQ4 What types of discussions happen around error messages?
RQ5 What are the challenges that static analysis authors identify that hinder the

generation of good error messages?

Proposed methodology. Data collection. Semi-structured interviews with
static analysis authors as identified by version history commits and commu-
nications (RQ 3.2, RQ 3.3, RQ 3.5), and qualitative analysis of mailing lists,
version control issues, and IRC logs to form a grounded theory (RQ 3.1, RQ 3.4).
Investigator will interact with the community through these channels. Approach.
In contrast with purely observational research methods, I propose to apply a
method of practical action research [RH08] in which the principal investigator
engages in the community of practice to influence, improve, and implement
the recommendations. The Rust community is one possible avenue. First, the
team is open source, which means that contributions to the project are available
to the community-at-large. Second, the community has an open development
process, with extensive communications through mailing lists and IRC channels.
Third, and most importantly, Rust is currently in the process of establishing user
guidelines for error messages.10 Thus, the community is likely to be receptive to
academics interested in the comprehension of static analysis anomalies. Analysis.
Empirical methods, such as descriptive and axial coding, for a qualitative case
study on Rust, with a focus on static analysis anomalies.

9.5 [Radiance] Can instrumenting our findings as a practical tool
improve developer static analysis error comprehension? (Out of
Scope)

Study rationale. In this experiment, I propose to conduct an integrative tool
evaluation of Radiance, whose details are described in Section 6. This tool

10 https://internals.rust-lang.org/t/pre-rfc-rustc-ux-guidelines/2419

https://internals.rust-lang.org/t/pre-rfc-rustc-ux-guidelines/2419

How should static analysis tools explain anomalies to developers? 23

evaluation serves as capstone for my theoretical framework and applies my
theoretical results to a practical tool. Strictly speaking, this study is unnecessary
for purposes of a successful dissertation, as the other proposed studies provide
adequate coverage and evidence for the theoretical framework. However, the
implementation of a practical tool is career aspirational: like Parnas, I believe
that the output of successful software engineering research should have relevance
to industry [Par98,LNZ15]. Moreover, having such a tool provides me with greater
career flexibility in the future.

Research questions.

RQ1 How do developers assess the tool under traditional HCI measures, such as
effectiveness and efficiency, when compared with my prior Eclipse experiment
(Section 9.2)?

RQ2 Do developers adopt different strategies with Radiance than with Eclipse?
RQ3 Replicating the eye tracking research questions from the Eclipse study, in

what ways do they differ?
RQ4 What do developers say about why Radiance helps them perform their task?
RQ5 In what ways to developers feel that Radiance could be improved?

Proposed methodology. Data collection. I will recruit a mix of novices and
developers from industry to obtain participants with a spectrum of experience.
Participants will conduct tasks identical to the setup in Eclipse (Section 9.2),
except with the Radiance extension. Approach. The approach is replication of the
Eclipse experimental study design. As an addition to the original experimental
design, I will conduct a follow-up participatory design exercise with the partici-
pants to to collect opinions and judgments about the Radiance tool [WM91]. The
evaluation will consist of a short, cooperative, verbal evaluation of the interface.
The purposes of this qualitative instruments is to understand how developers
perceive the self-explanation design principles as used in the tool, against their
own experiences with IDEs. Analysis. Data are analyzed using the same tech-
niques as in the Eclipse study (Section 9.2). In addition, a qualitative report of
Radiance will be provided using the findings from the heuristic evaluation and
semi-structured interviews.

10 Broader Impact and Generalization

I expect my work to generalize in a variety of ways. First, in generating a theory
of explanation, I hope that the discovered principles of explanation through
computer-mediated communications can be applied to other static analysis
domains. For example, if developers find that being able to identify relationships
is important to resolving bug defects, it is plausible that similar tool affordances
will help developers when they are attempting to understand explanations about,
say, compiler optimizations [vDD11]. Second, if the principles are cognitively
justified, then these principles should also generalized across languages. For

24 Titus Barik

example, if having example suggested fixes is beneficial to the developer for self-
explanation, that should be true whether the language is a functional, imperative,
or something else.

11 Related Work

In this section, I report on existing theories and evidence for self-explanation
that justify applying self-explanation principles towards the improvement of
static analysis anomalies. In order to focus potential tool improvement efforts, I
then characterize the state space of error messages that developers encounter in
practice. Next, I examine techniques in the programming languages community
that I can leverage in explanations for static analysis tools. Finally, I describe
prior tools and systems for software engineering tasks that embody the “spirit”
of self-explanation to establish how incorporating self-explanation principles into
tools benefit developers.

11.1 Theory of self-explanation

Chi and colleagues, in their seminal work, coined the term self-explanation, or
self-generated explanations, that “good” and “poor” students produced through
think-aloud while studying worked-out examples of mechanics problems [CBL+89].
The authors hypothesized that students learn and understand an example via
the explanations they give while studying it, and found that “good” students
generate significantly more explanations than “poor” students. Their results
demonstrate that self-explanation is an essential cognitive processes through
which one identifies the conditions and consequences of actions, forms relationships
between actions to goals, and forms relationships of goals and actions to principles.
Essentially, self-explanation theory provides the “cognitive bridge” through which
humans translate declarative facts to understanding.

Since the original finding, self-explanation has been replicated in a vari-
ety of domains [Ale02,CE07,RN08,WG05], including computer programming
tasks [VJ93,BPB95]; the cognitive process of self-explanation appears to be not
only essential, but ubiquitous [AA13]. Thus, if developers find error messages
to be perplexing and difficult to understand, it is plausible that tools do not
adequately support the self-explanation processes developers use to diagnose
static analysis anomalies.

Subsequent work by Chi and colleagues have found that self-explanation
can be elicited through explicit prompts [CDCL94], whether by humans or by
computers [Ale02]. Furthermore, Ainsworth and Th Loizou [AT03] found that
self-explanation effects are significantly enhanced when diagrams are used over
text-alone because of: a) computational offloading, or reducing the amount of
effort needed to solve the problem, b) re-representation, through alternative
external representations that utilize perceptual processes rather than cognitive
operations, and c) graphical constraining, which limits the range of inferences that

How should static analysis tools explain anomalies to developers? 25

can be made about the represented concept.11 Both of these findings suggest that
tools can effectively support self-explanation of static analysis anomalies through
a combination of self-explanation prompts and diagrammatic representations.

11.2 Error message distributions

A single programming language implementation, such as Java or C#, contains
several thousand possible static analysis anomalies. Given finite resources, it’s
therefore prudent to characterize the space of error messages that developers
actually receive in order to effectively target tool improvements.

To understand this space, Seo and colleagues conducted an empirical case
study at Google of 26.6 million builds produced over nine months by thousands of
developers [SSE+14]. The authors found that nearly 30% of builds at Google fail
due to a static analysis error, and that the median resolution time for each error
is 12 minutes [SSE+14]. Surprisingly, the costly errors that developers make are
rather mundane, relating to basic issues such as dependencies, type mismatches,
syntax, and semantic errors.

For novice developers, that is, students using Java in the BlueJ IDE12, the
situation is even worse — through telemetry of over 37 million compilation events,
Altdmri and Brown identified that nearly 48% of all compilations fail [AB15].
Similar to the errors made by experts made by developers at Google, novices
also had primarily syntax errors, type errors, and other semantics errors. For
some reason, it appears that experience alone isn’t making these errors go away.

Using a Python corpus of 1.6 million code submissions, of which 640,000
resulted in an error (approximately 40%), and re-examining the BlueJ dataset,
Pritchard model-fit the distribution of these error messages and found that they
empirically resemble a Zipf-Mandelbrot distribution [Pri15]. Such power law
distributions have a small set of values that dominate the distribution, followed
by a long tail that rapidly diminishes. Although Seo and colleagues did not
model-fit the distributions (their paper, Figure 7), a visual inspection of Java
suggests that a similar power-law effect is present [SSE+14].

The triangulation of these multiple data sources indicates several consistent
features about anomalies across programming languages. First, the dominant
errors, both in terms of cost and frequency, are relatively consistent irrespective
of developer experience. This is interesting in that a single error explanation
representation is likely to benefit a spectrum of developer experiences. Second,
the power-law distribution suggests that addressing even a small number of

11 Graphical constraining merits some further discussion, as it seems counterintuitive.
How can the lack of expressiveness make a diagram more effective? As argued by
Stenning and Oberlander [SO95], “text permits the expression of ambiguity in the
way that graphics cannot easily accommodate.” Concretely, consider the Java error
message, name clash: m(Param<Integer>) in B and m(Param<String) in A have the
same erasure, yet neither hides the other. In a diagrammatic representation,
the notation would necessitate explicitly pointing to the program elements. In this
sentential representation, terms like “neither” and “other” introduce ambiguity.

12 http://bluej.org/

http://bluej.org/

26 Titus Barik

dominant errors could substantially benefit developer experiences with static
analysis anomalies. Third and finally, the categories of errors messages are rather
mundane: as a tool implementation, this means that improvements to such errors
(for example, displaying all relevant program elements) can be feasibly tackled
using conventional AST parsing and analysis techniques.

11.3 Programming languages techniques for explanation

Static analysis tools comprise an extensive set of analysis techniques, ranging
from hand-crafted, informal methods such as bug patterns, as found in lint-
style tools (for example, FindBugs [HP04]), to formal method approaches which
provide stricter guarantees such as abstract interpretation (for example, Frama-
C [CKK+12] and Jakstab [KV08]), model checking (for example, SLAM [BR01]),
and program querying (for example, PQL [MLL05] and NDepend13).

Researchers have been particularly interested in a class of abstract inter-
pretation, type inference, and applying those techniques to modern dynamic
languages [FAFH09,AGD05] to detect anomalies before runtime. Moreover, type
errors are an area in which researches have focused on improving and simplifying
their explanations. For example, Lerner and colleagues propose a system where
the type-checker itself does not produce the error message; instead, the system
searches for similar program that do type-check [LFGC07]. Boustani and Hage,
for generics errors in Java, commented that standard Java compilers do not
“explain why generic method invocations fails to type check;” their approach
proposed a fix-oriented, heuristic technique to add suggestion how the defect
might be resolved [EH10].

To support these techniques, my work applies an empirical HCI lens to these
existing techniques, to understand why or why not certain types of explanations
benefit developers.

11.4 Self-explanation systems

Lim and colleagues conducted a study in which participants were shown an
intelligent system’s operation along with various automatically generated expla-
nations [LDA09]. The authors found that explanations describing why the system
behaved a certain way resulted in better understanding and stronger feelings of
trust. Lim argued that most of these types of systems employ complex rules or
models, and that lack of intelligibility can lead users to “mistrust the system,
misuse it, or abandon it altogether [LDA09].” Even when the developer already
understands the static analysis anomaly, having a second opinion can give the
developer confidence that their own self-generated explanation is a plausible one.
And when there is a mismatch between the developer’s expectation and the static
analysis explanation, the developer can more readily identify if it is the tool or
themselves that is at fault.

13 http://www.ndepend.com/

http://www.ndepend.com/

How should static analysis tools explain anomalies to developers? 27

Kulesza and colleagues also investigated explanations for intelligent systems,
focusing on how properties of soundness and completeness affect the final fidelity of
an end users’ mental models [KSB+13]. Their findings suggest that completeness
is more useful than soundness. This result is useful in that most static analysis
anomalies are computationally undecidable14, and therefore tools must make
heuristic guesses about a particular anomaly [MS15]. For an incorrect anomaly,
a developer is likely to make a more accurate judgment about the anomaly when
accompanied with an explanation.

The Whyline system is a prototype interrogative debugging interface in
which developers can ask the system “Why” or “Why not” questions about
runtime events [KM04]. Ko and Myers found that 50% of all logic errors in
the Alice programming language were due to a developers’ false assumptions
in the hypotheses they formed while debugging existing errors. In terms of self-
explanation, we can say that developers failed to generate plausible explanations
for a given runtime anomaly.

Theseus is an IDE extension that visualizes runtime behavior within a
JavaScript code editor [LBM14]. Theseus “proactively addresses misconceptions
by drawing attention to similarities and differences between the programmer’s
idea of what code does and what it actually does” [LBM14]. In terms of my the-
oretical framework, we would say that Theseus challenges developers to reconcile
their own self-generated explanations for a particular problem against explicit,
potentially conflicting evidence generated by the tool. Results indicated that
users quickly adopted these visualizations and incorporated the information in
their own self-explanations.

The developers of DrRacket, an IDE for novice developers, have invested
considerable effort into the design of error messages [MFK11]. Their investiga-
tions found that students commonly interpreted the semantics of a highlight
to mean “edit here”, despite the fact that the authors identified five possible
semantic interpretations of the highlight visualization depending on context.
They concluded that students needed to understand or infer the internal parsing
strategy of the compiler to successfully comprehend the error. Among several
findings, their work identified that, for students, resolutions for error messages
should be distinct from explanations of errors messages, and that IDEs should
help students match message terms to code fragments. For interactive static
debugging, Flanagan and colleagues developed a system called MrSpidey that
augments DrRacket (formerly DrScheme) with visual highlighting and on-demand
arrows to explain the flow of values [FFK+96]. Their results suggest that the
visual affordances provide easier access to the results of the analysis than the
text interface. These findings are also congruent with those of self-explanation,
and further imply that compilers can and should expose their internal reasoning
processes to the developer.

14 “Rice’s theorem is a general result from 1953 that informally can be paraphrased as
stating that all interesting questions about the behavior of programs are undecid-
able” [MS15]. Bummer.

28 Titus Barik

Table 2. Framework Constraints

Criteria In-Scope Out-of-Scope

Communication model Linear (1-way) Transactional (2-way)

Independent invocations Use only current
snapshot to generate
explanations

Use prior compilation history to
generate explanations

Closed-world reasoning Use information
derivable from
project source code

Add external knowledge sources, such
as code search

Explanation soundness Assume that
explanations are
sound

Assess utility of incorrect explanations

Co-intervention bias Self-explanation
improvements occur
alongside other
cognitive processes

Isolates improvements in
self-explanation processes and other
cognitive processes through
meta-analysis of multiple tool designs

Murphy-Hill and Black, describe a set of graphical annotations, called refactor-
ing annotations, which are overlaid directly on source code text as an alternative
to textual, refactoring-related error messages [MHB12]. Their experiments show
that developers can use refactoring annotations to quickly and accurately un-
derstand the cause of refactoring errors. Though Murphy-Hill and Black do
not situate their tool as a self-explanation tool, understanding the cause of
an error is, by definition, a self-explanation process. My own work in visual-
izing error messages further support Murphy-Hill and Black and demonstrate
that annotations directly on source code are an effective technique to support
self-explanation [BLCMH14].

HelpMeOut is a social recommender system instrumented within the IDE
to helps novice programmers understand compiler errors and exception mes-
sages [HMBK10]. The system provides suggestions to novice developers using
a database of examples that their peers have applied in the past. Rather than
using compiler documentation for explanation, a community of expert users au-
thor specific explanations for frequently requested fixes. This approach suggests
that understanding how humans explain errors to other humans is an appropri-
ate avenue for investigating how static analysis tools should explain errors to
developers.

12 Scope of Work

In this section, I explore the theoretical framework described in Section 7 as
a map that scopes and makes explicit the constraints that guide the research
process. I summarize these constraints in Table 2, and provide an avenue for

How should static analysis tools explain anomalies to developers? 29

how future research might address these constraints (the label in parentheses
indicates the constraint location in the theoretical framework):

Communication model (2a). The framework assumes a linear communica-
tion model. In this model, the IDE is a sender that encodes information into
a computer-mediated message to the developer. The developer is then the
receiver who decodes the message, perhaps through a noisy channel [AR05].
In this proposal, I am interested in psychological noise, that is, forces that
interfere with the ability of the developer to successfully self-explanation
an anomaly. Unlike transaction communication models, a limitation of this
model is that the communication flows one-way: from the IDE to the devel-
oper. Because the current framework does not support feedback from the
developer, this bounds our ability to approximate ESI to communications
that resemble a linear model, such as answers to questions on Stack Overflow.
In other words, the explanations in a linear communication model are like
lectures, but future work will investigate how to make explanations more like
conversations.

Independent invocations (1b). As a simplification to the theory, the frame-
work treats each static analysis invocation as an independent event. It does
not use prior invocations of the static analysis tool in constructing M(X,R),
and limits the exposed reasoning in R|X. Using prior history is likely to
increase the quality of explanations.

Closed-world reasoning (1d). With the closed-world assumption, explana-
tions are only generated for anomalies that can be explained using only the
source code. For example, an anomaly that occurs because of file access
restrictions to a library would fall outside the scope of this proposal. External
libraries are still within the scope of this proposal, as long as source code for
those libraries are available within the project.

Explanation soundness (1c). I assume that static analysis tools detect anoma-
lies with perfect precision, but imperfect recall. Put another way, if the tool
detects an anomaly, that anomaly will always be a true positive. However,
Kulesza and colleagues demonstrate that when systems provide explanations
for their recommendations, completeness is more important than sound-
ness [KSB+13]. Therefore, explanations may be useful for developers even
when the detected anomaly is a false positive, because the explanation can
give the developer a more accurate belief about the trustworthiness of the
explanation [LDA09].

Co-intervention bias (3b). Human intelligence occurs through an interplay of
simultaneous and complex cognitive processes, such as perception, attention,
decision making, and comprehension. For example, if we designed a tool that
used diagrams intended to improve comprehension, it could be the case that
the diagram is primarily beneficial because it instead makes relevant program
elements easier to identify, aiding visual perception. Although my experiments
are guided by existing theories of self-explanation, I do not attempt to isolate
the self-explanation process from other cognitive mechanisms. Rather, I

30 Titus Barik

Prior Fall 14 Spring 15 Summer 15 Fall 15 Spring 16 Summer 16 Fall 16 Spring 17

- 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5

Diagrams

Publication: NIER 14

Publication: VISSOFT 14

Gazerbeams

Design and IRB

Data Collection

Analysis

Drafting

Publication: ICSE 17 (8/26)

Stack Overflow

Design and IRB

Data Collection

Analysis

Drafting

Publication: CHI 2017 (9/18)

Systematic Literature Review

Drafting

Publication: TSE

Dissertation

Drafting

Publication: Thesis (est. 3/1)

Defense

Figure 9. Proposed project plan with publication milestones.

assume implicitly that the self-explanation processes are accompanied with
and facilitated by other cognitive processes.

13 Project Plan

Figure 9 is a Gantt chart that lists the projects and their associated tasks for
each semester, partitioned by month. Each project is indicated with a bold label,
with an aggregate chart grouping to indicate the estimated overall time of the
project. Each project is further divided into high-level tasks, with horizontal
bars indicating the estimated duration of the task. Arrows indicate required
finish-to-start dependencies between tasks. For example, the Gazerbeams project
requires that the Design and IRB be completed and approved before conducting
data collection because the experiment involves human subjects.

The deliverable for each project is a publication, indicated on the chart as a
diamond-shaped milestone. The Diagrams project is considered to be complete.
Thus, only the deliverables for this project are shown in the chart. The dissertation
is listed as its own project, with the majority of the drafting to be done in Spring
2017.

How should static analysis tools explain anomalies to developers? 31

14 Project Risks and Mitigation

Schedule slips. Particularly in the Spring 2016 and Summer 2016 semesters,
projects are back-to-back and must be completed under a compressed schedule.
In the Summer of 2016, two projects must be completed essentially in parallel.
The mitigation strategy for this slippage is to add an additional semester to the
project plan beyond Spring 2017.

Paper rejections. It is also possible that the results of the experiments are
insufficient for a top-tier publication venue, that such a venue is missed due to
schedule slips, and that the papers are rejected for any number of other opaque
reasons. To mitigate this risk, I propose secondary venues for paper submissions.
For ICSE and FSE, these venues are ICPC, ICSME, and VL/HCC. For CSCW,
alternative venues are SPLASH and ICSE Software Engineering in Practice
(SEIP).

15 Addendum: Thesis Contract

To address the committee feedback from the thesis proposal presentation, I will
provide the committee with the following revised deliverables upon completion
of the dissertation:

� Dissertation chapter on Diagrams study.
� Dissertation chapter on Gazerbeams study.
� Dissertation chapter on Stack Overflow study.
� Dissertation chapter containing a comprehensive, systematic literature review

on program analysis tool user interfaces.

These revised deliverables supersede any commitments made prior to committee
deliberations.

References

AA13. Roger Azevedo and Vincent Aleven, editors. International Handbook of
Metacognition and Learning Technologies, volume 28 of Springer Inter-
national Handbooks of Education. Springer New York, New York, NY,
2013.

AB15. Amjad Altadmri and Neil C.C. Brown. 37 Million Compilations: Inves-
tigating Novice Programming Mistakes in Large-Scale Student Data. In
Proceedings of the 46th ACM Technical Symposium on Computer Science
Education - SIGCSE ’15, pages 522–527, New York, New York, USA,
February 2015. ACM Press.

AGD05. Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. To-
wards type inference for javascript. In ECOOP 2005-Object-Oriented
Programming, pages 428–452. Springer, 2005.

32 Titus Barik

Ale02. V Aleven. An effective metacognitive strategy: learning by doing and
explaining with a computer-based Cognitive Tutor. Cognitive Science,
26(2):147–179, April 2002.

APM+07. Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and
YuQian Zhou. Evaluating static analysis defect warnings on production
software. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering - PASTE ’07, pages
1–8, New York, New York, USA, June 2007. ACM Press.

AR05. Ronald B. Adler and George Rodman. Understanding Human Communi-
cation. Oxford University Press, 9th edition, 2005.

AT03. Shaaron Ainsworth and Andrea Th Loizou. The effects of self-explaining
when learning with text or diagrams. Cognitive Science, 27(4):669–681,
August 2003.

BLCMH14. Titus Barik, Kevin Lubick, Samuel Christie, and Emerson Murphy-Hill.
How developers visualize compiler messages: A foundational approach to
notification construction. In 2014 Second IEEE Working Conference on
Software Visualization, pages 87–96, September 2014.

BLMH15. Titus Barik, Kevin Lubick, and Emerson Murphy-Hill. Commit bubbles.
pages 631–634, May 2015.

BPB95. Katerine Bielaczyc, Peter L Pirolli, and Ann L Brown. Training in Self-
Explanation and Self-Regulation Strategies: Investigating the Effects of
Knowledge Acquisition Activities on Problem Solving. Cognition and
Instruction, 13(2):221–252, January 1995.

BR01. Thomas Ball and Sriram K Rajamani. The slam toolkit. In Computer
aided verification, pages 260–264. Springer, 2001.

Bro83. P. J. Brown. Error messages: the neglected area of the man/machine
interface. Communications of the ACM, 26(4):246–249, April 1983.

BWJMH14. Titus Barik, Jim Witschey, Brittany Johnson, and Emerson Murphy-Hill.
Compiler error notifications revisited: an interaction-first approach for
helping developers more effectively comprehend and resolve error notifica-
tions. In Companion Proceedings of the 36th International Conference on
Software Engineering - ICSE Companion 2014, pages 536–539, May 2014.

BZR+10. Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola. Code bubbles: A Working Set-based Interface
for Code Understanding and Maintenance. In Proceedings of the 28th
international conference on Human factors in computing systems - CHI
’10, pages 2503–2512, New York, New York, USA, April 2010. ACM Press.

CBL+89. Michelene T.H. Chi, Miriam Bassok, Matthew W. Lewis, Peter Reimann,
and Robert Glaser. Self-Explanations: How Students Study and Use
Examples in Learning to Solve Problems. Cognitive Science, 13(2):145–
182, April 1989.

CC05. L. Cooke and E. Cuddihy. Using eye tracking to address limitations in think-
aloud protocol. In IPCC 2005. Proceedings. International Professional
Communication Conference, 2005., pages 653–658. IEEE, 2005.

CDCL94. Michelene T.H. Chi, Nicholas De Leeuw, Mei-Hung Chiu, and Christian
Lavancher. Eliciting self-explanations improves understanding. Cognitive
Science, 18(3):439–477, July 1994.

CE07. Kent J. Crippen and Boyd L. Earl. The impact of web-based worked
examples and self-explanation on performance, problem solving, and self-
efficacy. Computers & Education, 49(3):809–821, November 2007.

How should static analysis tools explain anomalies to developers? 33

CKK+12. Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. Frama-c. In Software Engineering and
Formal Methods, pages 233–247. Springer, 2012.

CKM06. Michael J. Coblenz, Andrew J. Ko, and Brad A. Myers. JASPER: An
Eclipse plug-in to facilitate software maintenance tasks. In Proceedings of
the 2006 OOPSLA workshop on eclipse technology eXchange - eclipse ’06,
pages 65–69, New York, New York, USA, October 2006. ACM Press.

CVDK07. Mauro Cherubini, Gina Venolia, Rob DeLine, and Andrew J. Ko. Let’s go
to the whiteboard. In Proceedings of the SIGCHI conference on Human
factors in computing systems - CHI ’07, page 557, New York, New York,
USA, April 2007. ACM Press.

Din95. Thomas A Dingus. A Meta-Analysis of Driver Eye-Scanning Behavior
While Navigating. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 39(17):1127–1131, October 1995.

DR10. Robert DeLine and Kael Rowan. Code canvas: zooming towards better
development environments. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering - ICSE ’10, volume 2, pages
207–210, New York, New York, USA, May 2010. ACM Press.

EH10. Nabil El Boustani and Jurriaan Hage. Corrective hints for type incorrect
generic Java programs. In Proceedings of the ACM SIGPLAN 2010
workshop on Partial evaluation and program manipulation - PEPM ’10,
page 5, New York, New York, USA, January 2010. ACM Press.

FAFH09. Michael Furr, Jong-hoon David An, Jeffrey S Foster, and Michael Hicks.
Static type inference for ruby. In Proceedings of the 2009 ACM symposium
on Applied Computing, pages 1859–1866. ACM, 2009.

FFK+96. Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie
Weirich, and Matthias Felleisen. Catching bugs in the web of program
invariants. In Proceedings of the ACM SIGPLAN 1996 conference on
Programming language design and implementation - PLDI ’96, volume 31,
pages 23–32, New York, New York, USA, May 1996. ACM Press.

FHdJ90. Monica G.M. Ferguson-Hessler and Ton de Jong. Studying Physics Texts:
Differences in Study Processes Between Good and Poor Performers. Cog-
nition and Instruction, 7(1):41–54, March 1990.

GP96. T.R.G. Green and M. Petre. Usability Analysis of Visual Programming
Environments: A Cognitive Dimensions Framework. Journal of Visual
Languages & Computing, 7(2):131–174, 1996.

HF14. Austin Z. Henley and Scott D. Fleming. The patchworks code editor. In
Proceedings of the 32nd annual ACM conference on Human factors in
computing systems - CHI ’14, pages 2511–2520, New York, New York,
USA, April 2014. ACM Press.

HMBK10. Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer.
What would other programmers do. In Proceedings of the 28th International
Conference on Human Factors in Computing Systems - CHI ’10, pages
1019–1028, New York, New York, USA, April 2010. ACM Press.

HMRM03. Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. Iden-
tifying and correcting Java programming errors for introductory computer
science students. ACM SIGCSE Bulletin, 35(1):153, January 2003.

HP04. David Hovemeyer and William Pugh. Finding bugs is easy. ACM SIG-
PLAN Notices, 39(12):92, December 2004.

34 Titus Barik

JPMHH15. Brittany Johnson, Rahul Pandita, Emerson Murphy-Hill, and Sarah Heck-
man. Bespoke tools: adapted to the concepts developers know. In Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering
- ESEC/FSE 2015, pages 878–881, New York, New York, USA, August
2015. ACM Press.

JSMHB13. Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bow-
didge. Why don’t software developers use static analysis tools to find
bugs? In 2013 35th International Conference on Software Engineering
(ICSE), pages 672–681. IEEE, May 2013.

KK03. Sarah K. Kummerfeld and Judy Kay. The neglected battle fields of syntax
errors. pages 105–111, January 2003.

KL87. Alex Kass and David Leake. Types of explanations. Technical report,
DTIC Document, 1987.

KM04. Andrew J. Ko and Brad A. Myers. Designing the whyline. In Proceedings
of the 2004 conference on Human factors in computing systems - CHI ’04,
pages 151–158, New York, New York, USA, April 2004. ACM Press.

KSB+13. Todd Kulesza, Simone Stumpf, Margaret Burnett, Sherry Yang, Irwin
Kwan, and Weng-Keen Wong. Too much, too little, or just right? Ways
explanations impact end users’ mental models. In 2013 IEEE Symposium
on Visual Languages and Human Centric Computing, pages 3–10. IEEE,
September 2013.

KV08. Johannes Kinder and Helmut Veith. Jakstab: A static analysis platform
for binaries. In Computer Aided Verification, pages 423–427. Springer,
2008.

LBM14. Tom Lieber, Joel R. Brandt, and Rob C. Miller. Addressing misconceptions
about code with always-on programming visualizations. In CHI ’14, pages
2481–2490, April 2014.

LDA09. Brian Y. Lim, Anind K. Dey, and Daniel Avrahami. Why and why not
explanations improve the intelligibility of context-aware intelligent systems.
In Proceedings of the 27th international conference on Human factors in
computing systems - CHI 09, pages 2119–2129, New York, New York, USA,
April 2009. ACM Press.

Leg14. Cristine H. Legare. The Contributions of Explanation and Exploration to
Children’s Scientific Reasoning. Child Development Perspectives, 8(2):101–
106, June 2014.

LFGC07. Benjamin S Lerner, Matthew Flower, Dan Grossman, and Craig Chambers.
Searching for type-error messages. In ACM SIGPLAN Notices, volume 42,
pages 425–434. ACM, 2007.

LNZ15. David Lo, Nachiappan Nagappan, and Thomas Zimmermann. How practi-
tioners perceive the relevance of software engineering research. In Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering
- ESEC/FSE 2015, pages 415–425, New York, New York, USA, August
2015. ACM Press.

LS87. Jill Larkin and Herbert Simon. Why a Diagram is (Sometimes) Worth
Ten Thousand Words. Cognitive Science, 11(1):65–100, January 1987.

MFK11. Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. Mind your
language: On novices’ interactions with error messages. In Proceedings
of the 10th SIGPLAN Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software - ONWARD ’11, pages 3–17,
New York, New York, USA, October 2011. ACM Press.

How should static analysis tools explain anomalies to developers? 35

MHB12. E Murphy-Hill and A P Black. Programmer-Friendly Refactoring Errors.
Software Engineering, IEEE Transactions on, 38(6):1417–1431, 2012.

MLL05. Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding appli-
cation errors and security flaws using PQL. ACM SIGPLAN Notices,
40(10):365, October 2005.

MMM+11. Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and
Björn Hartmann. Design lessons from the fastest Q&A site in the west. In
Proceedings of the 2011 annual conference on Human factors in computing
systems - CHI ’11, page 2857, New York, New York, USA, May 2011.
ACM Press.

MS15. Anders Møller and Michael I. Schwartzbach. Lecture Notes on Static
Program Analysis. 2015.

NM90. Hwee Tou Ng and Raymond J Mooney. On the Role of Coherence in
Abductive Explanation. Proceedings of the Eight National Conference on
Artificial Intelligence (AAAI-90), pages 337–342, 1990.

NPM08. Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. Com-
piler error messages: What can help novices? In ACM SIGCSE Bulletin,
pages 168–172. ACM, February 2008.

NSMB12. Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns.
What makes a good code example?: A study of programming Q&A in
StackOverflow. In 2012 28th IEEE International Conference on Software
Maintenance (ICSM), pages 25–34. IEEE, September 2012.

Par98. David Lorge Parnas. Successful software engineering research. ACM
SIGSOFT Software Engineering Notes, 23(3):64–68, May 1998.

Pri15. David Pritchard. Frequency distribution of error messages. In Proceed-
ings of the 6th Workshop on Evaluation and Usability of Programming
Languages and Tools - PLATEAU 2015, pages 1–8, New York, New York,
USA, October 2015. ACM Press.

RH08. Per Runeson and Martin Höst. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineer-
ing, 14(2):131–164, December 2008.

RN08. P. Reimann and C. Neubert. The role of self-explanation in learning to use
a spreadsheet through examples. Journal of Computer Assisted Learning,
16(4):316–325, October 2008.

Sal09. Johnny Saldaña. The Coding Manual for Qualitative Researchers. SAGE
Publications, 2009.

Shn77. B. Shneiderman. Measuring computer program quality and comprehension.
International Journal of Man-Machine Studies, 9(4):465–478, 1977.

SO95. Keith Stenning and Jon Oberlander. A Cognitive Theory of Graphical
and Linguistic Reasoning: Logic and Implementation. Cognitive Science,
19(1):97–140, January 1995.

SS86. James C. Spohrer and Elliot Soloway. Novice mistakes: are the folk wisdoms
correct? Communications of the ACM, 29(7):624–632, July 1986.

SSE+14. Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian,
and Robert Bowdidge. Programmers’ build errors: a case study (at google).
In Proceedings of the 36th International Conference on Software Engineer-
ing - ICSE 2014, pages 724–734, New York, New York, USA, May 2014.
ACM Press.

Tra10. V. Javier Traver. On compiler error messages: What they say and what
they mean. Advances in Human-Computer Interaction, 2010:1–26, 2010.

36 Titus Barik

vDD11. Daniel von Dincklage and Amer Diwan. Integrating program analyses
with programmer productivity tools. Software: Practice and Experience,
41(7):817–840, June 2011.

VJ93. Kurt VanLehn and M. Randolph Johnes. What mediates the self-
explanation effect? Knowledge gaps, schemas or analogies? In Proceedings
of the Fifteenth Annual Conference of the Cognitive Science Society, pages
1034–1039, 1993.

WG05. Michael B. W. Wolfe and Susan R. Goldman. Relations Between Ado-
lescents’ Text Processing and Reasoning. Cognition and Instruction,
23(4):467–502, December 2005.

WM91. Peter C. Wright and Andrew F. Monk. A cost-effective evaluation method
for use by designers. International Journal of Man-Machine Studies,
35(6):891–912, December 1991.

	How should static analysis tools explain anomalies to developers?
	Prelude
	Motivating Example
	What went wrong?
	Objectives and Significance
	My Thesis
	Theory: A Static Analysis Explanation Framework
	Description of Theoretical Framework
	Radiance: An Eclipse Plug-in for Computationally Supporting Developer Self-Explanations
	Design Principles
	Support gap-filling.
	Explicate relationships.
	Prefer diagrammatic representations over sentential representations.

	Developer Interaction
	Implementation details
	What type of static analysis tool anomalies will be explained?

	Experiments and Evaluations
	[Diagrams] How do developers visualize compiler error messages? (Completed, Spring 2014)
	Study rationale.
	Research questions.
	Methodology.
	Results.

	[Gazerbeams] What can eye gaze tell us about failures in self-explanation during compiler error comprehension? (In-Progress, Summer 2016)
	Study rationale.
	Research questions.
	Proposed methodology.

	[Stack Overflow] How do developers explain static analysis anomalies to other developers through computer-mediated communications? (Proposed, Summer 2016)
	Study rationale.
	Research questions.
	Proposed methodology.

	[Rust] How do compiler authors design and instrument static analysis messages in their tools? (Out of Scope)
	Study rationale.
	Research questions.
	Proposed methodology.

	[Radiance] Can instrumenting our findings as a practical tool improve developer static analysis error comprehension? (Out of Scope)
	Study rationale.
	Research questions.
	Proposed methodology.

	Broader Impact and Generalization
	Related Work
	Theory of self-explanation
	Error message distributions
	Programming languages techniques for explanation
	Self-explanation systems

	Scope of Work
	Project Plan
	Project Risks and Mitigation
	Schedule slips.
	Paper rejections.

	Addendum: Thesis Contract

