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Figure 1: Flowchart of our system: It detects UI elements from an app screenshot. For each icon detection, it classifes whether 
the icon belongs to a common icon type. Otherwise, it uses a few-shot classifcation method to assign a long-tail icon type. To 
provide additional information, it leverages heuristics to fnd the icon’s nearby text, and locates any modifer symbol inside 
the icon. In this screen from the Apple Podcasts app, our system provides labels for all 16 icons with additional information 
(e.g., “Listen Now” text near the Play icon, a “Notifcation Dot” modifer inside the Grid icon). 

ABSTRACT 
Accurately recognizing icon types in mobile applications is inte-
gral to many tasks, including accessibility improvement, UI design 
search, and conversational agents. Existing research focuses on 
recognizing the most frequent icon types, but these technologies 
fail when encountering an unrecognized low-frequency icon. In 
this paper, we work towards complete coverage of icons in the 
wild. After annotating a large-scale icon dataset (327,879 icons) 
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from iPhone apps, we found a highly uneven distribution: 98 com-
mon icon types covered 92.8% of icons, while 7.2% of icons were 
covered by more than 331 long-tail icon types. In order to label 
icons with widely varying occurrences in apps, our system uses an 
image classifcation model to recognize common icon types with 
an average of 3,000 examples each (96.3% accuracy) and applies a 
few-shot learning model to classify long-tail icon types with an 
average of 67 examples each (78.6% accuracy). Our system also de-
tects contextual information that helps characterize icon semantics, 
including nearby text (95.3% accuracy) and modifer symbols added 
to the icon (87.4% accuracy). In a validation study with workers 
(n = 23), we verifed the usefulness of our generated icon labels. 
The icon types supported by our work cover 99.5% of collected 
icons, improving on the previously highest 78% coverage in icon 
classifcation work. 
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1 INTRODUCTION 
Icons are an essential part of mobile user interfaces (UIs), and have 
been found to be the second most frequent UI element type after 
text in mobile applications (apps) [35]. Unfortunately, unlike text 
elements, icons are not accessible by their nature and typically 
require a separate label to be specifed by the developer in order 
to become explainable to users of accessibility technologies. Ross 
et al. [28] conducted the frst large-scale analysis of the accessibility 
of mobile apps and found that more than half of clickable icons 
are unlabeled. Another study showed that due to rapid application 
iteration speed and lack of awareness of accessibility issues, more 
than two-thirds of icons and image-based buttons are missing labels 
across 77% of 10,408 Android apps [8]. In some cases, the lack of 
an explicit label on the icon may be ofset by a nearby compan-
ion element that provides a label or explanation, but our analysis 
in this paper shows that more than half of icons are standalone 
(Section 4.3). 

To address this problem, systems have been built to provide 
icon labels when they are not available [8, 10, 25, 36]. Some ask 
humans to crowdsource labels, which can be error-prone and time-
consuming. For example, Zhang et al. [36] proposed an interaction 
proxy to allow end-users to manually add labels to icons and per-
form runtime repair. More recent work has explored using machine 
learning methods [10, 25, 35] to generate icon labels based on their 
pixels. These systems apply image classifcation models to identify 
diferent icons types, and an increasing number of icon classes are 
supported in successive models. A weakness of this approach is that 
they are only able to classify icons of the supported types, and are 
unhelpful for understanding an icon not in the known set. Although 
some work leverages contextual information [8, 22, 31] to support 
more icon types with improved accuracy, the context—for example, 
the view hierarchy or source code—is sometimes incomplete or not 
accessible by icon recognition services [18, 19, 33]. The APIs to 
access view hierarchy may also change or become unavailable [30]. 
Furthermore, Zhang et al. [35] found that 59% of screens contain 
some UI elements that are not in the accessibility hierarchy, and 
94% of apps in the dataset have at least one such screen. 

Instead of using the unreliable view hierarchy, our approach 
leverages pixel-based context on app screen, including nearby text 
of icons and modifers (secondary symbols) inside icons. As ob-
served in Section 3.3.3, more than half of icons are accompanied 
by meaningful nearby text. Previous work [27] indicated that the 
nearby text can be the most relevant one among all contextual in-
formation. Another important context, modifers, may change the 
meaning of icons. For example, in Figure 10(b), adding the Disabled 
modifer to the Camera icon completely reverts its meaning. 

In order to characterize the icon recognition problem more com-
prehensively, we start our work by examining a large dataset1 of 
1Icons and screenshots in all fgures either originate from Apple apps or are mock-ups 
representative of apps in our dataset constructed using public domain icons. 

327,879 icons from iPhone apps extracted from screenshots in the 
AMP dataset [35]. We used crowdsourcing to annotate the icons 
with an initial list of 90 pre-defned icon types, and collected open-
coding labels from annotators for icons identifed outside of those 
types. We used k-means clustering to group the icons with open-
coded labels and identifed 339 more icon types. Some of these 
were more common than any in our pre-defned set, so we des-
ignated them as common types—yielding a total of 98 common 
icon types and 331 long-tail icon types. We found that 92.8% of 
the icons could be covered by the 98 common icon types. In the 
remaining 7.2% of icons, 0.5% icons were so uncommon that we 
could not classify them into a type (e.g., they only appear in one or 
two apps). In examining these long-tail icons, we found that while 
they account for less than 10% of all icons, they often expose impor-
tant app functionality and should be supported by icon recognition 
systems. For example, while the Truck (0.04%) and Shufe icons 
(0.06%) (Figure 4) occur less frequently than other common icon 
types—such as menu (2.8%) and search (4.4%) (Figure 1)—these two 
icon types are often used in delivery and music apps and provide 
access to core functionality in these apps. 

To generate labels for both common and long-tail icons in a 
broad range of scenarios—for example, when lacking access to 
accessibility metadata and the view hierarchy—we designed an 
end-to-end system that takes only screenshot pixels as input. After 
detecting UI elements in a screenshot [35] and extracting each icon, 
we ran an image classifcation model to check if an icon belongs to 
a common icon type. Otherwise, we used a few-shot classifcation 
method to assign a long-tail icon type, which utilizes the prior 
knowledge learned from the common icon types and some long-tail 
icon examples. To provide additional information, we found the 
icon’s nearby text by heuristics and examine the modifer symbols 
in an icon. We identifed seven common modifers (Figure 10) and 
synthesized a modifer dataset to assist recognition. We applied 
OCR to recognize the text modifer and trained an object detection 
model to recognize the remaining six modifers. If these steps fail 
to generate meaningful labels, crowdsourcing can be introduced to 
create icon labels. 

We evaluated the proposed system by frst examining each mod-
ule individually, then running modules end-to-end, and fnally 
conducting a validation study with 23 workers to examine the 
overall quality of our annotation and predicted labels. Our com-
mon icon classifcation model has a performance of 96.3% accuracy, 
and our long-tail icon classifcation model achieves 78.6% accu-
racy. Within 500 randomly sampled UIs, our nearby text detection 
module achieves 95.3% in accuracy in identifying relevant nearby 
text. Our modifer identifcation model also reaches 87.4% accuracy 
across 462 icons. The usefulness of our annotation and the proposed 
system is further confrmed by a validation study on 2,064 icons, 
with 96.9% annotations and 80.3% predictions considered as useful 
labels by at least one worker. 

In this paper, we make the following contributions: 

• An analysis of a large dataset of 327,879 icons we extracted 
and annotated from iPhone apps, identifying a highly uneven 
distribution that 98 common icon types contain 92.8% of 
icons, while 6.7% of icons belong to 331 long-tail icon types; 
0.5% are too niche to be classifed. 

https://doi.org/10.1145/3491102.3502073
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• A pixel-only method that generates icon labels by classifying 
common icon types, identifying long-tail icon types that 
have few examples, leveraging nearby text, and recognizing 
modifer symbols inside icons. The icon types supported by 
our method cover 99.5% of collected icons. 

2 RELATED WORK 
Our work builds upon mobile app UI datasets and uses this data as 
an important input to our icon recognition methods. Both mobile 
app UI datasets and existing icon recognition methods provide 
important context for our work. 

2.1 Analyses of Mobile App Icon Datasets 
Researchers have collected datasets to improve the understanding 
of UIs and their semantics. Deka et al. [9] collected a large-scale UI 
design dataset, called Rico, that contains over 72k screenshots with 
view hierarchies from 9,772 Android apps. Following this work, Liu 
et al. [25] extracted icons from the Rico dataset. They defned several 
heuristics to obtain the bounds of icons from view hierarchies, in 
order to crop icons from screenshots. They identifed 135 common 
icon types through an iterative open coding, and annotated 73,449 
icons extracted from Rico. The limitations of this dataset include: 
1) 18% of icons are too niche to belong to one of 135 common icon 
types and thus are not labeled; 2) view hierarchies may not match 
their screenshots in more than half of screens [21] and therefore 
cannot reliably locate icons. As a result, this dataset covers only a 
portion of existing icons on the Android platform. Through manual 
inspection, recent research has also highlighted noise and other 
quality issues within the Rico dataset [18, 19]. 

To increase coverage of icons, Chen et al. [8] leveraged developer-
provided content descriptions as the icon label. From 7,594 apps, 
they collected labels of 19,233 image-based buttons, which include 
both common and long-tail icons types. However, due to mis-
matched view hierarchies, icons may be associated with the wrong 
labels. In addition, content descriptions may be uninformative or 
low quality [28]. To solve poorly matching view hierarchies, Zang 
et al. [33] re-annotated the Rico dataset with a crowdsourcing ap-
proach. From app screenshots, the crowd workers drew bounding 
boxes and assigned one of 29 types to each icon. Without relying 
on view hierarchies, they annotated 137,282 icons, which are 40% 
more icons than in previous work [25]. 

In addition to extracting icons from mobile app datasets, Feng 
et al. [10] collected a large-scale dataset of 41,000 icons from an 
existing sharing platform for icon design. As designers use diferent 
ways to express the same icon concept, the researchers utilized an 
association rule mining method [1] to fnd frequent co-occurring 
labels, and then manually identifed 100 icon categories. 

Our dataset is similar in form to datasets considered above, al-
though it is derived from iOS rather than Android. For icons ex-
tracted from the AMP dataset [35], we used crowdsourcing and 
automatic clustering methods to annotate labels for the vast ma-
jority of icons in our resulting dataset. The total number of icon 
classes that we consider is larger than any work above, and includes 
429 classes spanning both 98 common and 331 long-tail icon types. 

2.2 Icon Recognition Methods 
Recognizing icons can beneft many tasks, including accessibility [8, 
35], UI design search and generation [5, 7, 37], app security [32], 
and conversational agents [20]. 

To identify icon types from icon pixels, Liu et al. [25] adapted a 
convolutional neural network (CNN) architecture to train a deep 
learning model that classifes 99 common icon classes in Android 
apps. Xiao et al. [32] extracted features from icon pixels with a 
variant of the SIFT algorithm and then found the closest icon type 
by a k-nearest-neighbor-like method. To facilitate web UI devel-
opment, Feng et al. [10] created a pipeline for font conversion, 
icon label prediction, and color detection from cropped icon pixels. 
Our methods also leverage icon pixels to classify icon type, but we 
applied image classifcation methods and few-shot classifcation 
methods—allowing us to support both common and long-tail icon 
types. 

Contextual information may further support icon recognition, 
and previous work has accessed the view hierarchy or source code 
for more context around icons. Xi et al. [31] found that similar 
icons may refect diferent intentions in diferent UI contexts, and 
that nearby text may help in distinguishing the icon context. They 
located contextual text by analyzing UI layout fles and icon fle 
names and fused the text with the icon pixels to classify the icon 
into several types. Li et al. [22] proposed widget captioning, a task 
to generate natural language descriptions for UI elements that are 
missing labels. Their multimodal inputs include the view hierarchy 
and screenshot pixels. LabelDroid [8] similarly framed the icon 
recognition problem as an image captioning task. They are able 
to make accurate predictions for missing accessibility labels and 
generate labels that have higher quality than the accessibility labels 
added by junior Android developers. Mehralian et al. [27] found 
that icon images are insufcient in representing icon labels, and pro-
posed a context-aware label generation approach that outperforms 
LabelDroid [8]. They incorporated diferent sources of data from 
the view hierarchy (e.g., App Category, Activity name, Android 
id) to predict an icon label. Zang et al. [33] framed the problem 
as an object detection task and built a multi-modal pipeline that 
recognizes icons by leveraging the view hierarchies in addition to 
icon visual features. It predicts the most commonly used 29 icons 
in Android apps. 

Our system also leverages context information (e.g., nearby text), 
but only uses pixel information without requiring access to app 
metadata (e.g., view hierarchy). Comparing with the work above, 
our system achieves similarly high accuracy in common icon clas-
sifcations, and can also recognize long-tail icon types with few 
samples. In addition, our system detects nearby text and recognizes 
several modifers (Figure 10) in icons to provide more semantics in 
labeling. 

3 IOS APP ICON DATASET 
We examined existing icon datasets [6, 10, 25, 33], and attempted to 
emulate their best practices while mitigating some of their limita-
tions. In particular, we took note of the problems with determining 
icon bounding boxes from the view hierarchy, and chose a diferent 
method using human-defned bounding boxes. We also designed 
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Figure 2: In our icon annotation interface, we highlight an icon in the displayed screenshot. Annotators frst select an icon 
category and then pick a pre-defned icon type. They can see four examples of each icon type on the annotation interface and 
fnd more examples in our annotation instructions. If an icon does not belong to any pre-defned icon type, annotators write 
a concise description. They can also skip a task if it does not contain any icon. 

our annotation process so that annotators can pick a label for pre-
defned icon types and write labels for other icons. This allowed 
us to understand the potential problems that might be associated 
with long-tail icon type identifcation and develop techniques to 
address them. 

3.1 Icon Annotation 
Our icons are extracted from the AMP dataset [35], a large-scale 
dataset that contains recently collected iOS app screens. In the AMP 
dataset, workers annotated a bounding box and a UI type for each 
UI element on every app screen. While the icons are identifed in 
the dataset, the content of the icons are not labeled. To construct 
labels, we picked UI elements annotated with the “Icon” UI type and 
applied an additional set of annotation processes. The AMP dataset 
contains screens from 77,637 UIs among 4,068 top free iPhone apps 
in 22 app categories [35]. From this dataset, we extracted 338,343 
icons from the 66,364 screens within 3,910 apps that contained 
“Icon” annotations. 

There are 11,273 screens without any icon annotations; we man-
ually examined a subset and found most of them to be screens 
with a popup dialog on blurred background, full text screens (e.g., 
privacy policy), or welcome / login screens that show text and a 
big picture to present the content. We also found that 156 apps did 
not contain any screen with icons, usually because the dataset only 
included screens for the initial welcome screens. This may have 
occurred because of an issue during the app crawling (e.g., could 
not log in without special credentials). We further explored the 
dataset to understand how frequently annotators may have missed 
annotating icons that were actually present. From screens without 
any icon annotations, we randomly sampled 100 screens and found 
that 93 screens did not contain any icons, 1 screen contained an 
icon in a blurred background, and 6 screens contained icons (either 
missed in annotation, or annotated as “Picture.” These minor faws 
in the original dataset annotation [35] could be addressed in future 
work. 

Annotation Task: Twenty workers annotated icon labels based 
on the icon image and its context on the app screen. As shown in 
Figure 2, for each task we showed an app screenshot and highlighted 
an icon inside it. Annotators either picked a pre-defned icon type, 
or wrote a few words as a concise icon label. They could also report 
if the task did not contain a proper icon—such as when the icon is 
occluded by another UI—or when the highlighted element was not 
an icon. The details of workers we recruited for data annotation 
and the instructions that annotators received can be found in our 
supplementary materials. 

Pre-defned Icon Types: We identifed pre-defned icon types 
from multiple sources, including previous icon-relevant work [6, 
10, 25, 33], manually examining icon images in our dataset, and 
analyzing common text in developer provided icon labels. This led 
to a fnal list of 90 pre-defned icon types, which can be found in 
our supplementary materials. 

Annotation Logistics: Each icon was annotated by two an-
notators; when there was a disagreement, we introduced a third 
annotator. Finally, we invited a QA (Quality Assurance) team to 
verify and correct the icon labels. 

3.2 Annotation Results Processing 
We removed annotations that were not proper icons as reported by 
annotators, leaving 327,879 icons. Of these remaining icons, 91.2% 
(298,928) belong to the 90 pre-defned icon types. We found the top 
three most frequent icon types to be Back (11%), Right Arrow (10%), 
and Close (7%). 

We corrected missed icons belonging to the pre-defned types. 
In some cases, annotators forgot or neglected the pre-defned icon 
types and instead wrote their own labels. From the clustered long-
tail icon types, we found several clusters that were the same or 
similar to the pre-defned types. For example, Bag is a pre-defned 
icon type, yet we found Bag and Basket clusters during our long-tail 
icon type processing. Icons in such clusters were reassigned to their 
appropriate predefned icon type category. 
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icon. Therefore, we tokenized the result in order to cluster 
long-tail icon types. 

We removed company logo icons. Some of annotated labels 
contained the keyword “logo.” Most are company logos which ap-
pear with low frequency, except for some log-in providers like 
Apple, Google, Facebook, and Twitter which were already in the 
pre-defned icon types. 

For the icons outside the pre-defned types, we applied clustering 
to fnd long-tail icon types. An overview of the clustering process is 
shown in Figure 3, in which we leveraged both the icon pixels and 
the labels provided by annotators. The steps in the cluster process 
are: 

(1) Cluster by Pixel: Icon pixels were used to perform initial 
clustering: we extracted icon features from an image clas-
sifcation model trained with pre-defned icon annotations 
and then performed k-means clustering to group icons not 
assigned to the pre-defned types. To fnd the optimal num-
ber of clusters, we utilized the elbow method [11]. More 
specifcally, we calculated the mean value of the distances 
between each point and the corresponding cluster centroid 
to measure the cohesion of the clustering results—a lower 

score indicates a better clustering. In our case, to ensure 
each cluster only contains icons of the same type, we used a 
slightly larger number of clusters. Based on the computed 
scores from diferent numbers of clusters, we selected the 
value k = 4000 after the elbow point as the optimal number 
of clusters. 

(2) Cluster by Label: Labels written by annotators were then 
used to further merge the highly-related clusters. As most 
labels are short—comprised of less than fve words—we di-
rectly use a simple yet efcient method to further merge 
clusters. In each cluster, we picked the keyword with highest 
frequency among all annotated labels. Since our annotators 
might use diferent ways to describe the same icon (e.g., in 
Figure 4 top, the annotators used truck, delivery truck, and 
lorry), we tokenized each label, lemmatized each word to 
consider diferent infected forms as a single item, and calcu-
lated the frequency of each word. After defning a keyword 
for each cluster, we merged clusters that share the same key-
words, re-calculated the keywords in the new clusters, and 
repeated the merging process until there were no clusters 
with the same keyword. 

(3) Assign Icons to Cluster: In each new cluster, we calcu-
lated the distance between each icon and its corresponding 
centroid. We assigned icons to a cluster that were within a 
distance of β = 5.6 from centroid. This value was chosen by 
observing the clustering results. 

(4) Repeat Until Convergence: We repeated steps 1-3 above 
to fnd more clusters until the clustering results contained 
mostly irrelevant icons in each cluster. We manually merged 
some clusters with similar keywords that clearly should have 
been merged but were not—for example, because lemmatiza-
tion was not comprehensive enough. 

(5) Verifcation: Once we obtained our fnal icon types, we 
asked crowd workers to verify the clustering results. During 
verifcation, annotators corrected 2,265 icons. The keyword 
of each cluster became the long-tail icon type. 
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Table 1: Statistics of our icon dataset. As the name “common” indicates, almost every screen, every app, and every app category 
contains common icons. Long-tail icons have lower frequency, but still appear in many screens, more than half of apps, and 
all app categories. 

Common Icons Long-tail Icons Unclassifed Icons Total 

# of Icon Types 98 331 - 429 
# of Icons 304,310 22,088 1,481 327,879 
# of Screens 65,906 14,376 1,234 66,138 
# of Apps 3,899 2,399 739 3,904 
# of App Categories 22 22 22 22 

Following long-tail icon clustering, we discovered that eight 
long-tail icon clusters (e.g., Library, Radio) contained more icon 
examples than some pre-defned icons. Due to their high frequency 
in our dataset, we combined these eight high occurring clusters with 
the pre-defned icon types to create the set that we call common 
icon types. 

3.3 Data Analysis 
After processing the annotation results, we found that the 98 com-
mon icon types have 304,310 icon examples (avg = 3140, min = 
409, max = 36098, std = 5404). The 331 long-tail icon types have 
22,088 icon examples (avg = 67, min = 1, max = 399, std = 84). 
There are also 804 company logos with 3,324 examples, which we 
do not include in the scope of this paper as each logo is often used 
in only one or two apps. Next, we present some initial fndings. 

3.3.1 High-Level Distribution. From Table 1, we found: 
• Every app category has apps that contain both common 
icons and long-tail icons. 

• Almost every app (99.9%) contains some common icons, and 
more than half of apps contain long-tail icons. 

• Almost every screen (99.6%) contains some common icons, 
while only 21.7% of screens contain long-tail icons. 

Further inspecting Figure 5, we found a highly uneven distribu-
tion resembling a long-tail distribution. The count of all long-tail 
icons is similar to the count of the most frequent icon type. There-
fore, the frequencies of long-tail icons are almost unnoticeable in 
the plot. Consequently, we used the logarithm of the distribution 
to better present the trend of long-tail icons, and found that the 
logarithm frequency of long-tail icons drops almost linearly. 

3.3.2 App Categories. We analyzed the distribution of common 
and long-tail icons contained within apps aggregated across app 
categories. For each icon type, we counted the number of app 
categories in which it appears within an app. For the 98 common 
icon types, on average, a common icon type shows up in 21.89 app 
categories out of 22 possible categories. In other words, almost all 
common icons show up in apps in almost all app categories. In 
contrast, a long-tail icon type, on average, appears in apps of only 
9.47 app categories. This result suggests that common icon types 
may support basic functionality that is needed across almost all app 
categories, while long-tail icon types expose specifc functionality 
that only exists in some app categories. 

As shown in Figure 6, the ratio of long-tail icons and common 
icons varies across diferent app categories (avg = 6.8%, min = 

2.9%, max = 8.9%, std = 1.7%). It is worth noting that long-tail icons 
have a higher occurrence in Photo & Video (8.9%) and Navigation 
app categories (8.9%). Photo & Video apps often involve many photo-
editing related icon types, such as Crop and Color Filter. Similarly, 
Navigation apps require many transport-specifc (e.g., Bus) and 
place-related icons (e.g., Cutlery icons for restaurants) that belong 
to long-tail icon types. This fnding further suggests that while 
common icons are prevalent across all app categories, long-tail 
icons are also indispensable, especially in some app categories. 

3.3.3 Properties of Icons. Within our dataset, we observed that 
the semantics of icons are relevant to many factors, including their 
basic shapes, nearby text, modifers (secondary symbols), and other 
contextual information on the app screen. In this section, we dis-
cuss the details of our observations, motivating the design of our 
proposed pipeline. 

Nearby Text: There are three typical design patterns involving 
icons and text: 

(1) Standalone icons must indicate their functionality without 
requiring any nearby text. User interface guidelines [3] often 
recommend this design practice only for common icon types 
that are used across many apps. For example, in Figure 9(f), 
the familiar Close icon is used in many apps and does not 
need accompanying text. 

(2) Partial icons provide some indication of the user experience 
but require nearby text for the user to fully understand its 
meaning. For example, Figure 9(g) shows a Comment icon 
with a number nearby (the count of comments), and Fig-
ure 9(j) shows a Play icon next to the text “Slideshow” that 
completes the explanation of what tapping in that area will 
do. 

(3) Duplicate icons have the same or similar meaning as their 
nearby text. Although these icons seem redundant, design 
guidelines recommend this practice, as it can still reduce 
users’ cognitive load in recognizing icons. When an icon 
has multiple meanings in diferent scenarios, the nearby text 
determines the most suitable one. For example, in Figure 9(a), 
the Error icon is accompanied with a “Report” text, which 
both help users disambiguate the intent. More examples can 
be seen in tab bar of Figure 9(c). 

We randomly sampled 500 screens (about 22 screens from each 
app category) and manually grouped nearby text for 2,535 icons 
in 500 screens. 1,183 (46.7%) icons were standalone, 995 (39.3%) 
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(a) Distribution of the number of icons (b) Distribution of the logarithm of the number of icons

Figure 5: Highly uneven distribution of icons across icon types, which resembles a long-tail distribution. The count of all 
long-tail icons is similar to the count of the most frequent icon type. 
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Figure 6: Bar chart of icon frequency and the percentage of long-tail icons (the number above each bar) in each app category. 
Each app category has similar number of apps and screens collected. The Lifestyle app category in particular contains more 
icons than other categories. Some app categories (e.g., Photo & Video, Navigation) have a higher percentage of long-tail icons 
than other categories (e.g., News, Magazines). 

groupings used the partial design pattern, and 357 (14%) groupings 
used the duplicate pattern. This result confrms the importance of 
recognizing basic shape and contextual information. 

Modifers (Secondary Symbols): In examining our icon dataset, 
we noticed that some icons are comprised of two symbols: one 
main symbol showing the primary concept of the icon, and another 
smaller symbol providing additional information. We call these 
second smaller symbols modifers. For example, the top-left icon in 
Figure 10 (c) shows the folder symbol as the primary concept with 
a star modifer indicating that the icon might be a Favorite Folder. In 
addition, modifers may change the meaning of icons. For example, 
in Figure 10(b), adding the Disabled modifer to the Camera icon 
completely reverts its meaning. Efciently recognizing modifers is 
also crucial for understanding icons. 

From 500 sampled screens (Section 4.3), we manually identifed 
modifers inside icons. Among 2,535 icons, 67 (2.6%) contained a 
modifer symbol: short text (19), Add (15), Disabled (7), Star (5), 
Notifcation Dot (5), Checkmark (4), and Clock (2). The remaining 
modifers only had one example, including Location, Plot, Currency, 
Music, Lighting, Recycle, Snowfake, Down Arrow, Search, and Play. 

Summary: Informed by these fndings, we designed an end-to-
end system—towards complete icon labeling—by leveraging deep-
learning techniques and crowdsourcing methods. We designed 
two classifcation models to recognize the basic shape of icons, a 
heuristics-based method to fnd contextual information (i.e. nearby 

texts), and an object detection model to identify modifers. Crowd-
sourcing will be introduced if all of the other methods fail. 

4 SYSTEM 
Figure 1 shows the fowchart of our system, which takes a screen-
shot as input and returns a label for each icon in the screen. First, 
we run an object detection model based on Zhang et al. [35] to 
recognize all UI elements. Then, we extract the pixels for each icon 
detection. Although the bounding box of the icon detection may 
not be exactly square (e.g., More icon, Shufe icon in Figure 4)—as 
icons are nevertheless mostly square in UI design—we extend the 
bounding box to be a square using the larger-side length, main-
taining the original center. Next, we crop the icon from screenshot 
using this expanded square bounding box. Maintaining a constant 
aspect ratio will help when applying ML methods. 

For each detected and extracted icon, we run an image classi-
fcation model to determine if the icon has a common icon type. 
Otherwise, we use a few-shot classifcation method to assign a 
long-tail icon type. We also leverage heuristics to fnd the icon’s 
nearby text, and employ an object detection model to locate any 
modifers within the icon. If the icon label is still unknown after 
these steps, we introduce crowdsourcing method to provide a label. 
However, this is seldom necessary as our system achieves almost 
complete coverage of icons. The details of each step are described 
in the following subsections. 
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4.1 Common Icon Classifcation 
An image classifcation model is trained to classify common icon 
types. We leveraged ResNet-50 [12]—which is pre-trained on the 
ImageNet dataset—and fne-tuned the model for icon features as 
described in previous work [8, 10, 27]. 

Data: In addition to the 98 classes of common icon types, the 
“long-tail” class is assigned to all icons not in the common icon types. 
When the model classifes an icon as a “long-tail” type, we apply the 
few-shot classifcation method described in the next section. For 
each icon type, we pick approximately 80% of examples as training 
data, 10% of examples as validation data, and 10% of examples as 
testing data. To avoid the data leakage problem [16], we split the 
dataset in a way that, for a given icon type, icon examples from one 
app will be in only one of the splits. 

Handle Class Imbalance: As shown in Figure 5, our dataset 
is highly imbalanced—the most frequent icon type has 36,098 ex-
amples while the least frequent one has only 439 examples. To 
handle such an imbalanced dataset, we use focal loss [24] so that 
the weight for the “easy examples” is reduced to let the network 
focus on training the “hard examples.” That is, instead of giving 
equal weighting to all training examples, focal loss down-weights 
the well-classifed examples. 

Model Details: We crop each icon into a square as described in 
Section 4, and scale it to the input size (256x256 pixels). Each pixel 
keeps its RGB channels (normalized from [0,255] to [0,1]). We train 
our model on 4 Tesla V100 GPU for 50 epochs with a batch size of 
128 and an initial learning rate of 0.001. We iteratively update the 
model weights using the Adam optimizer [17]. 

Evaluation: Our model achieves 96.3% accuracy on the testing 
dataset, and 99.0% accuracy on the training dataset. For each com-
mon icon type and “long-tail” icon type, we compute its recall and 
precision. The calculated macro precision is 92.4% and macro recall 
is 89.5% (macro = the averages of the precision and recall of each 
class, as reported in Liu et al. [25]). 

As observed in the icon dataset and in our model predictions, 
icons may belong to multiple classes. For example, the frst icon in 
Figure 7 has Location (because of the Location Pin symbol) as the 
annotated icon type. It is predicted as Home (because of the House 
symbol inside), while Location has the second highest confdence in 
prediction. Both symbols are important to show the full semantic 
meaning of the icon. Among 1,511 errors in our testing results, we 
manually observed that 182 icons have multiple important symbols. 
This fnding motivates us to locate additional modifying symbols 
within an icon, which we will discuss in Section 4.4. The confusion 
matrix in our supplementary materials also indicates often confused 
common icon types (e.g., Location and Map). 

file → play cloud → sun currency → homelocation → home mail → folder

Figure 7: Examples of icons that contain two important sym-
bols. Both symbols are important to show the full semantics 
of the icon. 

4.2 Long-Tail Icon Few-Shot Classifcation 
As each long-tail icon type has a relatively small number of exam-
ples, we frame long-tail icon classifcation as a few-shot learning 
task. Humans can easily recognize new objects based on few sam-
ples they have seen—the few-shot learning method is built upon 
this observation. 

Modeling: We adopt the prototypical model [29] to perform 
an episode-based training strategy to recognize long-tail icons. 
For each episode, we sample a subset of k icon types from the 
whole set of long-tail icon types and then sample m support icons 
and n query icons for each icon type (also called a k-way m-shot 
classifcation problem). The support icons are used to construct 
a prototype of the corresponding icon type, and the query icons 
are icons needing to be classifed. By training the model through 
episodes, the model can learn to quickly extract the key features 
for each icon type. We then extract features from every support 
and query icon through a backbone feature extraction model, and 
compute prototypes for each icon type by calculating the mean 
features using the support icons. For each query icon, we assign 
the nearest prototype’s icon type as the predicted icon type. This 
method may alleviate overftting issues, which are common when 
training data is limited. This method can also be easily generalized 
to new icon types, given some support samples, as the model learns 
to compare the diference between each prototype and the query 
icons instead of merely extracting the key features for each icon 
type. 

For the backbone model, we build upon our common icon clas-
sifcation model, as previous work [34] shows that lower layers 
can capture basic features—such as vertical lines and circles—that 
are shared across diferent icon types. We remove the fnal fully 
connected layer, add one fully connected layer, and train the last 
two fully connected layers to enable the model to quickly extract 
specifc features from any icon type instead of the predefned set of 
icon types. We use cross-entropy loss as our loss function. When 
training the model, we fx k = 50,m = 2, n = 20 for batch training 
to force the model to extract features from few examples. We ex-
perimented with diferent combinations of these values but found 
no obvious diferences in the clustering results. For inference, we 
sample all icons in each icon type in the training dataset to com-
pute prototypes and test on the testing dataset. We calculate the 
Euclidean distance between prototypes and the query icon to decide 
the nearest prototype. Other dissimilarity metrics, like Mahalanobis 
distance, could also be substituted here to train the model and per-
form inference [29]. For each icon type, icons from the same app 
will only exist in one split. Since 47 icon types only appear in one 
app, we do not train or evaluate these icon types—the support and 
query icons in these icon types are highly similar or exactly the 
same. 

Data: To train and evaluate the long-tail icon dataset, we use 
the corresponding “long-tail” parts in the splits in Section 4.1. If an 
icon type only has examples in two apps, we will keep icons in one 
app in training dataset and icons in another app in testing dataset. 

Evaluation: We considered two baselines. The frst baseline di-
rectly used features extracted from our common icon classifcation 
model without fne-tuning (termed kNN). Another baseline is the 
Relation Network [25], which models the problem as a regression 
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Table 2: Evaluation of three few-shot learning methods on 
long-tail icons. Prototypical outperforms two baseline meth-
ods in every metric. 

Precision Recall F1 Accuracy 

kNN 67.3% 78.0% 66.6% 68.5% 
RelationNet 71.6% 78.3% 70.2% 74.6% 
Prototypical 75.7% 80.7% 74.5% 78.6% Figure 8: Example icons that depict the same concept from 

diferent angles or have diferent levels of abstraction. Long-
tail icons may have such diferent distributions between 
training dataset and testing dataset. 

at a diferent abstraction level, and the Ruler icon in Figure 8(b) 
are actually two diferent kinds of rulers. In these cases, it is hard 
for models to correctly predict the right icon type. The details of 
per-class results and the confusion matrix can be found in our 
supplementary materials. 

problem.         
tures of the query icon, and uses another convolution and fully 
connected layers to learn a relation score. 

We adopted precision, recall, F1-score and accuracy as our met-
rics. Unlike the typical evaluation strategy that calculates average 
results from a number of randomly sampled episodes—including 
support and query icons)—we treated all icons in our test dataset 
as the query icons and obtained support icons from the training 
dataset. We chose m = 30 support icons when performing inference 
as we found this number achieved the best results on the validation 
dataset. 

Table 2 shows the results of all models. Our model achieved 
78.6% accuracy, 5.3% and 14.7% higher than the performance of the 
Relation Network and kNN models. All models performed well in 
detecting some simple icon types when the icons in the training 
dataset are highly similar to the icons in the testing dataset, with 
only minor changes. For example, the Male Sign icons and Live 
View icons in (Table 3-E1/E2)) only have minor diferences in colors 
and line widths compared with icons in the training dataset. While 
the kNN model learned to extract common patterns appearing in 
common icon types, it did not generalize well to unseen feature 
types. For example, in Table 3-E3, the Shield icon has two colors 
on two sides. Because this pattern exists in the Contract type and 
never appears in common icon types, the model was confused by 
the existence of this feature. In contrast, both the relation network 
and our prototypical network efciently recognized the Shield icon. 

We further analyzed the failure cases and observed that for some 
icon types, the training dataset has a diferent distribution from the 
testing dataset. The examples were either captured from diferent 
angles of the same object or had diferent levels of abstraction of the 
real object. For example, the Battery icon in Figure 8(a) is captured 

It concatenates mean features of support icons and fea-

Table 3: Examples of icon predictions in few-shot learning 
methods. Baseline methods provide several wrong predic-
tions (red). 

E1 E2 E3 E4 E5 

Live Light 
kNN View Male Contrast Bulb Pizza 

Live Thumbs 
RelationNet View Male Shield Female Down 

Live 
Prototypical View Male Shield Cup Pin 

(a) Battery (b) Ruler (c) Umbrella (d) Binoculars (e) Watch

Train

Test

4.3 Grouping with Nearby Text 
Nearby text may contain useful information for icon labeling, and 
thus we explored heuristics for grouping that nearby text to provide 
a better icon label. When our system identifes a nearby text, it 
appends the text to the classifcation label (if they are not the same) 
to provide more information to users. 

Based on observations in Section 3.3.3, from our UI element de-
tection results, we fnd elements with the icon, text, and container 
types in our UIs and group the icons with their nearby text. Con-
tainers are a special type that often show a clear visual boundary 
and contain one or more UI elements. 

When an icon is within a container, we apply a set of heuris-
tics based          

text detections: 
• If the container only contains one icon and one text element, 
we consider that text to be the nearby text. For example, in 
Figure 9(a), the Disabled icon is grouped with “Block User” 
text. 

• If the container contains one icon and several left-aligned 
text elements, we consider the frst element to be the label 
for the icon. For example, in Figure 9(b) bottom, the Box icon 
is grouped with “Extra Large Box” text. 

• If the container has several icons and several text elements, 
we frst calculate the distance between each icon and each 
text element and take the pair which has the shortest dis-
tance. For example, in Figure 9(d), the Wallet icon would be 
grouped with the “ATM” text and the Right Arrow icon does 
not get any nearby text. 

hen an icon is not within any container, we leverage the 
ial relationship between the icon and text detections (e.g., align-
t, distance) to infer grouping: 
• We frst fnd all nearby text candidates within a distance 
of α pixels from the icon. We obtain empirical threshold 
α = 1.25 ∗ max(icon_width, icon_height) after observing 
100 screens. 

• If only one text candidate has X or Y overlap with the icon, 
we pick that as the label. For example, in Figure 9(g), the Chat 

on the number and types of contained icon detections
and 

W
spat
men
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Picture ContainerText Grouping Result

Figure 9: Examples of nearby text grouping. Based on container detections (green) and UI spatial relationship, our heuristics 
groups each icon (pink) with a nearby text (red), if any. The groupings are visualized in blue. 

icon is grouped with the “1630” text in the same column; 
in Figure 9(h), the Map icon is grouped with 

Nearby T

the “Station

ext Grouping Res

 
Locator” text in the same row. 

•             
with the icon, we pick the text element that is frst in the 
reading order. For US English systems, we pick the top-most 
and left-most element. This approach was chosen after ex-
amining 100 screens. For example, in Figure 9(e), the green 
icon has two text detections in the same row, and should be 
grouped with “Add almost anything” text. 

If there are multiple text candidates that have X or Y overlap

Evaluation: To evaluate the performance of the nearby text 
grouping, we used the annotated data from Section 3.3.3. Our heuris-
tics achieved 92.8% precision, 98.7% recall, 95.6% F1 score, and 95.3% 
accuracy. 

Checkbox

4.4 Identifying Modifer Symbols Within an 
Icon 

To further improve our icon labeling, we explored detecting the 
secondary modifer symbol. When our model detects a modifer 
inside the icon, we append the modifer label to the classifcation 
label (e.g., Camera, Disabled) to provide more information to users. 

Type of Modifers: As observed in Section 3.3.3, there are many 
modifers we detected in the sampled icons. In the scope of this 
paper, we pick the top 7 modifers (shown in Figure 10) to demon-
strate our system. It is possible to support more modifer types with 
additional data. 

Synthetic Dataset: Very few icons include modifer symbols 
(only 2.6%), and each symbol has very low frequency. Therefore, 
we created a synthetic dataset that contains enough data to train a 
model (shown in Figure 11). Adding modifer examples on existing 
icons seems a straightforward idea, but we need to take into account 
the following considerations: 

• Color: We removed the synthetic examples that have a mod-
ifer in a similar color as its surrounding icon pixels, as the 
modifer would be invisible. 

• Position: We observed the pattern of a modifer’s position 
in icon examples—the Disabled modifer often covers the 
whole icon, and the Notifcation Dot modifer often appears 
on the top-right. 

• Relative Size: Disabled modifers often have a width be-
tween 80% to 100% of the icon width, and Notifcation Dot 
modifers have a width between 7% to 20% of the icon width. 
The remaining modifers have a width between 25% to 60% 
of the icon width. 

• Examples: To create a short text example, we randomly 
picked one word from the text detections in the dataset 
[35]. To create a Notifcation Dot, we created a solid circle 
with random color. To create a Disabled symbol, we drew 
a diagonal line, and sometimes also added a circle. Other 
modifer types are all in our common icon types; therefore 
we picked 500 examples of each modifer from common icon 
dataset, and applied the food fll algorithm [13] to remove 
the background color of these examples. 

In total, we synthesized 35,389 examples of each modifer. Fig-
ure 11 shows some examples of the synthesized icons. 

Modifer Identifcation Model: Text modifers can be recog-
nized by OCR [4]. For the remaining 6 modifers, we experimented 
with both image classifcation and object detection models to detect 
modifers inside icons. Our image classifcation (IC) model uses Mo-
bileNetV1 [14], and our object detection (OD) model applies the SSD 
(Single Shot MultiBox Detector) [26] model with MobileNetV1 [15] 
as the backbone. Since the size of modifers are relatively small 
(compared with icons), we also include a feature pyramid network 
(FPN) [23] that uses a pyramidal hierarchy of deep convolutional 
networks to extract the image features. Each model is trained on 
4 Tesla V100 GPU for 100 epochs, with an initial learning rate of 
0.001. 

Evaluation: Both models achieved high accuracy on our syn-
thetic testing dataset: the IC model achieved 96.7% accuracy, and 
the OD model achieved 95.2% accuracy. To evaluate the actual per-
formance on real icons, we manually picked 463 icons from our 
icon dataset (half icons contain modifers). The OD model achieved 
87.4% accuracy (87% precision, 82% recall, and 84% F1 score), which 
outperformed the IC model (84.4% accuracy, 90% precision, 67% re-
call, and 74% F1 score). We also found that the IC model performed 
worst on Notifcation Dot (small circles are common inside icon, 
and may not provide a strong signal in classifcation), while the OD 
model performed worst on Disabled modifers, most likely because 
it is challenging for OD models to handle objects that occupy the 
full image. 
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Modifiers - noun 
project

(e) add (f) checkmark (g) clock(b) disabled(a) text (d) notification(c) star

(f) clock(c) notificationsabled (d) add (e) checkmark(b) star

re from noun project.  
The rest base icon and modifiers all come from apple first-party apps 

Modifiers - synthesised - noun + apple apps

Figure 10: Example icons that contain top seven modifer symbols. 

Modifiers - noun 
project

(e) add (f) checkmark (g) clock(b) disabled(a) text (d) notification(c) star

(f) clock(c) notification(a) disabled (d) add (e) checkmark(b) star

Only the star modifiers are from noun project.  
The rest base icon and modifiers all come from apple first-party apps 

Modifiers - synthesised - noun + apple apps

Figure 11: Examples of the synthesized icons. We augmented modifer symbols on existing icons. Note that we did not have to 
augment text modifers, as we used OCR [4] to recognize text in icon. 

5 EVALUATION 

(a) di

In the previous section, we evaluated each step of our system in-
dividually. In this section, we evaluated our system as a whole. 
We performed an end-to-end icon recognition from screenshot 
pixels, and conducted a validation study with workers to rate the 
usefulness of labels. 

5.1 Evaluating End-To-End

Only the star modifiers a

 Icon Recognition 
We evaluated the overall performance of our classifcation model 
on “imperfect” results from object detection models and also docu-
mented the errors that propagated from each step. 

Dataset: We used the same test set from Section 4.1 and Sec-
tion 4.2 to avoid the data leakage problem. In total, we obtained 
32,989 test samples (30,352 common icons and 2,637 long-tail icons). 

Procedure: From UI detection results, we cropped all icon detec-
tions, and attempted to match with overlapping icon annotations 
in our testing dataset. When an icon detection and an icon annota-
tion had any overlap, we used the annotation label as the ground 
truth label for that icon detection. We cropped all matched icon 
detections into a square, as described in Section 4. We ran each icon 
through our common icon classifcation model; if the prediction 
result was “long-tail” or the confdence was lower than predefned 
thresholds (empirically defned using the validation dataset), we 
ran the few-shot long-tail classifcation method to fnd a label. 

Object Detection. 93.8% of testing icons were successfully rec-
ognized by the UI detection model (84% precision, 95% recall and 
89.2% F1.). We found that larger and more colorful icons were more 
likely to be predicted as “Picture,” which are 1.9% of the testing 
icons. We hypothesize that performance may be further improved 
by using heuristic-based post-processing of Picture detections. 

For the remaining 4.3% missing icons, we noticed two situations 
apart from model errors. First, some icons appear in the background 
of UI and should ideally not be detected. However, our icon dataset 
still included them. Second, a portion of these icons are the top-left 
Return to previous app icon supported by iOS, which enables the 
user to return to the previous application: this is not an icon from 
the app itself. 

Icon Classifcation. We cropped all matched icon detections 
into a square, as described in Section 4. We ran each icon through 
our common icon classifcation model. If the prediction result was 
“long-tail,” we ran our few-shot long-tail classifcation method to 
fnd a label. Among all matched detections, our system achieved 
90.7% accuracy. 

For icons in common icon types, our system correctly classifed 
91.1% of them; for icons in long-tail icon types, our system correctly 
classifed 79.5% of them. Both are slightly lower than the results in 
Section 4.1. This indicates that our models are robust to bounding 
boxes from the object detection results, which may be less accurate 
than the bounding boxes from annotations. We also noticed that 
the precision of long-tail icons was lower (60%), which is due to our 
higher confdence thresholds for common icon types—causing the 
common icon classifcation model to send some lower-confdence 
common icons into long-tail icon classifcation. Detailed results can 
be found in our supplementary materials. 

5.2 Evaluating the Usefulness of Icon Labels 
We further confrmed the usefulness of the labels generated by our 
system with a validation study. To reduce bias, we recruited 23 
workers who were not involved in the previous icon label annota-
tion task. Only people without disabilities participated in the study, 
even though the primary motivation of our work is accessibility. In 
this case, we wanted to verify the accuracy of our system with peo-
ple who were able to perceive the icons directly. Future work may 
involve additional studies with blind or low-vision screen reader 
users in the context of actual UI and accessibility experiences. 

Icon Dataset: For each icon type, we randomly picked fve icons 
from our testing dataset. For a given icon type, we picked icons 
from the diferent apps, so that the icons have dissimilar designs. 
In total, we obtained 2,064 icon examples (490 common icons and 
1,574 long-tail icons2). 

Icon Label Generation: We prepared the following four labels 
for each icon using its screenshot pixels: 

233 long-tail icon types have less than fve examples in the testing dataset, and therefore 
we take all of their available examples. 
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(1) The annotated icon type was extracted from its previous 
annotation. This helps us understand the quality of our clus-
tered icon types, and the label usefulness when our model 
achieves perfect accuracy. 

(2) The predicted icon type was recognized by the end-to-
end evaluation method in Section 5.1, without using existing 
annotation bounding boxes. 

(3) The nearby text was obtained by running nearby text group-
ing heuristics on the screenshot UI detection results. The 
text content was then extracted by OCR API [4]. We found 
nearby text in 1,264 (61.2%) icons. 

(4) The modifer symbol was predicted by our object detec-
tion model. Only 50 (2.4%) icons had modifers detected in-
side, which is similar to the low frequency noted in Sec-
tion 4.4. 

Procedure: For each icon, a worker rated the usefulness for each 
of the four labels mentioned above. Each icon was rated by two 
workers. For the annotation labels and prediction labels, we adopted 
a three-point Likert-type scale for usefulness, with 1–not useful, 2– 
somewhat useful, and 3–very useful. For nearby text and modifers, 
we asked whether the additional information is relevant to the icon. 
We showed the corresponding UI screenshot for each icon to help 
workers better understand the icon. The rating interface can be 
found in supplemental materials. 

Result: For these four labels, we frst calculate Cohen’s κ to 
measure the agreement between two ratings, and then elaborate 
the detailed scores for each label. We considered two strategies: a 
relaxed strategy and a strict strategy. For the relaxed strategy, we 
took the best rating for each icon. For the strict strategy, we took 
the worst rating. 

• Annotated Icon Type: Cohen’s κ for annotation labels was 
0.28, which indicates a fair agreement between two ratings. 
Under the relaxed strategy, 97.19% labels were considered as 
Very Useful, and only 0.73% as Not Useful. While diferent 
people may have diferent points of view on each label, this 
shows the upper-bound of the usefulness of our icon dataset. 
Under the strict strategy, we still had 88.23% labels consid-
ered as Very Useful, 7.61% as Somewhat Useful and only 
3.39% (70/2064) as Not Useful. Among these "Not Useful" 
icons, we found that 52.8% (37/70) icons had two extreme 
labels: as one rater thought it was Very Useful, while another 
thought it was Not Useful. These results validate that our 
annotation label can efectively help end-users understand 
the meaning of icons. 

• Predicted Icon Type: For the predicted label, we found 
Cohen’s κ to be 0.66, which indicates a substantial agreement 
between the two ratings. We found that 82.75% labels were 
considered Very Useful, and 13.81% (285/2064) as Not Useful 
under the relaxed strategy. Among those 13.81% Not Useful 
labels, 89.9% (256/285) icons were predicted inaccurately, 
which indicates the improvement room of our classifcation 
models. For the strict strategy, only 5.86% more labels were 
considered as Not Useful, with the rest 80.33% icons (72.22% 
Very Useful, 7.61% Useful) provided meaningful labels to end-
users. This result confrms the usefulness of our classifcation 
models. 

• Nearby Text: As some icons do not have nearby texts, we 
removed the ratings for these icons. Cohen’s κ for nearby text 
was 0.67, which indicates a substantial agreement between 
two ratings. Among these results, 91.85% were considered 
as Relevant to the icon under the relaxed strategy, which is 
consistent to our evaluation in Section 4.3. The portion of 
the Relevant rating was lower under the strict strategy, with 
a percentage of 85.05%. This result sheds light on leveraging 
the nearby text-to-assist icon recognition models, which we 
consider as future work (Section 6). 

• Modifers: The inter-rater agreement was also substantial 
for the modifer symbols, with a Cohen’s κ of 0.73. Only 38% 
symbols were considered as relevant in the relaxed strategy. 
We noticed that among these detections, 15/50 are Disabled 
symbols, and 14 of them are wrong predictions due to some 
icons have content similar to some common modifers. As 
discussed in Section 4.4, the object detection model performs 
worst in detecting this Disabled symbol—a better way to 
synthesize this symbol may be needed. 

In summary, 96.61% annotation label, 80.33% prediction label, 91.85% 
nearby text and 38% modifer symbols were considered as useful or 
relevant for at least one rater. 

6 DISCUSSION AND FUTURE WORK 
Several applications may beneft from a higher coverage of icon 
labeling. 

Accessibility Support for Screen Readers: When an icon is 
not labeled in an inaccessible app, our system may add an acces-
sibility label. While users without disabilities enjoy the visual ap-
pearance of icons, users with visual impairments may be impacted 
by missing alt-text or content descriptions for the icons if they use 
screen readers in inaccessible apps [2, 28]. Figure 12(a) shows a 
media player screen that has icons without text labels for mini-
malist design: this is inaccessible when developers forget to add 
alternative text. Compared to other icon recognition work,3 our 
system supports common icons, long-tail icons, and even an Add 
modifer inside the Music icon. 

Natural Language Based UI Search: When designers share UI 
designs as images within online platforms, our pixel-based system 
allows search in those UI screenshots without view hierarchy in-
formation. For a certain icon type, we can provide a set of example 
icons, and a gallery of UI designs that contain this icon type. As 
seen in Figure 12(b), designers may use natural language to search 
relevant UIs to fnd some inspiration. With better coverage of icon 
labeling in a large-scale UI dataset, we can support more icon types 
in designer’s query. 

Assisting Conversational Agent: When users interact with 
conversational agents, they sometimes need to refer to an icon 
on the screen. When some icons are unlabeled, users have to use 
other references (e.g., relative location) to share their intent with 
the agent. Our more complete icon labeling can bring a smoother 
experience in conversational agents. For the task of giving natural 
language instructions to UI actions [21], icon labeling is also crucial 
as it serves as an important property, “name,” of target UI. Figure 13 

3Feng et al. [10] only showed 40 icon types in their paper while their method considered 
100 icon types. 
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Icon Liu et. al Feng et. al Zang et. al Ours

<unk> <unk> <unk> Down Arrow

<unk> <unk> <unk> Launch

<unk> <unk> <unk> Shuffle

Rewind <unk> <unk> Rewind

Pause <unk> Pause Pause

av_forward <unk> <unk> Fast Forward

Refresh <unk> <unk> Repeat

Add Add Add Add

<unk> Music <unk> Music 
“Add” Modifier

Chat Chat <unk> Chat

(b)

Search screens that allow mark-up |

(a)

Figure 12: (a) The icon labeling results on an example media player screen show the icon coverage of existing works [10, 25, 33] 
and our work for supporting icon annotation for screen readers. (b) Our more complete icon annotation system can support 
fner-grained UI design search. 

Applications - Conversational Agent

User: Find the latest bus 

schedule to my work place

Agent: Sorry, I don’t understand. 

Would you teach me?

User: Sure. Open Map app, 

click the work icon 

and then click the bus icon

User read the latest bus schedule.

Icon Type: Bus

Icon Type: Bag 
Nearby Text: Work

Figure 13: Our more complete icon labeling system may help conversational agent better understand user’s instructions. 

shows an example where more complete icon labeling helps the 
conversational agent better understand user’s query. 

Next, we share some limitations of our current work, and briefy 
discuss how to improve them in the future. One limitation is that we 
labeled icons only for the iOS platform. Nevertheless, these icons 
are commonly used in Android platform and websites. 

There is also room for performance improvements. For common 
icon classifcation, we may be able to further improve its accuracy 
after collecting more data with further data cleaning. For long-tail 
icon classifcation, we can consider using additional contextual in-
formation from the screen to support the classifcation. For nearby 
text detection, a larger-scale annotation specifc to icon-text group-
ing would allow us to train a grouping model. For modifer detec-
tion, we could leverage annotation with real icon data—this would 

be expected to outperform the synthetic dataset. Currently we di-
rectly concatenate nearby text and modifer labels; future research 
may fnd better ways to integrate them to create more concise and 
accurate labels. 

In addition to accuracy improvements, we would like to improve 
the quality of our generated icon labels. First, the same icon may 
have diferent meanings under diferent contexts. For example, a 
Video Recorder icon may indicate “upload video” in a video edit-
ing app, while it can indicate “start video conference” in a video 
conference app. With the app category and contextual information 
on the screen, it is possible to generate an icon label that best fts 
the context. Second, an icon may belong to multiple classes when 
it contains multiple important symbols, while our classifcation 
model only provides one predicted class. We may consider training 
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multiple classifers to recognize each icon type. Third, we currently 
present additional information such as nearby text or the modifer 
symbol separately from the icon type prediction. It should be pos-
sible to combine these together to produce an enriched icon label. 
Finally, our work framed icon labeling as several classifcation tasks. 
Other approaches, such as Image Captioning, could be adopted or 
added to make our labels easier to understand. 

7 CONCLUSION 
From our large-scale icon annotation, we learned the highly uneven 
distribution of icon types, and automatically clustered long-tail icon 
types that have few examples. We have presented an approach that 
uses only pixel information to generate labels for both common 
and long-tail icons. Our technical evaluation and user evaluation 
demonstrate that this approach is promising. Our work illustrates 
a new approach towards complete icon labeling, and many applica-
tions stand to beneft from higher icon label coverage. 
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