
Do Developers Read Compiler Error Messages?
Titus Barik∗, Justin Smith∗, Kevin Lubick∗, Elisabeth Holmes‡, Jing Feng†, Emerson Murphy-Hill∗, Chris Parnin∗

∗Department of Computer Science, North Carolina State University, Raleigh, North Carolina, USA
†Department of Psychology, North Carolina State University, Raleigh, North Carolina, USA
‡Department of Psychology, Washington and Lee University, Lexington, Virginia, USA

Abstract—In integrated development environments, developers
receive compiler error messages through a variety of textual
and visual mechanisms, such as popups and wavy red un-
derlines. Although error messages are the primary means of
communicating defects to developers, researchers have a limited
understanding on how developers actually use these messages to
resolve defects. To understand how developers use error messages,
we conducted an eye tracking study with 56 participants from
undergraduate and graduate software engineering courses at
our university. The participants attempted to resolve common,
yet problematic defects in a Java code base within the Eclipse
development environment. We found that: 1) participants read
error messages and the difficulty of reading these messages is
comparable to the difficulty of reading source code, 2) difficulty
reading error messages significantly predicts participants’ task
performance, and 3) participants allocate a substantial portion
of their total task to reading error messages (13%–25%). The
results of our study offer empirical justification for the need to
improve compiler error messages for developers.

Keywords-compiler errors, eye tracking, integrated develop-
ment environments, programmer comprehension, reading, visual
attention

I. INTRODUCTION

Compilers are notorious for producing cryptic and unin-
formative messages [1], [2], [3], [4]. For example, a missing
symbol, type mismatch, or incorrect dependency can create
situations where error messages can produce misleading or
hard to digest information [5]. Unfortunately, compiler errors
happen frequently: Seo and colleagues empirically obtained
build failures from over 26 million builds at Google [2], and
found that over a quarter of builds fail due to compiler errors.

To improve how developers receive notifications about errors
in their code, modern integrated development environments
(IDEs), such as Eclipse, have incorporated several design
elements to support better understandability and expressiveness
of error notifications. Wavy red lines, for example, are a popular
means for highlighting errors in code and revealing the potential
causes associated with an error.

However, there has been limited research on understanding
how developers perceive and comprehend error messages
through the various ways in which they are presented, for novice
and expert developers alike. For example, Denny and colleagues
speculated that improvements to error messages were unsuccess-
ful because their students didn’t read them [6]. Marceau and
colleagues proposed a Read-Understand-Formulate theory, but
were unable to confirm whether participants actually read the
messages; they suggested the use of eye tracking to provide this
missing evidence [7]. In industry, Seo and colleagues provided

a distribution of “costly” compiler errors introduced by their
expert developers, but their methodology cannot explain why
these errors are costly [2]. In short, we have limited insights
into how developers process, or attend to error messages, during
the comprehension and resolution of defects.

To understand if developers read error messages, we con-
ducted an eye tracking study with 56 developers, recruited from
undergraduate and graduate software engineering courses at
our university, as they resolved common, yet problematic error
message defects in an IDE. We collected pixel-level coordinates
and times for developers’ sustained eye gazes, called fixations.
We then triangulated these fixations against screen recordings
of their interactions in the IDE.

The results of our study provide empirical justification for
the need to improve compiler error messages. Specifically, we
find that:

• Participants read error messages; unfortunately, the dif-
ficulty of reading error messages is comparable to the
difficulty of reading source code — a cognitively deman-
ding task.

• Participant difficulty with reading error messages is a
significant predictor of task correctness (p < .0001), and
contributes to the overall difficulty of resolving a compiler
error (R2 = 0.16).

• Across different categories of errors, participants allocate
13%–25% of their fixations to error messages in the IDE,
a substantial proportion when considering the brevity of
most compiler error messages compared to source code.

II. MOTIVATING EXAMPLE

To illustrate how error messages can become costly for
developers to resolve, consider a hypothetical developer, Barry.
Barry recently joined a large software company, and needs to
implement some missing functionality within a data structures
library. Being relatively new to the library, he messages his
colleague for some help in getting started. He eventually
receives a reply from his colleague with a short code snippet.

Barry copies and pastes this snippet into his source editor,
and is surprised that the IDE produces an error. He focuses
his attention, that is, visually fixates, on the error text in the
problems pane at the bottom of his screen:

He silently reads the message about the sublist method,
and then double-clicks the error in the problems pane. This
redirects the IDE to the source editor, and Barry confirms that
the error is related to the code that he just added. In the margin
of the source editor, he now notices a light bulb icon, which
he hovers over to produce an error popup:

Unfortunately, the popup is less helpful than he expected
because it repeats the message he has already seen in the
problems pane. Moreover, the error popup text is obscuring
the method signature which is where he believes the problem
is actually located.

Next, he notices the
:::
red

:::::
wavy

::::::::
underline, which in Eclipse

indicates the presence of an error. Barry hovers over the
underline, releaving a Quick Fix popup. Unlike the error popup,
the Quick Fix popup provides possible “fixes” that change the
source code, in addition to the error message. He spends several
seconds attending to both the error message and evaluating it
against the proposed fixes. His gaze momentarily leaves the
popup as his attention is drawn to the @Override annotation
in the source code. He then revisits the popup because the
fourth option also references this annotation:

Barry knows the @Override annotation is used to inform
the compiler that the current method should override a method
in a parent class. To see if this is true, he navigates to the class
declaration, and control-clicks on the parent class:

He inspects the outline pane, which summarizes all of the
methods in the class, and confirms that the parent class contains
only unrelated methods like writeObject:

He’s now convinced that his colleague may have inadver-
tently included the @Override annotation, which happens to
not be applicable to his solution. He returns to the original
class one last time, and applies the “Remove ‘@Override’
annotation” fix. Eclipse rebuilds the project and he checks the
problems pane one last time to see that the error is no longer
present.

If you were Barry, would you have done anything differently?
If not, you’re not all that different from the participants in our
own study, where 53 of the 55 participants adopted a similar
comprehension and resolution strategy.

Unfortunately, this fix turns out to be incorrect. The actual
problem is that the sublist method declaration is misspelled
and should have been called subList, with a capitalized L.
Barry might have discovered this misspelling had he navigated
one more step up in the class hierarchy, to the grandparent
class:

Worse, this scenario is not isolated to Barry. For example,
the highest-rated post on StackOverflow for the @Override
annotation error suggests that it commonly occurs in situations
where method names have been misspelled.1

Did Barry simply not pay enough attention to the error
message? On close inspection, the error message does in fact
mention supertype methods, though not explicitly by name. Or
could it also be the case that the error message leads developers
to prioritize certain solutions spaces for their code over others?

III. METHODOLOGY

A. Research Questions

In this study, we investigate the following research questions,
and offer our rationale for each:

RQ1. How effective and efficient are developers at
resolving error messages for different categories of errors?
We ask this research question to assess the representativeness
of our experimental tasks with respect to the costly error
messages identified by Seo and colleagues [2], where costly is
defined as frequency of the error times the median resolution
time. Additionally, the results of this research question provide
descriptive statistics to identify if some categories of defects
are more difficult to resolve than others.

RQ2. Do developers read error messages? Although IDEs
present error messages intended to be used by developers,
the extent to which developers read these messages in their
resolution process is an open question. Without answering
this question, toolsmiths who are attempting to improve error
messages may be misapplying their efforts. For instance, a
developer might use the problems pane not to actually read
the error message, but instead because they know that double-
clicking an error message in the pane is a convenient way to
jump to the offending location in the source code.

RQ3. Are compiler errors difficult to resolve because
of the error message? Resolving compiler errors within the
IDE requires developers to perform a combination of activities,
such as navigating to files and making edits to source code.
One hypothesis is that certain compiler errors are difficult to
resolve not because the error message itself is cryptic, but
because the task requires intricate code modifications in order

1http://stackoverflow.com/questions/94361/
when-do-you-use-javas-override-annotation-and-why

to address the defect. Alternatively, it may be the case that the
resolution requires only a simple code change to correct the
defect, but a confusing error message hampers the developer
from discovering the required code change. In short, we want
to understand the extent to which poor error messages are
harmful to the developer.

B. Study Design

Participants. We recruited 56 students from undergraduate
and graduate courses in software engineering courses at our uni-
versity. Through a post-experiment questionnaire, participants
reported an average of 1.4 years (sd = 1.3) of professional
software engineering experience, that is, experience obtained
from working as a developer within a company.

Siegmund recommends self-estimation questions as a good
indicator for judging programming experience, especially when
participants are students [8]. Following this guidance, we
asked participants about their familiarity with Eclipse and
their knowledge of the Java programming language. Partici-
pants self-rated their familiarity with the Eclipse development
environment with a median rating of “Familiar with Eclipse
(3),” using a 4-point Likert-type item scale ranging from “Not
familiar with Eclipse (1)” to “Very familiar with Eclipse (4).”
Participants self-rated their knowledge of the Java programming
language with a median rating of “Knowledgeable about Java
(3),” using a 4-point Likert-type item scale ranging from “Not
knowledgeable about Java (1)” to “Very knowledgeable about
Java (4).” Participants also self-reported demographic data.
Participants reported a mean age of 24 years (sd = 6), 46
reported their gender as male, and 10 reported their gender as
female.

All participants conducted the experiment in one of two eye
tracking labs on campus, and both labs contained identical
equipment. Participants received extra credit for participating
in the study. The first and third authors of the paper conducted
the study.

Tasks. We derived tasks in our eye tracking experiment
from prior work conducted by Seo and colleagues, where
they empirically obtained build failures from over 26 million
builds at Google [2]. From this data, they identified costly error
messages that occurred frequently in practice and were time
consuming for developers to resolve. To constrain the study to
under one hour, we selected the top errors from each category
of costly error messages, for a total of ten error messages
(Table I). Through an informal pilot study with two other lab
members, we found that developers resolved each defect in
under five minutes.

However, we did not have access to the actual source
code which generated the errors in the Google study. As a
substitute, we used the Apache Commons Collections2 library
and manually injected faults into this library to generate error
messages.

We chose Apache Commons Collections for several comple-
mentary reasons. First, it provides a library of data structures,

2http://commons.apache.org/proper/commons-collections/

such as lists, sets, and dictionaries, that are likely to be familiar
to even first or second year students. Using such a library also
allowed us to isolate the effects of developer difficulties in
understanding error messages from that of unfamiliar code.
Second, the library is open source, mature, and moderately-
sized in terms of lines of code. Third, the library provides
unit tests that can be used as a ground truth for the expected
behavior of the code.

For each error, we introduced the error message into the
Apache code through operations that could reasonably occur
in actual development practices. For example, the @Override
misspelling described in the motivating example (Section II)
was applied based on comments on StackOverflow.

Tools and Apparatus. Participants used a Windows 8
machine with a 24-inch monitor, having a resolution of
1920x1080 pixels. The computer was connected to a GazePoint
GP3 [9] eye tracking instrument, and this instrument was
positioned directly below the monitor. GP3 software and drivers
were installed on the computer to collect both the screen
recording of the desktop environment and to synchronize
the time of the recordings with the eye tracking instrument.
Participants used an external keyboard and mouse to interact
with the computer. The experimenters also installed custom
scripts on the machine so that they could remotely load
participant tasks.

We choose the Eclipse IDE [10] for this study because its
presentation of errors, for example, through the problems pane
and Quick Fix popups, are characteristic of the way errors
are presented in other modern IDEs such as IntelliJ [11] and
Visual Studio [12]. A default Eclipse installation was deployed
on the machine, with minimal customizations. Specifically,
we disabled Eclipse themes and turned off rounded edges on
windows to facilitate subsequent detection during the data
cleaning phase of the research.

C. Procedure

Onboarding. All participants signed a consent form before
participating in the study.3 Using a script, the experimenter
verbally instructed participants with the details of the study.
Participants were informed that they would be identifying
and resolving ten source code defects, to be presented as
compiler error messages in their IDE. Participants were given
five minutes per task. If the participants finished early, they
were asked to alert the experimenter and proceed to the next
task. After two minutes, participants were also provided the
option to discontinue the task.

We asked participants to provide a reasonable solution for
the defect that they felt best captured the intention of the code.
For example, although deleting all the files in the project might
remove the compiler defect, it would be highly unlikely that
this is an intended resolution. We told participants they were
not expected to successfully fix all the defects, and that some
defects might be more difficult than others.

3North Carolina State University IRB 5372, “Evaluating text and visual
notifications in integrated development environments during debugging tasks.”

TABLE I
PARTICIPANT COMPILER ERROR TASKS

Task Error Message1 Package Category Defect Introduced

T1 The method sublist(int, int) of type LazyList<E>
must override or implement a supertype method

List Semantic Renamed sublist to subList, breaking existing
@Override annotation.

T2 The type CursorableLinkedList<E> must implement
the inherited abstract method List<E>.isEmpty()

The type NodeCachingLinkedList<E> must implement
the inherited abstract method List<E>.isEmpty()

List Semantic Deleted isEmpty method from abstract parent class.

T3 The import org.apache.commons.collections3
cannot be resolved (... repeated 50 times)

Map Dependency Changed version of collections4 to non-existent
collections3 library in import statements.

T4 The method get() is undefined for the type
Queue<E>

Queue Dependency Renamed method invocation from element() to non-
existent get().

T5 The method add(E) in the type Collection<E> is
not applicable for the arguments (int,
capture#8-of ? extends E)

Set Type mismatch Added additional argument of 0 to add method call.

T6 Type mismatch: cannot convert from
Set<Map.Entry<K,V>> to Set<Map.Entry<V,K>>

Type mismatch: cannot convert from
Set<Map.Entry<V,K>> to Set<Map.Entry<K,V>>

Map Type mismatch Swapped key and value in dictionary from
Entry<K,V> to Entry<V,K>.

T7 Unhandled exception type InstantiationException Map Other Changed less specific exception Exception to
IllegalAccessException, which is not thrown by
the code.

T8 Duplicate method next() in type
EntrySetMapIterator<K,V>

Duplicate method next() in type
EntrySetMapIterator<K,V>

Iterators Other Copied and pasted next method to create duplicate
method.

T9 Cannot make a static reference to the non-static
type E

Queue Semantic Added static modifier to readObject method.

T10 Syntax error on token "default", : expected
after this token

Map Syntax Removed : from default: in switch statement.

1 For each error message, we compile the defective version of the code under Open JDK to replicate the compiler-internal error message key from the Seo
and colleagues study at Google [2]. The Eclipse version of this message is shown to the participants.

Because of limitations with the eye tracking equipment, we
asked participants to leave the Eclipse window full-screen.
We also asked them to not use any resources (such as a
web browser) outside of the Eclipse, because doing so would
confound external information with error messages in the IDE.
However, we permitted participants to use any of the features
available within Eclipse, as long as these features did not
change any of the Eclipse preferences or install any new Eclipse
packages.

Finally, we provided the participants with a notifications
sheet, which detailed all of the locations where error message
information could appear in the IDE.

Calibration. The eye tracker must be calibrated for each
participant. To avoid repeating the calibration, we requested
participants to adjust their seating to a position that would feel
comfortable for the duration of the study. We conducted a 9-
point calibration using the software provided by the eye tracker,
in which participants must fixate on circles that appear at
different locations on the screen. To confirm that the calibration
had successful applied, we conducted a stimuli task in the
Eclipse environment. For this task, we asked the participant to

navigate to the About dialog box within the Help menu, and
read the version number of Eclipse. We also asked them to read
a provided warning message in the problems pane of the IDE.
Together, these tasks established a baseline for calibration.

Experiment. To control for learning effects, participants
sequentially received one of ten tasks in randomized order.
Participant were not allowed to revisit previous tasks, nor were
they allowed to ask questions to the experimenter. Participants
received no feedback on the correctness of their solution. On
average our participants took approximately 45 minutes to
complete the study. Following the experiment, participants
completed a post-questionnaire about basic demographic infor-
mation and experience.

D. Data Collection and Cleaning

Data collection. For each participant and task, we collected
screen recordings in video format (at 10 frames per second)
and a time-indexed data file containing all eye movements
recorded by the eye tracking instrument.

Data cleaning of titles. We used the OpenCV computer
vision library [13] to process videos on a frame-by-frame basis.
To obtain the currently opened source file, we used the Tesseract

OCR engine to identify the titlebar for each frame [14]. Due
to errors in OCR translation, we performed two data cleaning
steps on the title. First, we cropped each frame to only the title
bar and scaled it by a factor of three to artificially increase
the font size. Second, we modified Tesseract to recognize only
alphanumeric characters, dash (-), period (.), and forward
slash (/).

After Tesseract processing, several OCR errors remained.
Thus, we applied a Gestalt pattern matching algorithm [15] to
match the OCR’d title against the known set of all Java files in
the Apache Commons Collection library.4 We manually added
the strings, Java - Eclipse, which appears in the title when
no file is open, as well as several classes from the java.util
package to this processing step. The output of this step a list
of the title associated with each frame.

Data cleaning of areas of interest. Areas of interest (AOIs)
are labeled, two-dimensional rectangular regions of the screen
that represent a logical component within the interface. In our
experiment, we first characterized four areas of interest that
are typically always present on the screen: 1) the explorer
pane, which appears on the left-side of the screen and allows
the developer to navigate the project files, 2) the outline pane,
which appears on the right-hand side of the screen and contains
a list of methods for the current class, 3) the problems pane,
at the bottom of the screen and contains a list of the identified
errors and warnings in the project, and 4) the source editor,
which appears in the center of the screen and contains the
source code.

We characterized two additional areas of interest that
transiently displayed error messages: 1) the error popup, which
appears when the developer hovers over the icon in the margin
of the source editor, and 2) the Quick Fix popup, which appears
when the developer hovers over the red wavy underline on
program elements in the source code, or when they activate
the Quick Fix feature explicitly.

To support automatic detection of each of the six areas of
interest, we implemented several techniques. For fixed-sized
AOIs, such as the popups, we extracted isolated screen captures
of each popup and saved them as templates. For dynamically-
sized AOIs, we extracted the boundaries of the essential
features of the elements, and then performed a calculation
to dynamically compute its bounding rectangle. For example,
to identify the source editor, we internally match against three
sub-templates: the top-left tab, the top-right minimize button,
and a thin horizontal line that delimits the source code from
any panes below it.

At this point, we have computationally usable templates that
represent meaningful areas of interest, and we need to identify
where these templates occur within video frames. To do this, we
used a template matching algorithm provided by OpenCV. This
algorithm essentially takes a given template, and slides it over
the entire frame. For every overlap, the algorithm computes a
normalized score between 0.0 and 1.0, where 0.0 represents the
least likely match, and 1.0 represents a perfect match. Through

4In Python, this algorithm is available as get closest match.

trial-and-error, we found that a threshold of 0.95 yields accurate
detection of AOIs. Because this is a computationally demanding
operation, we down-sampled both the templates and the video
frames to 50% of their original size to reduce the number of
pixels needing to be processed at each frame. We then up-
scaled the identified pixel locations to map them to the original
video locations. The output of this procedure is a data file
containing the identified AOIs for each video frame and the
bounding box of that AOI.

Data cleaning of fixations. The eye tracking instrument in-
ternally has a proprietary algorithm for differentiating fixations,
or sustained eye gazes, from other types of rapid eye movement
that naturally occurs as people process information. However,
the instrument has systematic measurement error in that the
fixations locations are misaligned by a constant factor. Thus,
for each of the participants’ tasks, we used the stimuli task as
a baseline to determine the initial horizontal and vertical offset.
For the remaining tasks, we adjusted the baseline as necessary.

After performing offset adjustment, we used the GazePoint
software to extract a list of fixations. For each record in the
list, the record contains the time it began, its duration, and its
coordinates.5

IV. ANALYSIS

A. RQ1: How effective and efficient are developers at resolving
error messages for different categories of errors?

We calculated the effectiveness for each task by using
correctness as a proxy for effectiveness. For us to consider a
solution to be correct, the solution must pass all of the unit
tests in the Apache Commons Collections library after removal
of the compiler error. Otherwise, the solution is considered
incorrect. Next, we cataloged and binned the incorrect solutions
observed for each task, with the intuition that if unsuccessful
participants make the same types of mistakes, there is some
common underlying cause.

We calculated efficiency from two time-derived metrics: time
to complete task, and participant effort. For time to complete
task, we extracted the start and end times from the videos
using the icon in the problems pane label as a trigger, using
transitions of the icon from errors to no errors to indicate task
boundaries. Tasks for which no end transition was found were
marked as a timeout. Participants who declined to continue
the task and did not resolve the defect were also assumed to
timeout.

For participant effort, we calculated a metric called response
time effort [16]. Intuitively, if incorrect solutions are achieved
in significantly less time than correct solutions, then it would
suggest that participants are not expending sufficient effort
to reasonably resolve a compiler error message. That is, the
participant may simply be careless, irrespective of the quality
of the compiler error message or the difficulty of the task. We
performed a two-tailed t-test between task times, excluding
timeouts, under correct and incorrect solution conditions to
gauge response time effort.

5In the GazePoint software, this corresponds to the FPOGS, FPOD, FPOGX
and FPOGY columns.

B. RQ2: Do developers read error messages?

Determining if developers are reading error messages through
overt experimental designs is surprisingly tricky. For exam-
ple, asking participants to think aloud as they resolve error
message tasks adds a cognitive burden that has been found to
negatively impact task performance [17]. Directly questioning
the participant at the end of each task can introduce social-
desirability and prime the participants’ behavior for subsequent
tasks [18], thus causing them to read error messages more
carefully than they otherwise would have. Moreover, visual
attention is a largely subconscious process; participants in
visual attention tasks, such as reading, only have a rudimentary
awareness of how they allocate their attention [19]. The use of
eye tracking to answer this research question mitigates these
issues, but introduces one of its own: eye tracking data is noisy.
For example, routine, involuntary movements such as rubbing
eyes and adjusting hair can block the eye tracking camera,
introducing spurious data points. Our analysis techniques are
constrained to those that are robust in the presence of noise.

Previous eye tracking work by Rayner modeled “reading”
as distribution times of fixations under a variety of visual
stimuli [20]. Rayner characterized the distribution times of
fixations under different reading conditions, such as silent and
oral reading. Through a meta-analysis, Rayner found that the
mean fixation time of a distribution increases with the difficulty
of the text.

For fixations within the source code and error message AOIs,
we replicated this analysis, postulating that developers must
read at least the source code in order to resolve a compiler
error message as a baseline.

We then characterized the distribution of source code,
error messages, and silent reading (provided by Rayner [20])
through a symmetric Kullback-Leibler (KL) divergence, for
each of pair of distributions. Essentially, KL divergence is an
information-based measure of disparity: the larger the value of
the divergence between two distributions, the more information
is “lost” when one distribution is used to model the second
distribution [21].

Finally, to understand how developers allocate their attention
to error messages against other areas of interest, for each task,
we computed across participants the percentage of fixations
for the areas of interest in the task.

C. RQ3: Are compiler errors difficult to resolve because of the
error message?

Although Seo and colleagues identified a distribution of
costly error messages [2], this does not automatically imply
that the reason the error message is costly to resolve is due
to the error message itself. For example, an error message
about a mismatched brace may be easy to comprehend for the
developer, yet costly to resolve because the developer must
spend most of their effort in the source code editor to identify
where to add or remove a brace. In answering this research
question, our goal is specifically to understand the extent to
which difficulties with reading error messages can be attributed
to task performance difficulties.

To understand if compiler errors are difficult to resolve
because of the error message, we used the eye tracking
measure of revisits, that is, leaving an area of interest and
then subsequently returning to it, as a measure of reading
difficulty. In prior work, Jacobson and Dodwell identified the
relationship that increasing fixation revisits to an area of text
is a measure of increased reading difficulty for that area [22].

To answer this question, we computed a nominal logistic
model between correctness and revisits to error messages. The
output of the model is a probability of correctness against the
number of visits, over a distribution of tasks.

To evaluate the model, we computed the Nagelkerke’s
coefficient of determination, R2 [23]. Of course, there are
many variables that influence whether or not a developer will
be successful at resolving a compiler error, such as previous
knowledge, experience, and familiarity with the code [24].
Consequently, we expect that the coefficient of determination
will be low, because reading difficulty is only a second-order
variable for these other factors. Fortunately, reading difficulty
latently encodes many of these variables: if a developer has
little experience with a particular error message, this lack of
experience should manifest itself through how they read the
error message.

We also evaluated the model using a likelihood-ratio Chi-
square test (G2) computed between a full model, using the
number of revisits as a predictor variable, against a reduced
or intercept-only model, fit without any predictor variables. If
the addition of a predictor variable is identified by the test as
significant (α < 0.05), then the predictor variable significantly
improves the fit of the model.

V. VERIFIABILITY

To support replication of our findings, we have provided
several materials on our website.6 The website contains the
videos of each of the participants’ tasks. Additionally, we
provide a data file containing all gazes for the tasks, and a
cleaned data file containing only the fixations for the tasks. To
support verification, we provide annotated diagnostic videos of
participants’ tasks that display rendered rectangles on identified
areas of interest as the video plays. Finally, we provide data
files from the output of our data cleaning process.

VI. RESULTS

A. RQ1: How effective and efficient are developers at resolving
error messages for different categories of errors?

Table II summarizes the solution the developer makes
based on our correctness criteria. For every task, at least one
participant made a code change congruent with the correct
solution, which indicates that it is at least possible to make
a correct fix for every task given the information in the error
messages. The distribution of correct and incorrect solutions
are clearly skewed for many of the tasks. For example, only
two participants generated correct solutions for T1, and only
one participant generated a correct solution for T2. And for

6http://go.barik.net/gazerbeams

TABLE II
OVERVIEW OF TASK PERFORMANCE

Correct Incorrect Timeout

Task n % n % nbins
1 n %

T1 2 4% 47 85% 2 6 11%
T2 1 2% 49 91% 1 4 7%
T3 30 55% 0 0% 0 25 45%
T4 36 65% 10 18% 3 9 16%
T5 49 89% 5 9% 2 1 2%
T6 55 100% 0 0% 0 0 0%
T7 22 40% 23 42% 1 10 18%
T8 48 87% 5 9% 1 2 4%
T9 28 51% 2 4% 2 25 45%
T10 50 91% 5 9% 3 0 0%
1 nbins indicates the number of observed incorrect solution types for

each task, that is, the cardinality of the incorrect solution set.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Task Number

0

50

100

150

200

250

300

350

Ti
m

e
to

 C
om

pl
et

e
(s

ec
)

Incorrect Correct

Fig. 1. The time required for developer to commit to a solution that is correct
or incorrect. Nearly all tasks (exceptions, T8 and T10) have high variance in
resolution time to arrive, irrespective of correctness.

tasks T5, T6, T8, and T10, nearly all or all participants arrived
at the correct solution.

The nbins columns in Table II indicates, for every incorrect
solution, the types of solutions provided by the participants.
For example, consider T1, the problem Barry faced in our
motivating example (Section II). Recall that the correct
solution to this problem is to rename the sublist method
to subList. Participants provided two incorrect solutions to
this problem. They either removed the @Override annotation,
which suppresses the error but does not resolve the defect,
or they created a stub sublist method in the parent class,
without recognizing the existing similarly-named method.
Across all tasks, participants converged to a small set of
incorrect solutions.

Figure 1 illustrates a violin plot of the time required for
developers to apply a resolution for both correct and incorrect
solutions. The dashed lines indicate quartile boundaries for each
task. For incorrect solutions, timeouts are excluded from the
plot. Like Seo and colleagues, we also found large variation in
the time required to arrive at a solution for nearly all tasks [2].
For some tasks, however, such as T8 and T10, most participants

0.000

0.002

0.004

0 250 500 750 1000
Fixation Duration (ms)

D
en

si
ty

 o
f F

ix
at

io
ns Editor

Error Messages

Silent Reading

Fig. 2. Comparison of fixation time distributions for silent reading of English
passages, reading source in the editor, and reading of error messages.

were able to correctly resolve the defect, and with relatively
tight variation in time to resolution. As Seo and colleagues
defined costly in terms of both frequency of occurrence and
median time to resolution [2], it is likely these errors are costly
because they are arise frequently as a nuisance for developers,
not because they are particularly difficult to resolve.

For response time effort, a t-test identified a significant
difference in resolution time between correct and incorrect
solutions (t(20.24) = 2.86, p = 0.0045), with incorrect
solutions requiring an additional mean time of 20 seconds
(sd = 7) over the correct solution. The results of this test
provide support that participants provided sufficient effort in
attempting to solve the task, and rejects the hypothesis that
participants chose an incorrect solution because it most quickly
resolved the defect.

B. RQ2: Do developers read error messages?

Figure 2 illustrates the distribution of known silent reading
durations against the distribution of fixation times for error
message areas of interest in our tasks. For visualization
purposes, the distributions are normalized as a probability
density function. That is, the probability of a random fixation
to fall within a particular region is the area under the curve
for that region.

The mean fixation time for reading in the source code editor
is 394ms (sd = 240, nfix = 81098). In comparison, previous
work found that silent reading of English passages of text
yield mean fixation times of 275ms (sd = 75), and that for
reading and typing English passages yield a mean fixation time
of 400ms (sd not provided in original study by Rayner) [20].
Thus, reading source code is much more difficult than reading
a general English passage, and marginally less difficult than
the activity of typing while reading.

We compute the KL divergence between the source editor
distribution and error message distribution (DKL = 0.059),
source editor distribution and silent reading distribution
(DKL = 3.38), and error message distribution and silent
reading distribution (DKL = 2.37). From the relatively small
KL divergence between the source editor distribution and the
error message distribution, we conclude that error message
reading is comparable to source code reading (u = 419ms,

TABLE III
PARTICIPANT FIXATIONS TO AREAS OF INTEREST

Task

Area of Interest T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Source editor
66% 66% 74% 79% 68% 65% 78% 68% 80% 65%

Error areas
23% 23% 15% 14% 23% 25% 15% 17% 13% 20%

Navigation areas
10% 11% 11% 6% 9% 11% 7% 15% 7% 15%

Error Areas Breakdown1

Error popup
1% 0.5% – 0.4% 0.7% 2% 0.5% 1% 1% 2%

Problems pane
12% 19% 15% 11% 16% 17% 9% 14% 11% 16%

Quick Fix popup
10% 3% – 3% 6% 5% 6% 1% 1% 2%

Navigation Breakdown

Explorer pane
10% 8% 10% 5% 8% 11% 6% 12% 5% 14%

Outline pane
1% 3% 1% 1% 1% 1% 1% 3% 1% 1%

1 To understand reading, the error areas breakdown aggregates areas of
interest to those that provide the text of the error message.

sd = 270, nfix = 18573), and unlikely to be a different activity
than reading.

Another perspective on understanding whether developers
read error messages is to examine how they allocate their
fixations across different areas of interest during the task
(Table III). Across tasks, we found that participants spent
65%–80% of their fixations in the source editor, with 13%–
25% of their fixations on error message areas of interest. Most
participants use the error message information in either the
problems pane and Quick Fix popup; the error popup is rarely
used.

Both the KL divergence analysis and the allocation of
fixations to the task support that developers are reading
messages.

C. RQ3: Are compiler errors difficult to resolve because of the
error message?

A Chi-squared test reveals a statistically significant difference
between the number of revisits and the outcome of correctness
over a distribution of tasks (df = 1, G2 = 60.9, p < .0001).
This suggests that the number of revisits, a proxy measure
for reading difficulty [22], is a significant predictor variable
for the task difficulty. However, Nagelkerke’s coefficient of
determination for the logistic fit is low (R2 = 0.16), which
implies that reading difficulty is only one of many factors that
contribute to the overall difficulty of a task.

Figure 3 presents this statistical result more intuitively as a
plot of the nominal logistic model for the number of revisits to
error messages against the probability of the developer applying
a correct solution for the task. The dotted line indicates the
regression fit, separating correct and incorrect task solutions.
Tasks are plotted against the number of revisits, and randomly

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ili

ty
 o

f C
or

re
ct

 S
ol

ut
io

n

0 10 20 30 40 50 60

Task

Correct
Incorrect

Number of Revisits to Error Message

Fig. 3. Nominal logistic model of number of revisits on error message areas
of interest against probability of applying a correct solution. As revisits to
error messages increase, the probability of successfully resolving a compiler
error decreases.

jittered vertically above and below the regression fit to help
facilitate visualization. From the figure, we can see that as the
number of revisits increases, more incorrect tasks fall above
the regression fit. Thus, task difficulty is attributable to the
reading difficulty of error messages.

VII. DISCUSSION

From the results of our research questions, we identify three
problem areas in current development environments, and offer
suggestions for toolsmiths towards addressing these problems.

Error messages are not situationally-aware (RQ1).
Although our tasks covered the distribution of costly errors,
the way in which the defects themselves can manifest is
situationally-dependent. For example, consider T2, in which
through a merge the method isEmpty() has inadvertently
been deleted from the parent class, AbstractLinkedList<E>,
whose children are CursorableLinkedList<E> and
NodeCachingLinkedList<E>.

This causes the compiler to emit two error messages:

The type CursorableLinkedList <E> must implement the
inherited abstract method List <E>. isEmpty ()

The type NodeCachingLinkedList <E> must implement the
inherited abstract method List <E>. isEmpty ()

For this message, it is not surprising that developers would
be led to believe that they should implement the isEmpty()
method in both classes. Indeed, all participants except for one
came to this incorrect conclusion (Table I, nbin = 1).

Instead, consider if the compiler had presented the following
alternative message:

The type AbstractLinkedList <E> must implement the
inherited abstract method List <E>. isEmpty ()

Given the fact that our participants took cue from the error
messages in the first error message set, it is plausible that
participants would have arrived at the correct solution, adding
the missing method to the AbstractLinkedList<E> class, if

Fig. 4. Emerging error reporting systems like LLVM scan-build provide
stark contrast to those of conventional IDEs. Here, scan-build presents error
messages for a potential memory leak as a sequence of steps alongside the
source code to which the error applies.

they had instead been presented with the second error message.
Unfortunately, it’s difficult for the compiler to know which
of these messages would be more appropriate to present to
developer without having situational information, such as recent
edit history.

Compiler designers may want to consider incorporating
situational awareness into their choice of presentation to aid
developers in more accurately identifying and resolving the
root cause of a defect.

Error messages appear to take the form of natural
language, yet are as difficult to read as source code (RQ2).
Although we expected error message mean fixations to be
somewhat higher than silent reading due to more technical
language, we were surprised to find that error messages were
not only significantly more difficult to read than the silent
reading of natural language, they were also slightly more
difficult to read than even the source code.

To postulate why this might be, let’s return to Table I.
Consider an error message as in T4, which reads:

The method get() is undefined for the type Queue <E>

Even for relatively short error messages like this one, partici-
pants spent 14% of their time in the total task with fixations
across essentially nine “words.” Prior research in language cog-
nition for bilingual sentence reading has found that switching
languages is associated with a cognitive processing cost [25].
Similarly, one explanation for the apparent difficulty of reading
error messages is that error messages consist of both natural
language (“is undefined for”) and code (“Queue<E>”), but
are not entirely either. Consequently, developers must context-
switch between two different modalities of reading to fully
capture the information presented in an error message, leading
to increased reading difficulty.

A second explanation for why error messages are comparable
in difficulty to reading source code is because reading error
messages requires the developer to also switch between the
error message and the source code in order to understand the

full context of the task. For example, a developer might read
“The method get()” and then suspend their reading of the
error message to determine in the source editor the calling
context of this method and figure out why and whether it should
be called. In this case, error presentation approaches such as
those found in LLVM scan-build [26] may prove beneficial
to developers (Figure 4). Unlike conventional error messages,
which decouple the error message from the code context, scan-
build presents the error as a sequence of steps that the developer
can follow alongside in the context of the code to which the
error message applies.

Tools fail developers in the presence of compiler errors
(RQ3). While difficult error messages are a significant predictor
of correctness, the low R2 from RQ3 suggests that other
factors exist which affect the difficulty of a resolution task. For
example, in addition to reading error messages, participants in
our study also had fixations within navigation areas of interest
for 6%–15% of the total task.

In observing the participant videos for these tasks, we found
several instances where participants attempted to use tools
that fail in the presence of a compiler error message during
navigation-related tasks. As one example, a participant in T8
attempted to navigate to the appropriate method through a
usage of that method. Although the Eclipse IDE would reveal
both locations, it makes no special effort to distinguish the two
methods, leading to potential visual disorientation within their
IDE [27]:

In T8, yet another participant was aware of a tool within
the IDE to facilitate comparison between two methods, but
they could not recall how to invoke it. This example illustrates
how tools that support understanding of a defect may be just
as important as tools that provide a resolution. But unlike
Quick Fix popups, which appear automatically, comprehension
tools such as Compare With must be invoked manually by the
developer. Analogous to Quick Fix popups, perhaps toolsmiths
should offer “Quick Understanding” popups, which recommend
appropriate tools, such as Compare With, that are known to
be helpful in understanding a particular compiler error. Our
own work in defect resolutions provides a starting point for
automatically bringing relevant tools to the developer to help
with comprehension [28].

VIII. LIMITATIONS

Although we derived our errors based on frequency and
difficulty of resolution from a prior Google study [2], we could
not ensure that we used the similar phrasing in our replication of
error messages. Google uses a proprietary version of OpenJDK
with custom messages not available to the general public. We
also do not have access to the source code that generated
these errors. As a result, the messages we use in Eclipse
are not identical to those previously studied. Instead, in our

study design, we seeded errors that approximate the scenario
described by the original message.

We only investigated ten error messages with our participants.
However, research by Seo and colleagues found that improving
even the 25 of the top errors would cover over 90% of all the
errors ever encountered at Google. A similar result has since
been replicated for novice developers in Java [5]. Furthermore,
we sampled error messages across multiple categories of defects
to increase generalizability.

One construct validity issue is the accuracy of the eye tracker.
We used a commodity eye tracking instrument which has a
lower sample rate than professional eye tracking equipment. For
example, our eye tracker did not perform well with participants
with glasses, and was also sensitive to lighting conditions. The
commodity eye tracker also limited our analysis to larger areas
of interest; we were unable to perform line or word level
analysis, which would be useful for further understanding parts
of the text developers actually read. We had to discard 51
tasks due to equipment malfunction during participant sessions.
An additional 79 tasks were dropped because reasonable eye
tracking data was not obtainable from the participant data, even
after manual offset correction.

A threat to external validity is that we used student deve-
lopers in place of full-time professional developers. Although
many of our participants had professional experience, these
participants may not fully represent industry developers in all
situations [29]. For example, it is possible that senior developers
with extensive experience of their own code base would arrive at
a correct solution for some tasks irrespective of the information
in the message (RQ1). Although our participants rarely used
error popups in their IDE (RQ2), we might expect that senior
developers, again having familiarity with their code base, would
utilize these on-demand information sources more frequently
than the always-available problems pane. Lastly, developer
effectiveness for a task and its relationship to error message
revisit frequency may be less pronounced when participants
have a broader range of developer experience than those in our
own study (RQ3). Thus, we should be careful in generalizing
our findings to all developers.

IX. RELATED WORK

To our knowledge, this study is the first to use eye tracking to
explain how developers make use of error message information
to resolve defects within the IDE. In this section, we discuss
related work from eye tracking studies in debugging and defect
understanding. Rodeghero and colleagues used eye tracking to
understand how developers summarize code; the results of their
experiment were used to improve algorithms that automatically
summarize code [30]. Romero and colleagues used eye tracking
to understand how developers found defects in source code
under different representations of the source code, such as
diagrams [31]. Uwano and colleagues asked developers to
perform code review tasks, during which participants had
to locate defects in the code [32]. The authors identified
common scan patterns in subjects’ eye movements. In a
partial replication of Uwano’s study, Sharif and colleagues

found differences between experts’ and novices’ scan patterns
while locating defects [33]. Bednarik and Tukiainen found that
repetitive patterns of visual attention were associated with lower
performance [34]. In our study, we also found that revisits to
error message information is statistically significant with the
probability of correctness. Like other research attempting to find
patterns in debugging activities, Hejmady and Narayanan found
visual pattern differences based on programming experience
and familiarity with the IDE [35]. Busjahn and colleagues
were interested in how novices read source code; from eye
tracking, they found that experts read code less linearly than
novices [36]. In our own work, we are interested, for example,
in whether developers read error messages at all.

Outside of eye tracking, other studies are related to our in-
vestigation of comprehension and resolution of error messages.
Researchers de Alwis and Murphy proposed a theory of visual
momentum, identifying factors that may lead developers to
become disoriented when exploring programs in the IDE [27].
Lawrence and colleagues present an information foraging theory
on how developers debug code. They examined programmers’
verbalizations and found that their debugging approaches
more often concerned scent-following than hypotheses [37].
However, the use of verbalization has been found to affect the
performance and decisions participants make on tasks [38].

X. CONCLUSION

In this work, we conducted a study using eye tracking
as a means to investigate if developers read error messages
within the Eclipse IDE. Through distribution comparisons
between source code, error messages, and prior work on silent
reading, we found support that developers are reading error
messages, but also found that the difficulty of reading error
messages is comparable to reading source code — a cognitively
demanding task. By examining developer fixations, we found
that developers spend a substantial amount of time on error
message areas of interest, despite the fact that most tasks had
only a single error message present. An analysis of revisit
times as a proxy for reading difficulty suggests that difficulty
in solving a task can be attributed to difficulties in reading the
error message.

The results of this study reveal several problematic areas
in the way development environments today present compiler
error messages to developers, and identify opportunities for
toolsmiths to address these problems. The contribution of our
work is that it offers an empirical justification for improving
compiler error messages for developers. Stated simply: error
messages matter.

XI. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under grant number 1217700 and 1318323.
Computational resources for this study were provided through
an AWS in Education Research grant from Amazon.

REFERENCES

[1] V. J. Traver, “On compiler error messages: What they say and what they
mean,” Advances in Human-Computer Interaction, vol. 2010, pp. 1–26,
2010.

[2] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge,
“Programmers’ build errors: A case study (at Google),” in ICSE, May
2014, pp. 724–734.

[3] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in ICSE,
May 2013, pp. 672–681.

[4] M. Christakis and C. Bird, “What developers want and need from
program analysis: An empirical study,” in ASE, 2016, pp. 332–343.

[5] D. Pritchard, “Frequency distribution of error messages,” in PLATEAU,
Oct. 2015, pp. 1–8.

[6] P. Denny, A. Luxton-Reilly, and D. Carpenter, “Enhancing syntax error
messages appears ineffectual,” in ITiCSE, Jun. 2014, pp. 273–278.

[7] G. Marceau, K. Fisler, and S. Krishnamurthi, “Measuring the
effectiveness of error messages designed for novice programmers,” in
SIGCSE, Mar. 2011, pp. 499–504.

[8] J. Siegmund, “Framework for measuring program comprehension,”
Ph.D. dissertation, University of Magdeburg, Nov. 2012.

[9] “GazePoint,” http://www.gazept.com/.
[10] “Eclipse,” http://www.eclipse.org/luna/.
[11] “IntelliJ,” https://www.jetbrains.com.
[12] “Visual Studio,” https://www.visualstudio.com/.
[13] “OpenCV,” http://opencv.org/.
[14] R. Smith, “An overview of the Tesseract OCR engine,” in ICDAR,

vol. 2, Sep. 2007, pp. 629–633.
[15] J. W. Ratcliff and D. E. Metzener, “Pattern matching: The Gestalt

approach,” Dr Dobbs Journal, vol. 13, no. 7, p. 46, 1988.
[16] S. L. Wise and X. Kong, “Response time effort: A new measure of

examinee motivation in computer-based tests,” Applied Measurement in
Education, vol. 18, no. 2, pp. 163–183, Apr. 2005.

[17] M. van den Haak, M. De Jong, and P. Jan Schellens, “Retrospective vs.
concurrent think-aloud protocols: Testing the usability of an online
library catalogue,” Behaviour & Information Technology, vol. 22, no. 5,
pp. 339–351, Sep. 2003.

[18] D. T. Welsh and L. D. Ordonez, “Conscience without cognition: The
effects of subconscious priming on ethical behavior,” Academy of
Management Journal, vol. 57, no. 3, pp. 723–742, Jun. 2014.

[19] L. R. Harris and M. Jenkin, “Vision and Attention,” in Vision and
Attention. Springer New York, 2001, pp. 1–17.

[20] K. Rayner, “Eye movements in reading and information processing: 20
years of research.” Psychological Bulletin, vol. 124, no. 3, pp. 372–422,
1998.

[21] J. M. Joyce, Kullback-Leibler Divergence. Springer Berlin Heidelberg,
2011, pp. 720–722.

[22] J. Z. Jacobson and P. Dodwell, “Saccadic eye movements during
reading,” Brain and Language, vol. 8, no. 3, pp. 303–314, 1979.

[23] N. J. D. Nagelkerke, “A note on a general definition of the coefficient
of determination,” Biometrika, vol. 78, no. 3, pp. 691–692, 1991.

[24] B. Johnson, R. Pandita, J. Smith, D. Ford, S. Elder, E. Murphy-Hill,
S. Heckman, and C. Sadowski, “A cross-tool communication study on
program analysis tool notifications,” in FSE, 2016, pp. 73–84.

[25] E. M. Moreno, K. D. Federmeier, and M. Kutas, “Switching languages,
Switching palabras (words): An electrophysiological study of code
switching,” Brain and Language, vol. 80, no. 2, pp. 188–207, 2002.

[26] “Clang Static Analyzer,” http://clang-analyzer.llvm.org/.
[27] B. de Alwis and G. Murphy, “Using visual momentum to explain

disorientation in the Eclipse IDE,” in VL/HCC, 2006, pp. 51–54.
[28] T. Barik, Y. Song, B. Johnson, and E. Murphy-Hill, “From Quick Fixes

to Slow Fixes: Reimagining Static Analysis Resolutions to Enable
Design Space Exploration,” in ICSME, 2016.

[29] I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives of
professionals in software engineering experiments?” in ICSE, 2015, pp.
666–676.

[30] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and
S. D’Mello, “Improving automated source code summarization via an
eye-tracking study of programmers,” in ICSE, May 2014, pp. 390–401.

[31] P. Romero, R. Cox, B. du Boulay, and R. Lutz, Visual Attention and
Representation Switching During Java Program Debugging: A Study
Using the Restricted Focus Viewer, 2002, pp. 221–235.

[32] H. Uwano, M. Nakamura, A. Monden, and K.-i. Matsumoto,
“Analyzing individual performance of source code review using
reviewers’ eye movement,” in ETRA, 2006, pp. 133–140.

[33] B. Sharif, M. Falcone, and J. I. Maletic, “An eye-tracking study on the
role of scan time in finding source code defects,” in ETRA, 2012, p. 381.

[34] R. Bednarik and M. Tukiainen, “Temporal eye-tracking data: Evolution
of debugging strategies with multiple representations,” in ETRA, 2008,
pp. 99–102.

[35] P. Hejmady and N. H. Narayanan, “Visual attention patterns during
program debugging with an IDE,” in ETRA, 2012, pp. 197–200.

[36] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson,
C. Schulte, B. Sharif, and S. Tamm, “Eye movements in code reading:
Relaxing the linear order,” in ICPC, 2015, pp. 255–265.

[37] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.
Fleming, “How programmers debug, revisited: An information foraging
theory perspective,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 197–215, Feb. 2013.

[38] L. Cooke and E. Cuddihy, “Using eye tracking to address limitations in
think-aloud protocol,” in International Professional Communication
Conference, 2005, pp. 653–658.

