
∗Work done at Apple.

Towards Complete Icon Labeling in Mobile Applications
Jieshan Chen∗ Amanda Swearngin Jason Wu

Australian National University Apple Apple
Canberra, Australia Seattle, WA, USA Seattle, WA, USA

jieshan.chen@anu.edu.au aswearngin@apple.com jason_wu2@apple.com

Titus Barik Jefrey Nichols Xiaoyi Zhang
Apple Apple Apple

Seattle, WA, USA Seattle, WA, USA Seattle, WA, USA
tbarik@apple.com jwnichols@apple.com xiaoyiz@apple.com

Object
Detection

Nearby Text Detection

(1) Common Icon
Classification

(2) Long-Tail Icon
Classification

Modifier Identification

No icons left for crowd-sourcing

“Long-Tail” Unknown

Common

Icon Types

Long-Tail

Icon Types

Menu

Pause

Shuffle

Text: 30

Fast Forward

Notification

Download

Play

Grid

LayersSearch

Menu

Downloaded

Episodes

Listen Now

Browse

Library

SearchShow

Crowd-Sourcing

Icon

Nearby Text Grouping Results

Checkbox

Picture

Container

Text
Episodes

Figure 1: Flowchart of our system: It detects UI elements from an app screenshot. For each icon detection, it classifes whether
the icon belongs to a common icon type. Otherwise, it uses a few-shot classifcation method to assign a long-tail icon type. To
provide additional information, it leverages heuristics to fnd the icon’s nearby text, and locates any modifer symbol inside
the icon. In this screen from the Apple Podcasts app, our system provides labels for all 16 icons with additional information
(e.g., “Listen Now” text near the Play icon, a “Notifcation Dot” modifer inside the Grid icon).

ABSTRACT
Accurately recognizing icon types in mobile applications is inte-
gral to many tasks, including accessibility improvement, UI design
search, and conversational agents. Existing research focuses on
recognizing the most frequent icon types, but these technologies
fail when encountering an unrecognized low-frequency icon. In
this paper, we work towards complete coverage of icons in the
wild. After annotating a large-scale icon dataset (327,879 icons)

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9157-3/22/04.
https://doi.org/10.1145/3491102.3502073

from iPhone apps, we found a highly uneven distribution: 98 com-
mon icon types covered 92.8% of icons, while 7.2% of icons were
covered by more than 331 long-tail icon types. In order to label
icons with widely varying occurrences in apps, our system uses an
image classifcation model to recognize common icon types with
an average of 3,000 examples each (96.3% accuracy) and applies a
few-shot learning model to classify long-tail icon types with an
average of 67 examples each (78.6% accuracy). Our system also de-
tects contextual information that helps characterize icon semantics,
including nearby text (95.3% accuracy) and modifer symbols added
to the icon (87.4% accuracy). In a validation study with workers
(n = 23), we verifed the usefulness of our generated icon labels.
The icon types supported by our work cover 99.5% of collected
icons, improving on the previously highest 78% coverage in icon
classifcation work.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3491102.3502073

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Chen, et al.

ACM Reference Format:
Jieshan Chen, Amanda Swearngin, Jason Wu, Titus Barik, Jefrey Nichols,
and Xiaoyi Zhang. 2022. Towards Complete Icon Labeling in Mobile Appli-
cations. In CHI Conference on Human Factors in Computing Systems (CHI
’22), April 29-May 5, 2022, New Orleans, LA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3491102.3502073

1 INTRODUCTION
Icons are an essential part of mobile user interfaces (UIs), and have
been found to be the second most frequent UI element type after
text in mobile applications (apps) [35]. Unfortunately, unlike text
elements, icons are not accessible by their nature and typically
require a separate label to be specifed by the developer in order
to become explainable to users of accessibility technologies. Ross
et al. [28] conducted the frst large-scale analysis of the accessibility
of mobile apps and found that more than half of clickable icons
are unlabeled. Another study showed that due to rapid application
iteration speed and lack of awareness of accessibility issues, more
than two-thirds of icons and image-based buttons are missing labels
across 77% of 10,408 Android apps [8]. In some cases, the lack of
an explicit label on the icon may be ofset by a nearby compan-
ion element that provides a label or explanation, but our analysis
in this paper shows that more than half of icons are standalone
(Section 4.3).

To address this problem, systems have been built to provide
icon labels when they are not available [8, 10, 25, 36]. Some ask
humans to crowdsource labels, which can be error-prone and time-
consuming. For example, Zhang et al. [36] proposed an interaction
proxy to allow end-users to manually add labels to icons and per-
form runtime repair. More recent work has explored using machine
learning methods [10, 25, 35] to generate icon labels based on their
pixels. These systems apply image classifcation models to identify
diferent icons types, and an increasing number of icon classes are
supported in successive models. A weakness of this approach is that
they are only able to classify icons of the supported types, and are
unhelpful for understanding an icon not in the known set. Although
some work leverages contextual information [8, 22, 31] to support
more icon types with improved accuracy, the context—for example,
the view hierarchy or source code—is sometimes incomplete or not
accessible by icon recognition services [18, 19, 33]. The APIs to
access view hierarchy may also change or become unavailable [30].
Furthermore, Zhang et al. [35] found that 59% of screens contain
some UI elements that are not in the accessibility hierarchy, and
94% of apps in the dataset have at least one such screen.

Instead of using the unreliable view hierarchy, our approach
leverages pixel-based context on app screen, including nearby text
of icons and modifers (secondary symbols) inside icons. As ob-
served in Section 3.3.3, more than half of icons are accompanied
by meaningful nearby text. Previous work [27] indicated that the
nearby text can be the most relevant one among all contextual in-
formation. Another important context, modifers, may change the
meaning of icons. For example, in Figure 10(b), adding the Disabled
modifer to the Camera icon completely reverts its meaning.

In order to characterize the icon recognition problem more com-
prehensively, we start our work by examining a large dataset1 of
1Icons and screenshots in all fgures either originate from Apple apps or are mock-ups
representative of apps in our dataset constructed using public domain icons.

327,879 icons from iPhone apps extracted from screenshots in the
AMP dataset [35]. We used crowdsourcing to annotate the icons
with an initial list of 90 pre-defned icon types, and collected open-
coding labels from annotators for icons identifed outside of those
types. We used k-means clustering to group the icons with open-
coded labels and identifed 339 more icon types. Some of these
were more common than any in our pre-defned set, so we des-
ignated them as common types—yielding a total of 98 common
icon types and 331 long-tail icon types. We found that 92.8% of
the icons could be covered by the 98 common icon types. In the
remaining 7.2% of icons, 0.5% icons were so uncommon that we
could not classify them into a type (e.g., they only appear in one or
two apps). In examining these long-tail icons, we found that while
they account for less than 10% of all icons, they often expose impor-
tant app functionality and should be supported by icon recognition
systems. For example, while the Truck (0.04%) and Shufe icons
(0.06%) (Figure 4) occur less frequently than other common icon
types—such as menu (2.8%) and search (4.4%) (Figure 1)—these two
icon types are often used in delivery and music apps and provide
access to core functionality in these apps.

To generate labels for both common and long-tail icons in a
broad range of scenarios—for example, when lacking access to
accessibility metadata and the view hierarchy—we designed an
end-to-end system that takes only screenshot pixels as input. After
detecting UI elements in a screenshot [35] and extracting each icon,
we ran an image classifcation model to check if an icon belongs to
a common icon type. Otherwise, we used a few-shot classifcation
method to assign a long-tail icon type, which utilizes the prior
knowledge learned from the common icon types and some long-tail
icon examples. To provide additional information, we found the
icon’s nearby text by heuristics and examine the modifer symbols
in an icon. We identifed seven common modifers (Figure 10) and
synthesized a modifer dataset to assist recognition. We applied
OCR to recognize the text modifer and trained an object detection
model to recognize the remaining six modifers. If these steps fail
to generate meaningful labels, crowdsourcing can be introduced to
create icon labels.

We evaluated the proposed system by frst examining each mod-
ule individually, then running modules end-to-end, and fnally
conducting a validation study with 23 workers to examine the
overall quality of our annotation and predicted labels. Our com-
mon icon classifcation model has a performance of 96.3% accuracy,
and our long-tail icon classifcation model achieves 78.6% accu-
racy. Within 500 randomly sampled UIs, our nearby text detection
module achieves 95.3% in accuracy in identifying relevant nearby
text. Our modifer identifcation model also reaches 87.4% accuracy
across 462 icons. The usefulness of our annotation and the proposed
system is further confrmed by a validation study on 2,064 icons,
with 96.9% annotations and 80.3% predictions considered as useful
labels by at least one worker.

In this paper, we make the following contributions:

• An analysis of a large dataset of 327,879 icons we extracted
and annotated from iPhone apps, identifying a highly uneven
distribution that 98 common icon types contain 92.8% of
icons, while 6.7% of icons belong to 331 long-tail icon types;
0.5% are too niche to be classifed.

https://doi.org/10.1145/3491102.3502073

Towards Complete Icon Labeling in Mobile Applications CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

• A pixel-only method that generates icon labels by classifying
common icon types, identifying long-tail icon types that
have few examples, leveraging nearby text, and recognizing
modifer symbols inside icons. The icon types supported by
our method cover 99.5% of collected icons.

2 RELATED WORK
Our work builds upon mobile app UI datasets and uses this data as
an important input to our icon recognition methods. Both mobile
app UI datasets and existing icon recognition methods provide
important context for our work.

2.1 Analyses of Mobile App Icon Datasets
Researchers have collected datasets to improve the understanding
of UIs and their semantics. Deka et al. [9] collected a large-scale UI
design dataset, called Rico, that contains over 72k screenshots with
view hierarchies from 9,772 Android apps. Following this work, Liu
et al. [25] extracted icons from the Rico dataset. They defned several
heuristics to obtain the bounds of icons from view hierarchies, in
order to crop icons from screenshots. They identifed 135 common
icon types through an iterative open coding, and annotated 73,449
icons extracted from Rico. The limitations of this dataset include:
1) 18% of icons are too niche to belong to one of 135 common icon
types and thus are not labeled; 2) view hierarchies may not match
their screenshots in more than half of screens [21] and therefore
cannot reliably locate icons. As a result, this dataset covers only a
portion of existing icons on the Android platform. Through manual
inspection, recent research has also highlighted noise and other
quality issues within the Rico dataset [18, 19].

To increase coverage of icons, Chen et al. [8] leveraged developer-
provided content descriptions as the icon label. From 7,594 apps,
they collected labels of 19,233 image-based buttons, which include
both common and long-tail icons types. However, due to mis-
matched view hierarchies, icons may be associated with the wrong
labels. In addition, content descriptions may be uninformative or
low quality [28]. To solve poorly matching view hierarchies, Zang
et al. [33] re-annotated the Rico dataset with a crowdsourcing ap-
proach. From app screenshots, the crowd workers drew bounding
boxes and assigned one of 29 types to each icon. Without relying
on view hierarchies, they annotated 137,282 icons, which are 40%
more icons than in previous work [25].

In addition to extracting icons from mobile app datasets, Feng
et al. [10] collected a large-scale dataset of 41,000 icons from an
existing sharing platform for icon design. As designers use diferent
ways to express the same icon concept, the researchers utilized an
association rule mining method [1] to fnd frequent co-occurring
labels, and then manually identifed 100 icon categories.

Our dataset is similar in form to datasets considered above, al-
though it is derived from iOS rather than Android. For icons ex-
tracted from the AMP dataset [35], we used crowdsourcing and
automatic clustering methods to annotate labels for the vast ma-
jority of icons in our resulting dataset. The total number of icon
classes that we consider is larger than any work above, and includes
429 classes spanning both 98 common and 331 long-tail icon types.

2.2 Icon Recognition Methods
Recognizing icons can beneft many tasks, including accessibility [8,
35], UI design search and generation [5, 7, 37], app security [32],
and conversational agents [20].

To identify icon types from icon pixels, Liu et al. [25] adapted a
convolutional neural network (CNN) architecture to train a deep
learning model that classifes 99 common icon classes in Android
apps. Xiao et al. [32] extracted features from icon pixels with a
variant of the SIFT algorithm and then found the closest icon type
by a k-nearest-neighbor-like method. To facilitate web UI devel-
opment, Feng et al. [10] created a pipeline for font conversion,
icon label prediction, and color detection from cropped icon pixels.
Our methods also leverage icon pixels to classify icon type, but we
applied image classifcation methods and few-shot classifcation
methods—allowing us to support both common and long-tail icon
types.

Contextual information may further support icon recognition,
and previous work has accessed the view hierarchy or source code
for more context around icons. Xi et al. [31] found that similar
icons may refect diferent intentions in diferent UI contexts, and
that nearby text may help in distinguishing the icon context. They
located contextual text by analyzing UI layout fles and icon fle
names and fused the text with the icon pixels to classify the icon
into several types. Li et al. [22] proposed widget captioning, a task
to generate natural language descriptions for UI elements that are
missing labels. Their multimodal inputs include the view hierarchy
and screenshot pixels. LabelDroid [8] similarly framed the icon
recognition problem as an image captioning task. They are able
to make accurate predictions for missing accessibility labels and
generate labels that have higher quality than the accessibility labels
added by junior Android developers. Mehralian et al. [27] found
that icon images are insufcient in representing icon labels, and pro-
posed a context-aware label generation approach that outperforms
LabelDroid [8]. They incorporated diferent sources of data from
the view hierarchy (e.g., App Category, Activity name, Android
id) to predict an icon label. Zang et al. [33] framed the problem
as an object detection task and built a multi-modal pipeline that
recognizes icons by leveraging the view hierarchies in addition to
icon visual features. It predicts the most commonly used 29 icons
in Android apps.

Our system also leverages context information (e.g., nearby text),
but only uses pixel information without requiring access to app
metadata (e.g., view hierarchy). Comparing with the work above,
our system achieves similarly high accuracy in common icon clas-
sifcations, and can also recognize long-tail icon types with few
samples. In addition, our system detects nearby text and recognizes
several modifers (Figure 10) in icons to provide more semantics in
labeling.

3 IOS APP ICON DATASET
We examined existing icon datasets [6, 10, 25, 33], and attempted to
emulate their best practices while mitigating some of their limita-
tions. In particular, we took note of the problems with determining
icon bounding boxes from the view hierarchy, and chose a diferent
method using human-defned bounding boxes. We also designed

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Chen, et al.

Figure 2: In our icon annotation interface, we highlight an icon in the displayed screenshot. Annotators frst select an icon
category and then pick a pre-defned icon type. They can see four examples of each icon type on the annotation interface and
fnd more examples in our annotation instructions. If an icon does not belong to any pre-defned icon type, annotators write
a concise description. They can also skip a task if it does not contain any icon.

our annotation process so that annotators can pick a label for pre-
defned icon types and write labels for other icons. This allowed
us to understand the potential problems that might be associated
with long-tail icon type identifcation and develop techniques to
address them.

3.1 Icon Annotation
Our icons are extracted from the AMP dataset [35], a large-scale
dataset that contains recently collected iOS app screens. In the AMP
dataset, workers annotated a bounding box and a UI type for each
UI element on every app screen. While the icons are identifed in
the dataset, the content of the icons are not labeled. To construct
labels, we picked UI elements annotated with the “Icon” UI type and
applied an additional set of annotation processes. The AMP dataset
contains screens from 77,637 UIs among 4,068 top free iPhone apps
in 22 app categories [35]. From this dataset, we extracted 338,343
icons from the 66,364 screens within 3,910 apps that contained
“Icon” annotations.

There are 11,273 screens without any icon annotations; we man-
ually examined a subset and found most of them to be screens
with a popup dialog on blurred background, full text screens (e.g.,
privacy policy), or welcome / login screens that show text and a
big picture to present the content. We also found that 156 apps did
not contain any screen with icons, usually because the dataset only
included screens for the initial welcome screens. This may have
occurred because of an issue during the app crawling (e.g., could
not log in without special credentials). We further explored the
dataset to understand how frequently annotators may have missed
annotating icons that were actually present. From screens without
any icon annotations, we randomly sampled 100 screens and found
that 93 screens did not contain any icons, 1 screen contained an
icon in a blurred background, and 6 screens contained icons (either
missed in annotation, or annotated as “Picture.” These minor faws
in the original dataset annotation [35] could be addressed in future
work.

Annotation Task: Twenty workers annotated icon labels based
on the icon image and its context on the app screen. As shown in
Figure 2, for each task we showed an app screenshot and highlighted
an icon inside it. Annotators either picked a pre-defned icon type,
or wrote a few words as a concise icon label. They could also report
if the task did not contain a proper icon—such as when the icon is
occluded by another UI—or when the highlighted element was not
an icon. The details of workers we recruited for data annotation
and the instructions that annotators received can be found in our
supplementary materials.

Pre-defned Icon Types: We identifed pre-defned icon types
from multiple sources, including previous icon-relevant work [6,
10, 25, 33], manually examining icon images in our dataset, and
analyzing common text in developer provided icon labels. This led
to a fnal list of 90 pre-defned icon types, which can be found in
our supplementary materials.

Annotation Logistics: Each icon was annotated by two an-
notators; when there was a disagreement, we introduced a third
annotator. Finally, we invited a QA (Quality Assurance) team to
verify and correct the icon labels.

3.2 Annotation Results Processing
We removed annotations that were not proper icons as reported by
annotators, leaving 327,879 icons. Of these remaining icons, 91.2%
(298,928) belong to the 90 pre-defned icon types. We found the top
three most frequent icon types to be Back (11%), Right Arrow (10%),
and Close (7%).

We corrected missed icons belonging to the pre-defned types.
In some cases, annotators forgot or neglected the pre-defned icon
types and instead wrote their own labels. From the clustered long-
tail icon types, we found several clusters that were the same or
similar to the pre-defned types. For example, Bag is a pre-defned
icon type, yet we found Bag and Basket clusters during our long-tail
icon type processing. Icons in such clusters were reassigned to their
appropriate predefned icon type category.

Towards Complete Icon Labeling in Mobile Applications CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Clustering

(1) Cluster
by Pixel

(2) Cluster
by Label

Truck

ShuffleTruck

(3) Assign Icons
to Clusters

(5) Verification

(4) Repeat Until
Convergence

Shuffle

Shuffle Truck

Bus

Truck

Figure 3: The clustering process consists of fve steps: 1) cluster the icons by pixels; 2) compute keywords for each potential
cluster and merge clusters with the same keyword; 3) assign icons to a cluster if the distance between the icon and the corre-
sponding cluster centroid is less than a predefned threshold; 4) repeat step 1-3 until convergence; 5) let workers verify the
clustering results.

car,
truck

truck,
lorry

not icon,
food truck

car,
delivery truck

shuffle,
shuffle

share,
shuffle

shuffle,
random mode

shuffle,
crossed arrows

shuffle,
random

lorry,
delivery

Figure 4: Examples of two long-tail icon types, each with la-
bels provided by two annotators (delimited by comma). An-
notators may provide diferent labels to describe the same
icon. Therefore, we tokenized the result in order to cluster
long-tail icon types.

We removed company logo icons. Some of annotated labels
contained the keyword “logo.” Most are company logos which ap-
pear with low frequency, except for some log-in providers like
Apple, Google, Facebook, and Twitter which were already in the
pre-defned icon types.

For the icons outside the pre-defned types, we applied clustering
to fnd long-tail icon types. An overview of the clustering process is
shown in Figure 3, in which we leveraged both the icon pixels and
the labels provided by annotators. The steps in the cluster process
are:

(1) Cluster by Pixel: Icon pixels were used to perform initial
clustering: we extracted icon features from an image clas-
sifcation model trained with pre-defned icon annotations
and then performed k-means clustering to group icons not
assigned to the pre-defned types. To fnd the optimal num-
ber of clusters, we utilized the elbow method [11]. More
specifcally, we calculated the mean value of the distances
between each point and the corresponding cluster centroid
to measure the cohesion of the clustering results—a lower

score indicates a better clustering. In our case, to ensure
each cluster only contains icons of the same type, we used a
slightly larger number of clusters. Based on the computed
scores from diferent numbers of clusters, we selected the
value k = 4000 after the elbow point as the optimal number
of clusters.

(2) Cluster by Label: Labels written by annotators were then
used to further merge the highly-related clusters. As most
labels are short—comprised of less than fve words—we di-
rectly use a simple yet efcient method to further merge
clusters. In each cluster, we picked the keyword with highest
frequency among all annotated labels. Since our annotators
might use diferent ways to describe the same icon (e.g., in
Figure 4 top, the annotators used truck, delivery truck, and
lorry), we tokenized each label, lemmatized each word to
consider diferent infected forms as a single item, and calcu-
lated the frequency of each word. After defning a keyword
for each cluster, we merged clusters that share the same key-
words, re-calculated the keywords in the new clusters, and
repeated the merging process until there were no clusters
with the same keyword.

(3) Assign Icons to Cluster: In each new cluster, we calcu-
lated the distance between each icon and its corresponding
centroid. We assigned icons to a cluster that were within a
distance of β = 5.6 from centroid. This value was chosen by
observing the clustering results.

(4) Repeat Until Convergence: We repeated steps 1-3 above
to fnd more clusters until the clustering results contained
mostly irrelevant icons in each cluster. We manually merged
some clusters with similar keywords that clearly should have
been merged but were not—for example, because lemmatiza-
tion was not comprehensive enough.

(5) Verifcation: Once we obtained our fnal icon types, we
asked crowd workers to verify the clustering results. During
verifcation, annotators corrected 2,265 icons. The keyword
of each cluster became the long-tail icon type.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Chen, et al.

Table 1: Statistics of our icon dataset. As the name “common” indicates, almost every screen, every app, and every app category
contains common icons. Long-tail icons have lower frequency, but still appear in many screens, more than half of apps, and
all app categories.

Common Icons Long-tail Icons Unclassifed Icons Total

of Icon Types 98 331 - 429
of Icons 304,310 22,088 1,481 327,879
of Screens 65,906 14,376 1,234 66,138
of Apps 3,899 2,399 739 3,904
of App Categories 22 22 22 22

Following long-tail icon clustering, we discovered that eight
long-tail icon clusters (e.g., Library, Radio) contained more icon
examples than some pre-defned icons. Due to their high frequency
in our dataset, we combined these eight high occurring clusters with
the pre-defned icon types to create the set that we call common
icon types.

3.3 Data Analysis
After processing the annotation results, we found that the 98 com-
mon icon types have 304,310 icon examples (avg = 3140, min =
409, max = 36098, std = 5404). The 331 long-tail icon types have
22,088 icon examples (avg = 67, min = 1, max = 399, std = 84).
There are also 804 company logos with 3,324 examples, which we
do not include in the scope of this paper as each logo is often used
in only one or two apps. Next, we present some initial fndings.

3.3.1 High-Level Distribution. From Table 1, we found:
• Every app category has apps that contain both common
icons and long-tail icons.

• Almost every app (99.9%) contains some common icons, and
more than half of apps contain long-tail icons.

• Almost every screen (99.6%) contains some common icons,
while only 21.7% of screens contain long-tail icons.

Further inspecting Figure 5, we found a highly uneven distribu-
tion resembling a long-tail distribution. The count of all long-tail
icons is similar to the count of the most frequent icon type. There-
fore, the frequencies of long-tail icons are almost unnoticeable in
the plot. Consequently, we used the logarithm of the distribution
to better present the trend of long-tail icons, and found that the
logarithm frequency of long-tail icons drops almost linearly.

3.3.2 App Categories. We analyzed the distribution of common
and long-tail icons contained within apps aggregated across app
categories. For each icon type, we counted the number of app
categories in which it appears within an app. For the 98 common
icon types, on average, a common icon type shows up in 21.89 app
categories out of 22 possible categories. In other words, almost all
common icons show up in apps in almost all app categories. In
contrast, a long-tail icon type, on average, appears in apps of only
9.47 app categories. This result suggests that common icon types
may support basic functionality that is needed across almost all app
categories, while long-tail icon types expose specifc functionality
that only exists in some app categories.

As shown in Figure 6, the ratio of long-tail icons and common
icons varies across diferent app categories (avg = 6.8%, min =

2.9%, max = 8.9%, std = 1.7%). It is worth noting that long-tail icons
have a higher occurrence in Photo & Video (8.9%) and Navigation
app categories (8.9%). Photo & Video apps often involve many photo-
editing related icon types, such as Crop and Color Filter. Similarly,
Navigation apps require many transport-specifc (e.g., Bus) and
place-related icons (e.g., Cutlery icons for restaurants) that belong
to long-tail icon types. This fnding further suggests that while
common icons are prevalent across all app categories, long-tail
icons are also indispensable, especially in some app categories.

3.3.3 Properties of Icons. Within our dataset, we observed that
the semantics of icons are relevant to many factors, including their
basic shapes, nearby text, modifers (secondary symbols), and other
contextual information on the app screen. In this section, we dis-
cuss the details of our observations, motivating the design of our
proposed pipeline.

Nearby Text: There are three typical design patterns involving
icons and text:

(1) Standalone icons must indicate their functionality without
requiring any nearby text. User interface guidelines [3] often
recommend this design practice only for common icon types
that are used across many apps. For example, in Figure 9(f),
the familiar Close icon is used in many apps and does not
need accompanying text.

(2) Partial icons provide some indication of the user experience
but require nearby text for the user to fully understand its
meaning. For example, Figure 9(g) shows a Comment icon
with a number nearby (the count of comments), and Fig-
ure 9(j) shows a Play icon next to the text “Slideshow” that
completes the explanation of what tapping in that area will
do.

(3) Duplicate icons have the same or similar meaning as their
nearby text. Although these icons seem redundant, design
guidelines recommend this practice, as it can still reduce
users’ cognitive load in recognizing icons. When an icon
has multiple meanings in diferent scenarios, the nearby text
determines the most suitable one. For example, in Figure 9(a),
the Error icon is accompanied with a “Report” text, which
both help users disambiguate the intent. More examples can
be seen in tab bar of Figure 9(c).

We randomly sampled 500 screens (about 22 screens from each
app category) and manually grouped nearby text for 2,535 icons
in 500 screens. 1,183 (46.7%) icons were standalone, 995 (39.3%)

Towards Complete Icon Labeling in Mobile Applications CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

(a) Distribution of the number of icons (b) Distribution of the logarithm of the number of icons

Figure 5: Highly uneven distribution of icons across icon types, which resembles a long-tail distribution. The count of all
long-tail icons is similar to the count of the most frequent icon type.

Lif
es

ty
le

En
te

rta
in

m
en

t

Sh
op

pi
ng

Ut
ilit

ie
s

Tr
av

el

Ne
ws

He
al

th
 &

 Fi
tn

es
s

Pr
od

uc
tiv

ity

Ph
ot

o
&

Vi
de

o

Fo
od

 &
 D

rin
k

Ed
uc

at
io

n

Bu
sin

es
s

So
cia

l
Ne

tw
or

ki
ng

M
us

ic

Na
vi

ga
tio

n

Bo
ok

Re
fe

re
nc

e

Sp
or

ts

W
ea

th
er

M
ed

ica
l

M
ag

az
in

es
 &

 N
ew

sp
ap

er
s

Fin
an

ce

0

20000

40000

60000

80000

of

 Ic
on

s

7.0

7.7

6.5 8.1 7.7 3.9 8.2 6.2 8.9
8.4 6.5 4.9 5.9 5.9 8.9 4.4 6.9 8.8 7.4 6.4 2.9 5.0

Common Icons
Long-Tail Icons

Figure 6: Bar chart of icon frequency and the percentage of long-tail icons (the number above each bar) in each app category.
Each app category has similar number of apps and screens collected. The Lifestyle app category in particular contains more
icons than other categories. Some app categories (e.g., Photo & Video, Navigation) have a higher percentage of long-tail icons
than other categories (e.g., News, Magazines).

groupings used the partial design pattern, and 357 (14%) groupings
used the duplicate pattern. This result confrms the importance of
recognizing basic shape and contextual information.

Modifers (Secondary Symbols): In examining our icon dataset,
we noticed that some icons are comprised of two symbols: one
main symbol showing the primary concept of the icon, and another
smaller symbol providing additional information. We call these
second smaller symbols modifers. For example, the top-left icon in
Figure 10 (c) shows the folder symbol as the primary concept with
a star modifer indicating that the icon might be a Favorite Folder. In
addition, modifers may change the meaning of icons. For example,
in Figure 10(b), adding the Disabled modifer to the Camera icon
completely reverts its meaning. Efciently recognizing modifers is
also crucial for understanding icons.

From 500 sampled screens (Section 4.3), we manually identifed
modifers inside icons. Among 2,535 icons, 67 (2.6%) contained a
modifer symbol: short text (19), Add (15), Disabled (7), Star (5),
Notifcation Dot (5), Checkmark (4), and Clock (2). The remaining
modifers only had one example, including Location, Plot, Currency,
Music, Lighting, Recycle, Snowfake, Down Arrow, Search, and Play.

Summary: Informed by these fndings, we designed an end-to-
end system—towards complete icon labeling—by leveraging deep-
learning techniques and crowdsourcing methods. We designed
two classifcation models to recognize the basic shape of icons, a
heuristics-based method to fnd contextual information (i.e. nearby

texts), and an object detection model to identify modifers. Crowd-
sourcing will be introduced if all of the other methods fail.

4 SYSTEM
Figure 1 shows the fowchart of our system, which takes a screen-
shot as input and returns a label for each icon in the screen. First,
we run an object detection model based on Zhang et al. [35] to
recognize all UI elements. Then, we extract the pixels for each icon
detection. Although the bounding box of the icon detection may
not be exactly square (e.g., More icon, Shufe icon in Figure 4)—as
icons are nevertheless mostly square in UI design—we extend the
bounding box to be a square using the larger-side length, main-
taining the original center. Next, we crop the icon from screenshot
using this expanded square bounding box. Maintaining a constant
aspect ratio will help when applying ML methods.

For each detected and extracted icon, we run an image classi-
fcation model to determine if the icon has a common icon type.
Otherwise, we use a few-shot classifcation method to assign a
long-tail icon type. We also leverage heuristics to fnd the icon’s
nearby text, and employ an object detection model to locate any
modifers within the icon. If the icon label is still unknown after
these steps, we introduce crowdsourcing method to provide a label.
However, this is seldom necessary as our system achieves almost
complete coverage of icons. The details of each step are described
in the following subsections.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Chen, et al.

4.1 Common Icon Classifcation
An image classifcation model is trained to classify common icon
types. We leveraged ResNet-50 [12]—which is pre-trained on the
ImageNet dataset—and fne-tuned the model for icon features as
described in previous work [8, 10, 27].

Data: In addition to the 98 classes of common icon types, the
“long-tail” class is assigned to all icons not in the common icon types.
When the model classifes an icon as a “long-tail” type, we apply the
few-shot classifcation method described in the next section. For
each icon type, we pick approximately 80% of examples as training
data, 10% of examples as validation data, and 10% of examples as
testing data. To avoid the data leakage problem [16], we split the
dataset in a way that, for a given icon type, icon examples from one
app will be in only one of the splits.

Handle Class Imbalance: As shown in Figure 5, our dataset
is highly imbalanced—the most frequent icon type has 36,098 ex-
amples while the least frequent one has only 439 examples. To
handle such an imbalanced dataset, we use focal loss [24] so that
the weight for the “easy examples” is reduced to let the network
focus on training the “hard examples.” That is, instead of giving
equal weighting to all training examples, focal loss down-weights
the well-classifed examples.

Model Details: We crop each icon into a square as described in
Section 4, and scale it to the input size (256x256 pixels). Each pixel
keeps its RGB channels (normalized from [0,255] to [0,1]). We train
our model on 4 Tesla V100 GPU for 50 epochs with a batch size of
128 and an initial learning rate of 0.001. We iteratively update the
model weights using the Adam optimizer [17].

Evaluation: Our model achieves 96.3% accuracy on the testing
dataset, and 99.0% accuracy on the training dataset. For each com-
mon icon type and “long-tail” icon type, we compute its recall and
precision. The calculated macro precision is 92.4% and macro recall
is 89.5% (macro = the averages of the precision and recall of each
class, as reported in Liu et al. [25]).

As observed in the icon dataset and in our model predictions,
icons may belong to multiple classes. For example, the frst icon in
Figure 7 has Location (because of the Location Pin symbol) as the
annotated icon type. It is predicted as Home (because of the House
symbol inside), while Location has the second highest confdence in
prediction. Both symbols are important to show the full semantic
meaning of the icon. Among 1,511 errors in our testing results, we
manually observed that 182 icons have multiple important symbols.
This fnding motivates us to locate additional modifying symbols
within an icon, which we will discuss in Section 4.4. The confusion
matrix in our supplementary materials also indicates often confused
common icon types (e.g., Location and Map).

file → play cloud → sun currency → homelocation → home mail → folder

Figure 7: Examples of icons that contain two important sym-
bols. Both symbols are important to show the full semantics
of the icon.

4.2 Long-Tail Icon Few-Shot Classifcation
As each long-tail icon type has a relatively small number of exam-
ples, we frame long-tail icon classifcation as a few-shot learning
task. Humans can easily recognize new objects based on few sam-
ples they have seen—the few-shot learning method is built upon
this observation.

Modeling: We adopt the prototypical model [29] to perform
an episode-based training strategy to recognize long-tail icons.
For each episode, we sample a subset of k icon types from the
whole set of long-tail icon types and then sample m support icons
and n query icons for each icon type (also called a k-way m-shot
classifcation problem). The support icons are used to construct
a prototype of the corresponding icon type, and the query icons
are icons needing to be classifed. By training the model through
episodes, the model can learn to quickly extract the key features
for each icon type. We then extract features from every support
and query icon through a backbone feature extraction model, and
compute prototypes for each icon type by calculating the mean
features using the support icons. For each query icon, we assign
the nearest prototype’s icon type as the predicted icon type. This
method may alleviate overftting issues, which are common when
training data is limited. This method can also be easily generalized
to new icon types, given some support samples, as the model learns
to compare the diference between each prototype and the query
icons instead of merely extracting the key features for each icon
type.

For the backbone model, we build upon our common icon clas-
sifcation model, as previous work [34] shows that lower layers
can capture basic features—such as vertical lines and circles—that
are shared across diferent icon types. We remove the fnal fully
connected layer, add one fully connected layer, and train the last
two fully connected layers to enable the model to quickly extract
specifc features from any icon type instead of the predefned set of
icon types. We use cross-entropy loss as our loss function. When
training the model, we fx k = 50,m = 2, n = 20 for batch training
to force the model to extract features from few examples. We ex-
perimented with diferent combinations of these values but found
no obvious diferences in the clustering results. For inference, we
sample all icons in each icon type in the training dataset to com-
pute prototypes and test on the testing dataset. We calculate the
Euclidean distance between prototypes and the query icon to decide
the nearest prototype. Other dissimilarity metrics, like Mahalanobis
distance, could also be substituted here to train the model and per-
form inference [29]. For each icon type, icons from the same app
will only exist in one split. Since 47 icon types only appear in one
app, we do not train or evaluate these icon types—the support and
query icons in these icon types are highly similar or exactly the
same.

Data: To train and evaluate the long-tail icon dataset, we use
the corresponding “long-tail” parts in the splits in Section 4.1. If an
icon type only has examples in two apps, we will keep icons in one
app in training dataset and icons in another app in testing dataset.

Evaluation: We considered two baselines. The frst baseline di-
rectly used features extracted from our common icon classifcation
model without fne-tuning (termed kNN). Another baseline is the
Relation Network [25], which models the problem as a regression

Towards Complete Icon Labeling in Mobile Applications CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Table 2: Evaluation of three few-shot learning methods on
long-tail icons. Prototypical outperforms two baseline meth-
ods in every metric.

Precision Recall F1 Accuracy

kNN 67.3% 78.0% 66.6% 68.5%
RelationNet 71.6% 78.3% 70.2% 74.6%
Prototypical 75.7% 80.7% 74.5% 78.6% Figure 8: Example icons that depict the same concept from

diferent angles or have diferent levels of abstraction. Long-
tail icons may have such diferent distributions between
training dataset and testing dataset.

at a diferent abstraction level, and the Ruler icon in Figure 8(b)
are actually two diferent kinds of rulers. In these cases, it is hard
for models to correctly predict the right icon type. The details of
per-class results and the confusion matrix can be found in our
supplementary materials.

problem.
tures of the query icon, and uses another convolution and fully
connected layers to learn a relation score.

We adopted precision, recall, F1-score and accuracy as our met-
rics. Unlike the typical evaluation strategy that calculates average
results from a number of randomly sampled episodes—including
support and query icons)—we treated all icons in our test dataset
as the query icons and obtained support icons from the training
dataset. We chose m = 30 support icons when performing inference
as we found this number achieved the best results on the validation
dataset.

Table 2 shows the results of all models. Our model achieved
78.6% accuracy, 5.3% and 14.7% higher than the performance of the
Relation Network and kNN models. All models performed well in
detecting some simple icon types when the icons in the training
dataset are highly similar to the icons in the testing dataset, with
only minor changes. For example, the Male Sign icons and Live
View icons in (Table 3-E1/E2)) only have minor diferences in colors
and line widths compared with icons in the training dataset. While
the kNN model learned to extract common patterns appearing in
common icon types, it did not generalize well to unseen feature
types. For example, in Table 3-E3, the Shield icon has two colors
on two sides. Because this pattern exists in the Contract type and
never appears in common icon types, the model was confused by
the existence of this feature. In contrast, both the relation network
and our prototypical network efciently recognized the Shield icon.

We further analyzed the failure cases and observed that for some
icon types, the training dataset has a diferent distribution from the
testing dataset. The examples were either captured from diferent
angles of the same object or had diferent levels of abstraction of the
real object. For example, the Battery icon in Figure 8(a) is captured

It concatenates mean features of support icons and fea-

Table 3: Examples of icon predictions in few-shot learning
methods. Baseline methods provide several wrong predic-
tions (red).

E1 E2 E3 E4 E5

Live Light
kNN View Male Contrast Bulb Pizza

Live Thumbs
RelationNet View Male Shield Female Down

Live
Prototypical View Male Shield Cup Pin

(a) Battery (b) Ruler (c) Umbrella (d) Binoculars (e) Watch

Train

Test

4.3 Grouping with Nearby Text
Nearby text may contain useful information for icon labeling, and
thus we explored heuristics for grouping that nearby text to provide
a better icon label. When our system identifes a nearby text, it
appends the text to the classifcation label (if they are not the same)
to provide more information to users.

Based on observations in Section 3.3.3, from our UI element de-
tection results, we fnd elements with the icon, text, and container
types in our UIs and group the icons with their nearby text. Con-
tainers are a special type that often show a clear visual boundary
and contain one or more UI elements.

When an icon is within a container, we apply a set of heuris-
tics based

text detections:
• If the container only contains one icon and one text element,
we consider that text to be the nearby text. For example, in
Figure 9(a), the Disabled icon is grouped with “Block User”
text.

• If the container contains one icon and several left-aligned
text elements, we consider the frst element to be the label
for the icon. For example, in Figure 9(b) bottom, the Box icon
is grouped with “Extra Large Box” text.

• If the container has several icons and several text elements,
we frst calculate the distance between each icon and each
text element and take the pair which has the shortest dis-
tance. For example, in Figure 9(d), the Wallet icon would be
grouped with the “ATM” text and the Right Arrow icon does
not get any nearby text.

hen an icon is not within any container, we leverage the
ial relationship between the icon and text detections (e.g., align-
t, distance) to infer grouping:
• We frst fnd all nearby text candidates within a distance
of α pixels from the icon. We obtain empirical threshold
α = 1.25 ∗ max(icon_width, icon_height) after observing
100 screens.

• If only one text candidate has X or Y overlap with the icon,
we pick that as the label. For example, in Figure 9(g), the Chat

on the number and types of contained icon detections
and

W
spat
men

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Chen, et al. Heuristics - AMP dataset - xiaoyi -modified

(a)

(b) (c)

(d)

(e)

(f)

(g) (h)

(i)

(j)

Icon

ults

Picture ContainerText Grouping Result

Figure 9: Examples of nearby text grouping. Based on container detections (green) and UI spatial relationship, our heuristics
groups each icon (pink) with a nearby text (red), if any. The groupings are visualized in blue.

icon is grouped with the “1630” text in the same column;
in Figure 9(h), the Map icon is grouped with

Nearby T

the “Station

ext Grouping Res

Locator” text in the same row.

•
with the icon, we pick the text element that is frst in the
reading order. For US English systems, we pick the top-most
and left-most element. This approach was chosen after ex-
amining 100 screens. For example, in Figure 9(e), the green
icon has two text detections in the same row, and should be
grouped with “Add almost anything” text.

If there are multiple text candidates that have X or Y overlap

Evaluation: To evaluate the performance of the nearby text
grouping, we used the annotated data from Section 3.3.3. Our heuris-
tics achieved 92.8% precision, 98.7% recall, 95.6% F1 score, and 95.3%
accuracy.

Checkbox

4.4 Identifying Modifer Symbols Within an
Icon

To further improve our icon labeling, we explored detecting the
secondary modifer symbol. When our model detects a modifer
inside the icon, we append the modifer label to the classifcation
label (e.g., Camera, Disabled) to provide more information to users.

Type of Modifers: As observed in Section 3.3.3, there are many
modifers we detected in the sampled icons. In the scope of this
paper, we pick the top 7 modifers (shown in Figure 10) to demon-
strate our system. It is possible to support more modifer types with
additional data.

Synthetic Dataset: Very few icons include modifer symbols
(only 2.6%), and each symbol has very low frequency. Therefore,
we created a synthetic dataset that contains enough data to train a
model (shown in Figure 11). Adding modifer examples on existing
icons seems a straightforward idea, but we need to take into account
the following considerations:

• Color: We removed the synthetic examples that have a mod-
ifer in a similar color as its surrounding icon pixels, as the
modifer would be invisible.

• Position: We observed the pattern of a modifer’s position
in icon examples—the Disabled modifer often covers the
whole icon, and the Notifcation Dot modifer often appears
on the top-right.

• Relative Size: Disabled modifers often have a width be-
tween 80% to 100% of the icon width, and Notifcation Dot
modifers have a width between 7% to 20% of the icon width.
The remaining modifers have a width between 25% to 60%
of the icon width.

• Examples: To create a short text example, we randomly
picked one word from the text detections in the dataset
[35]. To create a Notifcation Dot, we created a solid circle
with random color. To create a Disabled symbol, we drew
a diagonal line, and sometimes also added a circle. Other
modifer types are all in our common icon types; therefore
we picked 500 examples of each modifer from common icon
dataset, and applied the food fll algorithm [13] to remove
the background color of these examples.

In total, we synthesized 35,389 examples of each modifer. Fig-
ure 11 shows some examples of the synthesized icons.

Modifer Identifcation Model: Text modifers can be recog-
nized by OCR [4]. For the remaining 6 modifers, we experimented
with both image classifcation and object detection models to detect
modifers inside icons. Our image classifcation (IC) model uses Mo-
bileNetV1 [14], and our object detection (OD) model applies the SSD
(Single Shot MultiBox Detector) [26] model with MobileNetV1 [15]
as the backbone. Since the size of modifers are relatively small
(compared with icons), we also include a feature pyramid network
(FPN) [23] that uses a pyramidal hierarchy of deep convolutional
networks to extract the image features. Each model is trained on
4 Tesla V100 GPU for 100 epochs, with an initial learning rate of
0.001.

Evaluation: Both models achieved high accuracy on our syn-
thetic testing dataset: the IC model achieved 96.7% accuracy, and
the OD model achieved 95.2% accuracy. To evaluate the actual per-
formance on real icons, we manually picked 463 icons from our
icon dataset (half icons contain modifers). The OD model achieved
87.4% accuracy (87% precision, 82% recall, and 84% F1 score), which
outperformed the IC model (84.4% accuracy, 90% precision, 67% re-
call, and 74% F1 score). We also found that the IC model performed
worst on Notifcation Dot (small circles are common inside icon,
and may not provide a strong signal in classifcation), while the OD
model performed worst on Disabled modifers, most likely because
it is challenging for OD models to handle objects that occupy the
full image.

Towards Complete Icon Labeling in Mobile Applications CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Modifiers - noun
project

(e) add (f) checkmark (g) clock(b) disabled(a) text (d) notification(c) star

(f) clock(c) notificationsabled (d) add (e) checkmark(b) star

re from noun project.
The rest base icon and modifiers all come from apple first-party apps

Modifiers - synthesised - noun + apple apps

Figure 10: Example icons that contain top seven modifer symbols.

Modifiers - noun
project

(e) add (f) checkmark (g) clock(b) disabled(a) text (d) notification(c) star

(f) clock(c) notification(a) disabled (d) add (e) checkmark(b) star

Only the star modifiers are from noun project.
The rest base icon and modifiers all come from apple first-party apps

Modifiers - synthesised - noun + apple apps

Figure 11: Examples of the synthesized icons. We augmented modifer symbols on existing icons. Note that we did not have to
augment text modifers, as we used OCR [4] to recognize text in icon.

5 EVALUATION

(a) di

In the previous section, we evaluated each step of our system in-
dividually. In this section, we evaluated our system as a whole.
We performed an end-to-end icon recognition from screenshot
pixels, and conducted a validation study with workers to rate the
usefulness of labels.

5.1 Evaluating End-To-End

Only the star modifiers a

 Icon Recognition
We evaluated the overall performance of our classifcation model
on “imperfect” results from object detection models and also docu-
mented the errors that propagated from each step.

Dataset: We used the same test set from Section 4.1 and Sec-
tion 4.2 to avoid the data leakage problem. In total, we obtained
32,989 test samples (30,352 common icons and 2,637 long-tail icons).

Procedure: From UI detection results, we cropped all icon detec-
tions, and attempted to match with overlapping icon annotations
in our testing dataset. When an icon detection and an icon annota-
tion had any overlap, we used the annotation label as the ground
truth label for that icon detection. We cropped all matched icon
detections into a square, as described in Section 4. We ran each icon
through our common icon classifcation model; if the prediction
result was “long-tail” or the confdence was lower than predefned
thresholds (empirically defned using the validation dataset), we
ran the few-shot long-tail classifcation method to fnd a label.

Object Detection. 93.8% of testing icons were successfully rec-
ognized by the UI detection model (84% precision, 95% recall and
89.2% F1.). We found that larger and more colorful icons were more
likely to be predicted as “Picture,” which are 1.9% of the testing
icons. We hypothesize that performance may be further improved
by using heuristic-based post-processing of Picture detections.

For the remaining 4.3% missing icons, we noticed two situations
apart from model errors. First, some icons appear in the background
of UI and should ideally not be detected. However, our icon dataset
still included them. Second, a portion of these icons are the top-left
Return to previous app icon supported by iOS, which enables the
user to return to the previous application: this is not an icon from
the app itself.

Icon Classifcation. We cropped all matched icon detections
into a square, as described in Section 4. We ran each icon through
our common icon classifcation model. If the prediction result was
“long-tail,” we ran our few-shot long-tail classifcation method to
fnd a label. Among all matched detections, our system achieved
90.7% accuracy.

For icons in common icon types, our system correctly classifed
91.1% of them; for icons in long-tail icon types, our system correctly
classifed 79.5% of them. Both are slightly lower than the results in
Section 4.1. This indicates that our models are robust to bounding
boxes from the object detection results, which may be less accurate
than the bounding boxes from annotations. We also noticed that
the precision of long-tail icons was lower (60%), which is due to our
higher confdence thresholds for common icon types—causing the
common icon classifcation model to send some lower-confdence
common icons into long-tail icon classifcation. Detailed results can
be found in our supplementary materials.

5.2 Evaluating the Usefulness of Icon Labels
We further confrmed the usefulness of the labels generated by our
system with a validation study. To reduce bias, we recruited 23
workers who were not involved in the previous icon label annota-
tion task. Only people without disabilities participated in the study,
even though the primary motivation of our work is accessibility. In
this case, we wanted to verify the accuracy of our system with peo-
ple who were able to perceive the icons directly. Future work may
involve additional studies with blind or low-vision screen reader
users in the context of actual UI and accessibility experiences.

Icon Dataset: For each icon type, we randomly picked fve icons
from our testing dataset. For a given icon type, we picked icons
from the diferent apps, so that the icons have dissimilar designs.
In total, we obtained 2,064 icon examples (490 common icons and
1,574 long-tail icons2).

Icon Label Generation: We prepared the following four labels
for each icon using its screenshot pixels:

233 long-tail icon types have less than fve examples in the testing dataset, and therefore
we take all of their available examples.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Chen, et al.

(1) The annotated icon type was extracted from its previous
annotation. This helps us understand the quality of our clus-
tered icon types, and the label usefulness when our model
achieves perfect accuracy.

(2) The predicted icon type was recognized by the end-to-
end evaluation method in Section 5.1, without using existing
annotation bounding boxes.

(3) The nearby text was obtained by running nearby text group-
ing heuristics on the screenshot UI detection results. The
text content was then extracted by OCR API [4]. We found
nearby text in 1,264 (61.2%) icons.

(4) The modifer symbol was predicted by our object detec-
tion model. Only 50 (2.4%) icons had modifers detected in-
side, which is similar to the low frequency noted in Sec-
tion 4.4.

Procedure: For each icon, a worker rated the usefulness for each
of the four labels mentioned above. Each icon was rated by two
workers. For the annotation labels and prediction labels, we adopted
a three-point Likert-type scale for usefulness, with 1–not useful, 2–
somewhat useful, and 3–very useful. For nearby text and modifers,
we asked whether the additional information is relevant to the icon.
We showed the corresponding UI screenshot for each icon to help
workers better understand the icon. The rating interface can be
found in supplemental materials.

Result: For these four labels, we frst calculate Cohen’s κ to
measure the agreement between two ratings, and then elaborate
the detailed scores for each label. We considered two strategies: a
relaxed strategy and a strict strategy. For the relaxed strategy, we
took the best rating for each icon. For the strict strategy, we took
the worst rating.

• Annotated Icon Type: Cohen’s κ for annotation labels was
0.28, which indicates a fair agreement between two ratings.
Under the relaxed strategy, 97.19% labels were considered as
Very Useful, and only 0.73% as Not Useful. While diferent
people may have diferent points of view on each label, this
shows the upper-bound of the usefulness of our icon dataset.
Under the strict strategy, we still had 88.23% labels consid-
ered as Very Useful, 7.61% as Somewhat Useful and only
3.39% (70/2064) as Not Useful. Among these "Not Useful"
icons, we found that 52.8% (37/70) icons had two extreme
labels: as one rater thought it was Very Useful, while another
thought it was Not Useful. These results validate that our
annotation label can efectively help end-users understand
the meaning of icons.

• Predicted Icon Type: For the predicted label, we found
Cohen’s κ to be 0.66, which indicates a substantial agreement
between the two ratings. We found that 82.75% labels were
considered Very Useful, and 13.81% (285/2064) as Not Useful
under the relaxed strategy. Among those 13.81% Not Useful
labels, 89.9% (256/285) icons were predicted inaccurately,
which indicates the improvement room of our classifcation
models. For the strict strategy, only 5.86% more labels were
considered as Not Useful, with the rest 80.33% icons (72.22%
Very Useful, 7.61% Useful) provided meaningful labels to end-
users. This result confrms the usefulness of our classifcation
models.

• Nearby Text: As some icons do not have nearby texts, we
removed the ratings for these icons. Cohen’s κ for nearby text
was 0.67, which indicates a substantial agreement between
two ratings. Among these results, 91.85% were considered
as Relevant to the icon under the relaxed strategy, which is
consistent to our evaluation in Section 4.3. The portion of
the Relevant rating was lower under the strict strategy, with
a percentage of 85.05%. This result sheds light on leveraging
the nearby text-to-assist icon recognition models, which we
consider as future work (Section 6).

• Modifers: The inter-rater agreement was also substantial
for the modifer symbols, with a Cohen’s κ of 0.73. Only 38%
symbols were considered as relevant in the relaxed strategy.
We noticed that among these detections, 15/50 are Disabled
symbols, and 14 of them are wrong predictions due to some
icons have content similar to some common modifers. As
discussed in Section 4.4, the object detection model performs
worst in detecting this Disabled symbol—a better way to
synthesize this symbol may be needed.

In summary, 96.61% annotation label, 80.33% prediction label, 91.85%
nearby text and 38% modifer symbols were considered as useful or
relevant for at least one rater.

6 DISCUSSION AND FUTURE WORK
Several applications may beneft from a higher coverage of icon
labeling.

Accessibility Support for Screen Readers: When an icon is
not labeled in an inaccessible app, our system may add an acces-
sibility label. While users without disabilities enjoy the visual ap-
pearance of icons, users with visual impairments may be impacted
by missing alt-text or content descriptions for the icons if they use
screen readers in inaccessible apps [2, 28]. Figure 12(a) shows a
media player screen that has icons without text labels for mini-
malist design: this is inaccessible when developers forget to add
alternative text. Compared to other icon recognition work,3 our
system supports common icons, long-tail icons, and even an Add
modifer inside the Music icon.

Natural Language Based UI Search: When designers share UI
designs as images within online platforms, our pixel-based system
allows search in those UI screenshots without view hierarchy in-
formation. For a certain icon type, we can provide a set of example
icons, and a gallery of UI designs that contain this icon type. As
seen in Figure 12(b), designers may use natural language to search
relevant UIs to fnd some inspiration. With better coverage of icon
labeling in a large-scale UI dataset, we can support more icon types
in designer’s query.

Assisting Conversational Agent: When users interact with
conversational agents, they sometimes need to refer to an icon
on the screen. When some icons are unlabeled, users have to use
other references (e.g., relative location) to share their intent with
the agent. Our more complete icon labeling can bring a smoother
experience in conversational agents. For the task of giving natural
language instructions to UI actions [21], icon labeling is also crucial
as it serves as an important property, “name,” of target UI. Figure 13

3Feng et al. [10] only showed 40 icon types in their paper while their method considered
100 icon types.

Towards Complete Icon Labeling in Mobile Applications CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Icon Liu et. al Feng et. al Zang et. al Ours

<unk> <unk> <unk> Down Arrow

<unk> <unk> <unk> Launch

<unk> <unk> <unk> Shuffle

Rewind <unk> <unk> Rewind

Pause <unk> Pause Pause

av_forward <unk> <unk> Fast Forward

Refresh <unk> <unk> Repeat

Add Add Add Add

<unk> Music <unk> Music
“Add” Modifier

Chat Chat <unk> Chat

(b)

Search screens that allow mark-up |

(a)

Figure 12: (a) The icon labeling results on an example media player screen show the icon coverage of existing works [10, 25, 33]
and our work for supporting icon annotation for screen readers. (b) Our more complete icon annotation system can support
fner-grained UI design search.

Applications - Conversational Agent

User: Find the latest bus

schedule to my work place

Agent: Sorry, I don’t understand.

Would you teach me?

User: Sure. Open Map app,

click the work icon

and then click the bus icon

User read the latest bus schedule.

Icon Type: Bus

Icon Type: Bag
Nearby Text: Work

Figure 13: Our more complete icon labeling system may help conversational agent better understand user’s instructions.

shows an example where more complete icon labeling helps the
conversational agent better understand user’s query.

Next, we share some limitations of our current work, and briefy
discuss how to improve them in the future. One limitation is that we
labeled icons only for the iOS platform. Nevertheless, these icons
are commonly used in Android platform and websites.

There is also room for performance improvements. For common
icon classifcation, we may be able to further improve its accuracy
after collecting more data with further data cleaning. For long-tail
icon classifcation, we can consider using additional contextual in-
formation from the screen to support the classifcation. For nearby
text detection, a larger-scale annotation specifc to icon-text group-
ing would allow us to train a grouping model. For modifer detec-
tion, we could leverage annotation with real icon data—this would

be expected to outperform the synthetic dataset. Currently we di-
rectly concatenate nearby text and modifer labels; future research
may fnd better ways to integrate them to create more concise and
accurate labels.

In addition to accuracy improvements, we would like to improve
the quality of our generated icon labels. First, the same icon may
have diferent meanings under diferent contexts. For example, a
Video Recorder icon may indicate “upload video” in a video edit-
ing app, while it can indicate “start video conference” in a video
conference app. With the app category and contextual information
on the screen, it is possible to generate an icon label that best fts
the context. Second, an icon may belong to multiple classes when
it contains multiple important symbols, while our classifcation
model only provides one predicted class. We may consider training

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

multiple classifers to recognize each icon type. Third, we currently
present additional information such as nearby text or the modifer
symbol separately from the icon type prediction. It should be pos-
sible to combine these together to produce an enriched icon label.
Finally, our work framed icon labeling as several classifcation tasks.
Other approaches, such as Image Captioning, could be adopted or
added to make our labels easier to understand.

7 CONCLUSION
From our large-scale icon annotation, we learned the highly uneven
distribution of icon types, and automatically clustered long-tail icon
types that have few examples. We have presented an approach that
uses only pixel information to generate labels for both common
and long-tail icons. Our technical evaluation and user evaluation
demonstrate that this approach is promising. Our work illustrates
a new approach towards complete icon labeling, and many applica-
tions stand to beneft from higher icon label coverage.

REFERENCES
[1] Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast Algorithms for Mining

Association Rules. In Proc. 20th int. conf. very large data bases, VLDB, Vol. 1215.
Citeseer, 487–499.

[2] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility
Issues in Android Apps: State of Afairs, Sentiments, and Ways Forward. In 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE,
1323–1334.

[3] Apple. 2021. Glyphs - Human Interface Guidelines. https://developer.apple.com/
design/human-interface-guidelines/glyphs/overview. Accessed: 24/08/2021.

[4] Apple. 2021. Recognizing Text in Images. https://developer.apple.com/
documentation/vision/recognizing_text_in_images. Accessed: 31/08/2021.

[5] Chunyang Chen, Sidong Feng, Zhenchang Xing, Linda Liu, Shengdong Zhao,
and Jinshui Wang. 2019. Gallery D.C.: Design Search and Knowledge Discovery
through Auto-created GUI Component Gallery. Proceedings of the ACM on
Human-Computer Interaction 3, CSCW (2019), 1–22.

[6] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018.
From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap
Mobile GUI Implementation. In Proceedings of the 40th International Conference
on Software Engineering. 665–676.

[7] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xin Xia, Liming Zhu, John
Grundy, and Jinshui Wang. 2020. Wireframe-Based UI Design Search through
Image Autoencoder. ACM Transactions on Software Engineering and Methodology
(TOSEM) 29, 3 (2020), 1–31.

[8] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhut, Guo-
qiang Li, and Jinshui Wang. 2020. Unblind Your Apps: Predicting Natural-
Language Labels for Mobile GUI Components by Deep Learning. In 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE,
322–334.

[9] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jefrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. 845–854.

[10] Sidong Feng, Suyu Ma, Jinzhong Yu, Chunyang Chen, TingTing Zhou, and Yankun
Zhen. 2021. Auto-icon: An Automated Code Generation Tool for Icon Designs
Assisting in UI Development. In 26th International Conference on Intelligent User
Interfaces. 59–69.

[11] Cyril Goutte, Peter Toft, Egill Rostrup, Finn Å Nielsen, and Lars Kai Hansen. 1999.
On Clustering fMRI Time Series. NeuroImage 9, 3 (1999), 298–310.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[13] Dominik Henrich. 1994. Space-Efcient Region Filling in Raster Graphics. The
Visual Computer 10, 4 (1994), 205–215.

[14] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for Mobilenetv3. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 1314–1324.

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efcient Convolutional Neural Networks for Mobile Vision Applications. arXiv
preprint arXiv:1704.04861 (2017).

Chen, et al.

[16] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. 2012. Leak-
age in Data Mining: Formulation, Detection, and Avoidance. ACM Transactions
on Knowledge Discovery from Data (TKDD) 6, 4 (2012), 1–21.

[17] Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[18] Chunggi Lee, Sanghoon Kim, Dongyun Han, Hongjun Yang, Young-Woo Park,
Bum Chul Kwon, and Sungahn Ko. 2020. GUIComp: A GUI Design Assistant with
Real-Time, Multi-Faceted Feedback. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. 1–13.

[19] Luis A Leiva, Asutosh Hota, and Antti Oulasvirta. 2020. Enrico: A Dataset
for Topic Modeling of Mobile UI Designs. In 22nd International Conference on
Human-Computer Interaction with Mobile Devices and Services. 1–4.

[20] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi, Wan-
ling Ding, Tom M Mitchell, and Brad A Myers. 2018. APPINITE: A Multi-Modal
Interface for Specifying Data Descriptions in Programming by Demonstration Us-
ing Natural Language Instructions. In 2018 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 105–114.

[21] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Mapping
Natural Language Instructions to Mobile UI Action Sequences. arXiv preprint
arXiv:2005.03776 (2020).

[22] Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. 2020.
Widget Captioning: Generating Natural Language Description for Mobile User
Interface Elements. arXiv preprint arXiv:2010.04295 (2020).

[23] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. 2017. Feature Pyramid Networks for Object Detection. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2117–2125.

[24] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal Loss for Dense Object Detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[25] Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning Design Semantics for Mobile Apps. In Proceedings of the
31st Annual ACM Symposium on User Interface Software and Technology. 569–579.

[26] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. SSD: Single Shot Multibox Detector.
In European conference on computer vision. Springer, 21–37.

[27] Forough Mehralian, Navid Salehnamadi, and Sam Malek. 2021. Data-Driven
Accessibility Repair Revisited: On the Efectiveness of Generating Labels for
Icons in Android Apps. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 107–118.

[28] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2018.
Examining Image-Based Button Labeling for Accessibility in Android Apps
through Large-Scale Analysis. In Proceedings of the 20th International ACM SIGAC-
CESS Conference on Computers and Accessibility. 119–130.

[29] Jake Snell, Kevin Swersky, and Richard S Zemel. 2017. Prototypical Networks for
Few-Shot Learning. arXiv preprint arXiv:1703.05175 (2017).

[30] Thomas D White, Gordon Fraser, and Guy J Brown. 2019. Improving Random
GUI Testing with Image-Based Widget Detection. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 307–317.

[31] Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao, Yayuan Xiong, Fengyuan
Xu, Haoyu Wang, Peng Gao, Zhuotao Liu, Feng Xu, et al. 2019. DeepIntent:
Deep Icon-behavior Learning for Detecting Intention-behavior Discrepancy in
Mobile Apps. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2421–2436.

[32] Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin Wang, and Peng Gao. 2019.
IconIntent: Automatic Identifcation of Sensitive UI Widgets Based on Icon Clas-
sifcation for Android Apps. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 257–268.

[33] Xiaoxue Zang, Ying Xu, and Jindong Chen. 2021. Multimodal Icon Annotation
for Mobile Applications. arXiv preprint arXiv:2107.04452 (2021).

[34] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and Understanding Convo-
lutional Networks. In European conference on computer vision. Springer, 818–833.

[35] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray,
Lisa Yu, Qi Shan, Jefrey Nichols, Jason Wu, Chris Fleizach, et al. 2021. Screen
Recognition: Creating Accessibility Metadata for Mobile Applications from Pixels.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–15.

[36] Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James Fogarty, and Jacob O
Wobbrock. 2017. Interaction Proxies for Runtime Repair and Enhancement of
Mobile Application Accessibility. In Proceedings of the 2017 CHI conference on
human factors in computing systems. 6024–6037.

[37] Nanxuan Zhao, Nam Wook Kim, Laura Mariah Herman, Hanspeter Pfster, Ryn-
son WH Lau, Jose Echevarria, and Zoya Bylinskii. 2020. Iconate: Automatic
Compound Icon Generation and Ideation. In Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems. 1–13.

https://developer.apple.com/design/human-interface-guidelines/glyphs/overview
https://developer.apple.com/design/human-interface-guidelines/glyphs/overview
https://developer.apple.com/documentation/vision/recognizing_text_in_images
https://developer.apple.com/documentation/vision/recognizing_text_in_images

	Abstract
	1 Introduction
	2 Related Work
	2.1 Analyses of Mobile App Icon Datasets
	2.2 Icon Recognition Methods

	3 iOS App Icon Dataset
	3.1 Icon Annotation
	3.2 Annotation Results Processing
	3.3 Data Analysis

	4 System
	4.1 Common Icon Classification
	4.2 Long-Tail Icon Few-Shot Classification
	4.3 Grouping with Nearby Text
	4.4 Identifying Modifier Symbols Within an Icon

	5 Evaluation
	5.1 Evaluating End-To-End Icon Recognition
	5.2 Evaluating the Usefulness of Icon Labels

	6 Discussion and Future Work
	7 Conclusion
	References

