
 http://ivi.sagepub.com/
Information Visualization

 http://ivi.sagepub.com/content/12/2/107
The online version of this article can be found at:

DOI: 10.1177/1473871612469020

 2013 12: 107 originally published online 6 March 2013Information Visualization
Emerson Murphy-Hill, Titus Barik and Andrew P. Black

Interactive ambient visualizations for soft advice

Published by:

 http://www.sagepublications.com

 can be found at:Information VisualizationAdditional services and information for

 http://ivi.sagepub.com/cgi/alertsEmail Alerts:

 http://ivi.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://ivi.sagepub.com/content/12/2/107.refs.htmlCitations:

 What is This?

- Mar 6, 2013OnlineFirst Version of Record

- Apr 30, 2013Version of Record >>

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/
http://ivi.sagepub.com/content/12/2/107
http://ivi.sagepub.com/content/12/2/107
http://www.sagepublications.com
http://www.sagepublications.com
http://ivi.sagepub.com/cgi/alerts
http://ivi.sagepub.com/cgi/alerts
http://ivi.sagepub.com/subscriptions
http://ivi.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://www.sagepub.com/journalsPermissions.nav
http://ivi.sagepub.com/content/12/2/107.refs.html
http://ivi.sagepub.com/content/12/2/107.refs.html
http://ivi.sagepub.com/content/12/2/107.full.pdf
http://ivi.sagepub.com/content/12/2/107.full.pdf
http://ivi.sagepub.com/content/early/2013/03/03/1473871612469020.full.pdf
http://ivi.sagepub.com/content/early/2013/03/03/1473871612469020.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://ivi.sagepub.com/
http://ivi.sagepub.com/
http://ivi.sagepub.com/
http://ivi.sagepub.com/

Article

Information Visualization
12(2) 107–132
� The Author(s) 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1473871612469020
ivi.sagepub.com

Interactive ambient visualizations for
soft advice

Emerson Murphy-Hill1, Titus Barik1 and Andrew P. Black2

Abstract
Some software packages offer the user soft advice: recommendations that are intended to help the user cre-
ate high-quality artifacts but which may turn out to be bad advice. It is left to the user to determine whether
the soft advice really will improve quality and to decide whether to adopt it. Visualizations can help the user in
making this decision, but we believe that conventional visualizations are less than ideal. In this article, we
describe an interactive ambient visualization to help users identify, understand, and interpret soft advice. Our
visualization was developed to help programmers interpret code smells, which are indications that a software
project may be suffering from design problems. We describe a laboratory experiment with 12 programmers
that tests several hypotheses about our visualization. The findings suggest that our tool helps programmers
to identify smells more effectively and to make more informed judgments about the design of the program
under development. We then describe an application of our visualization technique in another domain: an
English style and grammar advisor. This second application suggests that our technique can be applied to
several domains and also suggests how the technique must be varied to make it domain specific.

Keywords
Software, refactoring, code smells, design, soft advice, visualization, ambient, grammar, style

Introduction

Liliana is a hypothetical programmer working on

the Apache Tomcat project.1 Recently, she has had

difficulty in adding functionality to the JNDIRealm

class. This class contains several methods such as

the following:

protected boolean compareCredentials(DirContext context,

User info, String credentials) throws NamingException {

.
/* sync since super.digest() does this same thing */

synchronized (this) {

password = password.substring(5);

md.reset();

md.update(credentials.getBytes());

String digestedPassword =

new String(Base64.encode(md.digest()));

validated = password.equals(digestedPassword);

}

.

Based on her experience and an inspection of the

surrounding class, Liliana has concluded that the con-

text and credential parameters should be encapsulated

into a single object because these two parameters

appear together in the parameter lists of seven differ-

ent methods. After refactoring the code by creating a

new class of objects that contain a context and some

credentials, then using an object of the new class wher-

ever a context and some credentials appear together,

Liliana finds that it is much easier to add functionality

to the program and that her productivity is improved.

1North Carolina State University, USA
2Portland State University, USA

Corresponding author:
Emerson Murphy-Hill, North Carolina State University,
Department of Computer Science, 890 Oval Drive, Campus Box
8206 Raleigh, NC 27695-8206, USA.
Email: emerson@csc.ncsu.edu

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

How did Liliana recognize that by creating a class

now, she would improve her productivity later? The

answer is what Fowler2 calls ‘‘code smells’’: patterns in

programs that make software difficult to build and

maintain. Like odors from your kitchen garbage, smells

in software suggest (but do not prove conclusively) that

something might need attention. In Liliana’s case, the

smell that she noticed is called DATA CLUMPS: it is pro-

duced when the same small group of data objects is

used in several different places. DATA CLUMPS can

make software more difficult to maintain because if the

representation of one of the data objects changes or the

protocol for manipulating those objects changes, then

every location in which the group of objects appear

must be examined to see if it needs to be modified.

Based on programmers’ experience, many smells

have been cataloged; Fowler’s2 book lists 22 different

smells; other researchers (e.g. van Emden and

Moonen3) have subsequently proposed more smells.

Table 1 lists a few interesting smells, including all

those mentioned in this article.

Although smells are intended to help programmers

find potential problems with their code, identifying

and understanding code smells can be a difficult task

for two reasons.

� First, novice programmers sometimes cannot

locate smells as proficiently as experienced pro-

grammers, as Mäntylä5 has demonstrated experi-

mentally. For example, Liliana noticed DATA

CLUMPS because of her programming experience

and knowledge of the code. A less experienced

programmer may not have noticed that there was a

problem with the code at all and may have contin-

ued to slowly add functionality to JNDIRealm

without understanding the cause of her low

productivity.
� Second, even expert programmers can find it bur-

densome to inspect their code for smells. In

Liliana’s case, she had to set aside time to manu-

ally inspect the code to look for any one of the

more than 22 different smells—time that she could

have used to add features or fix bugs. Without set-

ting aside time specifically to find code smells, pro-

grammers may not notice them.

For these reasons, a class of software tool called a

smell detector has been developed to help program-

mers find code smells and understand their origin.

Smell detectors have two parts: a code analysis algo-

rithm, which may be simple or complex, depending on

the smell, and a human interface, which presents the

results of the analysis to the user.

Smell detectors are an example of a tool that offers

what we call soft advice. Soft advice is a recommenda-

tion produced by a piece of software that is intended

to help the user do high-quality work but which may

actually be bad advice: the user’s expertise is needed

to judge whether quality will truly be improved. The

recommendations of a smell detector are soft advice

because they cannot be blindly applied; an experi-

enced software developer must evaluate the costs and

benefits of refactoring away a code smell.

Several other types of tools offer soft advice, outside

of the domain of software development. For example,

the Firewall Policy Advisor makes recommendations

Table 1. Some Java code smells identified by Fowler,2 van Emden and Moonen3 (indicated with *), and Drozdz et al.4

(indicated with y).

Smell name Short description

DATA CLUMPS A group of data objects that is duplicated across code.

FEATURE ENVY A method is more interested in some other class than in its own class.

FESSAGE CHAIN A series of method calls to ‘‘drill down’’ to a desired object.

SWITCH STATEMENT A switch statement, typically duplicated across code.

TYPECAST* The program makes frequent use of the typecast operation.

INSTANCEOF* The instanceof operator is used to test an object’s interface or class.
LONG METHOD A method is too long to be easily understood.

LARGE CLASS A class contains too many instance variables or codes.

PRIMITIVE OBSESSION The program uses primitive values like int and built-in classes like String instead of
domain-specific objects like Range and TelephoneNumber.

MAGIC NUMBERy A literal value is used directly, rather than through a named constant.

COMMENTS Thickly commented code is often bad code. Refactor the code, and the comments may
well become superfluous.

DUPLICATED CODE The same code structure appears in more than one place.

108 Information Visualization 12(2)

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

to system administrators for security changes in enter-

prise networks,6 the Systems Operation Advisor makes

recommendations to aircraft controllers for changes in

aircraft fleets,7 and the DB2 advisor makes recom-

mendations to database administrators for database

indexes.8 In each of these soft advice systems, a

human must be in the loop to make judgments.

This article describes a novel smell detector called

Stench Blossom that uses an interactive ambient visua-

lization (section ‘‘Stench Blossom: a novel smell detec-

tor’’). In section ‘‘Guidelines,’’ we distill a set of

guidelines that capture the important characteristics of

Stench Blossom; we believe that these guidelines will

be useful to the designers of other smell detectors. We

then describe an experiment to evaluate several hypoth-

eses about Stench Blossom and its associated guide-

lines (section ‘‘Experiment’’). In section ‘‘Visualizations

for grammar smells,’’ we describe the application of the

idea of interactive ambient visualization to another

domain, English writing, and discuss some design

implications. Finally, in section ‘‘Future work,’’ we dis-

cuss some potential future improvements for Stench

Blossom and speculate about its broader applicability.

This article is an extension of a prior conference

paper9 where the primary contribution was the design

and evaluation of a user interface for visualizing code

smells. However, that work left open an important

question: could the visualization techniques that we

used for code smells be applied to other domains?

This article answers that question in the affirmative;

the major new contribution of this article appears in

section ‘‘Visualizations for grammar smells,’’ which

describes the application of our visualization tech-

nique to a domain outside of software development.

(Readers familiar with our original conference publica-

tion may safely skip sections ‘‘Strench Blossom: a

novel smell detector’’ through ‘‘Experiment’’ of this

article, as the content is quite similar.)

Stench Blossom: a novel smell detector

In this section, we describe the design of Stench

Blossom, drawing from research on refactoring, ambi-

ent information display, interface agents, user interface

design, and perceptual attention. We built this tool

as a plugin for the Eclipse environment; it can be

downloaded at (http://multiview.cs.pdx.edu/refactor-

ing/smells/).

The tool provides the programmer with three differ-

ent views, which offer progressively more information

about the smells in the code being visualized. By

default, Ambient View is displayed continually while

the programmer is coding; it indicates the strength of

smells in the programmer’s current context and is

illustrated in Figure 1. If the programmer wishes to

know more about a particular smell, she mouses

over Ambient View to reveal Active View, shown in

Figure 2; this view names the displayed smells.

Finally, if the programmer wants detailed information

about a particular smell, she clicks on the smell name

in Active View; this reveals Explanation View, shown in

Figure 3. We discuss each view in turn in the following

subsections.

Ambient View

Ambient View is visible behind the program text when-

ever the programmer is using the code editor (Figure

1). Likewise, the static analysis engine in Stench

Blossom runs silently in the background, so that the

information that supports Ambient View is always

available. We chose to make the tool constantly avail-

able so that it aligns with floss refactoring, where pro-

grammers frequently switch between refactoring and

other kinds of code modification.10 This design choice

is in contrast to that made by smell detectors that must

be explicitly invoked to view their results, such as

Crocodile;11 such tools are more appropriate to root

canal refactoring, where the programmer spends signifi-

cant, dedicated time refactoring as a software engi-

neering activity separate from other change activities.

We feel that aligning our tool with floss refactoring

makes it more widely applicable because floss refactor-

ing is the more common refactoring strategy.12

The visualization displays smells related to the cur-

rent programming context. This design decision also

derives from our desire to support floss refactoring:

our goal is to give the programmer information that

will help her carry out her current programming task.

A programmer is more likely to be hampered by smells

emanating from the code that is the subject of her cur-

rent programming task than by smells coming from

unrelated code, so these are the smells that we choose

to display; programmers are also more likely to act to

remove smells that come from code that they are going

to change anyway. This is in contrast to smell detec-

tors that visualize an entire system, such as jCosmo3

or CodeCity;13 these tools are more appropriate for

root canal refactoring, where the objective is to find

and eliminate the worst system-wide smells to improve

overall code quality. Our design choice also aligns with

Mankoff et al.’s14 recommendation that ‘‘the informa-

tion should be useful and relevant to the users in the

intended setting.’’

The visualization is composed of sectors in a semi-

circle on the right-hand side of the editor pane. We call

these sectors petals: each petal corresponds to a smell.

We put the petals on the right-hand side of the editor

to make the display less distracting: the right-hand side

Murphy-Hill et al. 109

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

is the part of the pane least likely to contain code.

Avoiding distracting developers from their current task

was proposed as an important property of ambient

software visualizations by Parnin and Görg.15 We keep

the visualization simple, to avoid ‘‘information over-

load’’;16 we do not, for example, display the names of

the smells. We chose a fixed, radial pattern for the

petals over a more conventional histogram because it

may allow users to associate a particular direction with

a particular smell, similar to the way in which, after

repeated use, users of pie menus can associate items in

the menu with a particular direction.17 For example, a

programmer may learn that FEATURE ENVY always

appears in the - direction. While this circular design

limits the number of petals that can be viewed at any

one time, we have informally verified that this design

scales to at least 20 petals while maintaining readabil-

ity. Because of the multiple petals and the positions of

those petals, our visualization has a high information

capacity according to Pousman and Stasko’s18 taxon-

omy of ambient visualizations. At the same time, it

uses a low representational fidelity18 because the

Ambient View is so loosely coupled to the code and

because the notion of smells is metaphorical. A similar

circular visualization using a floral design was

PeopleGarden, a visualization where a flower represents

a person and a petal represents a post to a message

board.19 The Scope tool, which uses a circular, radar-like

Figure 1. Ambient View in Stench Blossom.

110 Information Visualization 12(2)

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

visualization to keep the user aware of a variety of sys-

tem notifications,20 is also similar to our tool.

The length of the petal represents the strength of

the smell, where a length of zero represents an absence

of the smell, up to the full radius of the semicircle,

which represents a very strong smell. For example, in

Figure 1, the petal in the " direction (DATA CLUMPS)

shows a strong smell, whereas the next petal to its left

(FEATURE ENVY) shows a weaker smell. This is in con-

trast with smell visualizations that use a threshold,

such as TRex21 and CodeNose,22 which do not report

smells at all if their metrics fall below a threshold. We

made this design decision because we suspect that

code smells are highly subjective; if we had chosen a

threshold, it would probably differ from the program-

mer’s preferred threshold, with the consequence that

the tool will either miss smells that the programmer

might want to see (false-negatives) or overemphasize

smells that the programmer would rather ignore (false-

positives). Such false-negatives and false-positives may

erode programmers’ trust in the tool, making them less

likely to use it in the future.

Ambient View is drawn in pastel colors behind the

code, in a fixed position on the screen. Our intent in

designing it this way was to make it a frequent remin-

der and companion during code browsing and editing.

In this sense, our visualization uses negotiated interrup-

tion, where the user is informed of the availability of

Figure 2. Active View in Stench Blossom.

Murphy-Hill et al. 111

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

information but is not forced to acknowledge it immedi-

ately.23 Robertson et al.24 have shown that programmers

who use a debugger with negotiated interruption are

more productive when completing debugging tasks than

are programmers who use a debugger with immediate

interruption. Likewise, we hope that Stench Blossom’s

use of negotiated interruptions, instead of immediate

interruptions, will allow programmers to be more pro-

ductive while programming. Stench Blossom uses a

somewhat low notification level, according to Pousman

and Stasko’s17 taxonomy of ambient visualizations.

The light coloration and simple shape of our visua-

lization are also motivated by feature integration theory,

which suggests that people initially search in parallel

across their entire field of vision for simple visual fea-

tures, such as color and orientation, to quickly and

automatically perceive objects.25 After this initial per-

ception, people expend more focused effort to perceive

the object in greater depth. We intend that our visuali-

zation supports this initial stage of perception, so that

programmers can effortlessly assess smells in their

code, at least at a high level.

Figure 3. Explanation View for the smell FEATURE ENVY.

112 Information Visualization 12(2)

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

The position of smells in the visualization was

designed to give the programmer information at a

glance. Each petal, corresponding to a smell, is placed

on the semicircle so that the smell that is most obvious

to the unaided eye is shown in the # direction and the

smell that is least likely to be noticed without the use of

a tool is shown in the " direction. This positioning

information is replicated in the colors; the most obvious

smell is shown in blue, while the least obvious is in

orange, with the smells in between colored a gradient

between blue and orange. The colors are not strictly

necessary to interpret the visualization; the position of

the petals alone imparts the information about obvious-

ness. We chose blue and orange because these colors

are value-neutral; programmers reported that an early

design, where Stench Blossom used red and green,

implied that some smells were ‘‘worse’’ than others.

The purpose of the colors and petal positions is that

if the programmer notices that the visualization is

orange and top-heavy, the code is exhibiting smells

that she is unlikely to be aware of, whereas if the visua-

lization is blue and bottom-heavy, the code is exhibit-

ing smells that she is likely to be aware of already. We

ranked smells on this ‘‘obviousness continuum’’

because our intuition was that some smells are less

obvious than others. For example, a LARGE CLASS is

obvious when the programmer is coding within it, yet

FEATURE ENVY is less obvious because the programmer

needs to determine where each called method or

accessed field resides. Stench Blossom displays the

smells from top to bottom in the order listed in Table

1 for the first eight smells listed there. This ordering is

based on our own intuition as programmers; other

programmers may prefer a different order.

By placing smells on the obviousness continuum,

we have visually ranked the utility—the usefulness and

the importance—of each smell. Gluck et al.26 have

shown that matching the amount of attention attracted

by a notification to the utility of the interruption

decreases users’ annoyance and increases their percep-

tion of benefit. We hope that our visual ranking of

smells can similarly decrease annoyance and increase

the perception of benefit. At the same time, we have

designed the user interface, so that it avoids distracting

the programmer because, as Raskin27 puts it, ‘‘Systems

should be designed to allow users to concentrate on

their jobs.’’

In sum, the purpose of the visualization in Ambient

View is to give a lightweight yet information-rich over-

view of the code smells present in the current program-

ming context. We designed the visualization to impart

this information quickly, so that the programmer need

only glance at the visualization to decide whether fur-

ther investigation is warranted. We have also built it to

be aesthetically pleasing; Pousman and Stasko’s18

taxonomy of ambient visualizations would give it a

‘‘somewhat high aesthetic emphasis.’’

Active View

If the programmer chooses to investigate a particular

smell, she moves the mouse over the offending petal.

This transitions Stench Blossom to Active View and

reveals the name of the offending smell, as shown in

Figure 2. If she then wants a full explanation of the

cause of the smell, she need only click on the name:

this transitions Stench Blossom to Explanation View.

We chose to use progressive disclosure to display

smell information for two reasons. First, because some

types of smell information (such as the information

relating to FEATURE ENVY) are highly complex, repre-

senting such complexity in a single visualization may

be perceptually unscalable. Second, because we

wanted Ambient View to be a simple visualization, it

was natural to provide the programmer with a way to

view in-depth information on demand. Our choice to

use progressive disclosure contrasts with other smell

detectors, such as Parnin et al.’s28 Noseprints tool,

that display a single visualization of code smells.

However, many existing smell detectors, especially

ones that underline code that contains smells,21,22,29,30

do include a basic form of progressive disclosure: they

allow the user to mouse over an underlined piece of

code to see the name of a smell that that code is exhi-

biting. Stench Blossom takes this technique one step

further in Explanation View.

Explanation View

Explanation View is designed to explain a selected smell

in detail because simply reporting uniform metrics about

the existence and strength of a smell, as we do in the

Ambient View, may not be sufficient information to

allow the programmer to decide whether and how to

correct the smell. This aligns with Shneiderman’s31 rec-

ommendation that user interfaces should provide con-

structive guidance, so that the user can make intelligent

choices about the next step (p. 58).

Although we designed Stench Blossom to provide

detailed information about the selected smell, we

chose not to offer suggestions for how to refactor the

code. We made this design choice for two reasons.

First, as Shneiderman32 states, ‘‘experienced operators

strongly desire the sense that they are in charge of the

system’’ (p. 62). Second, in some cases, enumerating

all the possible refactorings to deal with a smell may

yield an overwhelming number of results. For exam-

ple, given a LONG METHOD, the extract method refac-

toring may be applied to almost any combination of

contiguous statements in the method; each of these

Murphy-Hill et al. 113

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

refactorings would ‘‘carve up’’ the method in a differ-

ent way. Instead, Stench Blossom is intended to give

the programmer sufficient information to decide for

herself on the best course of action.

Naturally, the details provided in Explanation View

vary from one smell to another, but most smells are

explained using two components. Both are shown in

Figure 3, which illustrates the smell FEATURE ENVY.

The first component, initially displayed at the top-right

but movable by the user, is the summary pane: it sum-

marizes the data collected by the smell analyzer. In the

example, the summary pane shows that the current

method uses only a single method (serialiseByteArray)

from its own class, but a long list of methods from the

class DHTTransportFullStats.

The second component takes the form of annota-

tions on the code in the editor. These show the origin

of the smell. In Figure 3, the programmer has moused

over the name of the getVersion method in the sum-

mary pane: the place in the code where this method is

used is boxed. References to methods and variables of

external classes are highlighted; colors are used to dis-

tinguish references to one class from references to

another. For example, in Figure 3, all references to

methods in DHTTransportImpl are colored pink.

Color assignment here is arbitrary, although we

attempt to make each color as different as possible

from the other colors. We also intend that the pro-

grammer can use the overall extent of the colorization

to estimate the extent of the smell in the code.

Implementation

Stench Blossom serves as the common output for a

number of individual smell analyzers. Each analyzer

computes a scalar metric within a known range, which

is used to determine the length of the corresponding

petal in the Ambient View. Some of these metrics are

quite complicated; the metric for FEATURE ENVY, for

example, depends on the number of classes referenced,

the number of references to each class, and the num-

ber of internal references.

Because of this complexity, care was needed to

avoid having the analysis slow down the response of

the system to editing activity, which is after all the pri-

mary task. It proved adequate to have smell detection

run in a background thread and to cache smell results

for unchanged parts of the program. It may eventually

prove necessary to rely on heuristics for some analyses

in Ambient View and to commit to a full analysis only

if the programmer moves to Active View, and thence

to Explanation View.

Showing smells related only to the current pro-

gramming context—motivated by our desire to sup-

port floss refactoring—has the added benefit that it

requires more modest analysis than system-wide smell

visualizations. This is the key to the scalability of the

implementation: even if the program being edited is

large, only a small part of it—the ‘‘current context’’—

is being worked on at any given time. At present, the

current context is defined as the method in which the

user’s cursor lies. If the cursor is not in the code on

the screen, then the tool shows a metaphorical trip

wire in the middle of the editor; the method on the

trip wire defines the current context. In the future, we

may consider other definitions of context, such as

Mylyn’s task contexts33 or Parnin and Görg’s34 usage

contexts.

Guidelines

Based on our experience in designing and building

Stench Blossom, we have derived a number of charac-

teristics that we believe may be useful in any smell

detector for floss refactoring. In Table 2, we capture

these characteristics as a set of user interface guide-

lines. The guidelines are stated in a programmer-

centric way; these same statements were used in our

empirical evaluation. We believe that enumerating

these guidelines is important because it captures the

characteristics of Stench Blossom in a reusable form;

this should help future tool designers to pick and

choose which characteristics they want for their smell

detector, without necessarily using an interactive

ambient visualization. For example, a tool designer

who wants to underline smells in an editor could

implement Partiality by changing the underline color

or intensity based on the obviousness of the smell.

Experiment

We conducted an experiment to test several hypoth-

eses about Stench Blossom. In the experiment, we

asked programmers to identify smells in code and

make refactoring judgments based on smells, with and

without Stench Blossom. To facilitate replication of

this experiment, the experimenter’s notebook can be

found in Appendix 1. Other materials, including the

codesets and results database, can be found at (http://

multiview.cs.pdx.edu/refactoring/experiments/).

In designing the experiment, we chose to compare

Stench Blossom against no tool, rather than compar-

ing it against some existing tool. While it would be

useful to compare different smell visualizations, no

such comparison could in practice be fair. Existing

smell detectors differ from ours in that they work for

other languages or for considerably fewer smells, and

thus, the results of such a comparison would necessa-

rily conflate the effects of those differences with

114 Information Visualization 12(2)

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

Table 2. Our guidelines and the rationale behind them.

Guideline Rationale

Restraint. The tool should not overwhelm
me with the smells that it detects.

Sometimes smells emanate from many pieces of code and sometimes
one piece of code emits many smells. For example, the
compareCredentials method from section ‘‘Introduction’’ gives off at
least five code smells: DATA CLUMPS, PRIMITIVE OBSESSION, LONG METHOD,
COMMENTS, AND MAGIC NUMBER. Thus, a smell detector should not display
smell information in such a way that a proliferation of code smells
overloads the programmer.

Relationality. When showing me details
about code smells, the tool should show
me the relationships between affected
program elements.

Some smells emanate not from a single point in the code but from the
relationship between several noncontiguous pieces of code. For
instance, a method exhibits FEATURE ENVY not because of a single
reference to a parameter but because of a large number of references
to parameters of foreign types and a small number of references to the
fields and methods of this and other objects of the method’s own
class. Thus, a smell detector should display smell information
relationally when the smell is caused by the relationship between code
fragments.

Partiality. The tool should emphasize
smells that are difficult to see with the
naked eye.

Programmers may find that there is more value in having a tool tell
them about certain smells and less value in being told about other
smells. This is because some smells, such as LONG METHOD, are visible
at a glance, while others, such as FEATURE ENVY, require careful
analysis.5 Thus, a smell detector should emphasize those smells that
are difficult to recognize without a tool.

Nondistracting. The tool should not
distract me.

It is important that a smell detector not encourage a programmer to
refactor excessively because best practice dictates that programmers
only refactor when it helps achieve another goal.2

Estimability. The tool should help me
estimate the extent of a smell in the
code.

Smells such as DUPLICATED CODE may be spread throughout a whole
class, whereas others may be localized in only one place. The extent of
such spread can help the programmer determine whether a smell
should be refactored away and how much effort and reward such a
refactoring would entail.

Availability. The tool should make smell
information available to me at all times.

The most popular tactic for refactoring occurs when a programmer
interleaves frequent refactoring with other kinds of program
modification—floss refactoring.11 Because analyzing smells is part of
this interleaving, a smell detector that supports this tactic must help
programmers to find smells quickly, without forcing them to go
through a long process to see whether the tool has found any smells.
Thus, a smell detector should make smell information available as
soon as possible, with little or no effort on the part of the programmer.

Unobtrusiveness. The tool should not
block me from my other work while it
analyzes or finds smells.

The activities of coding and finding smells for refactoring are often
tightly interleaved,2,11 yet at the same time, automatic code analysis
may be time-consuming, so much so that waiting for the analysis to
complete may disrupt this interleaving. Thus, a smell detector should
not stop the programmer from programming while it gathers, analyzes,
and displays information about smells.

Context-Sensitivity. The tool should tell
me first and foremost about smells
related to the code I am working on.

Best practice dictates that refactoring only be done when it helps to
accomplish an immediate programming goal;2 fixing a smell on code
that is unrelated to the current programming task is a distraction from
that task. So fixing smells in a context-insensitive manner may be an
inefficient way of using resources or may even be counterproductive.
Thus, a smell detector should point out smells relevant to the current
programming context.

Lucidity. In addition to finding smells for
me, the tool should tell me why smells
exist.

Smells can be complex and difficult to understand because they may
be subtle or flagrant, widespread or localized, or anywhere in between.
A smell detector that communicates these properties may help give
the programmer confidence in the detector’s analysis. Thus, a smell
detector should go further than simply telling the programmer that a
smell exists; it should help the programmer find the sources of the
problem by explaining why the smell exists.

Murphy-Hill et al. 115

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

differences between visualizations. For instance, van

Emden and Moonen’s3 tool implements only two

smells (INSTANCEOF and TYPECAST); conducting a com-

parative experiment against just these two smells

would produce quite limited results.

Subjects

We recruited a total of 12 subjects: 6 commercial Java

developers and 6 students from a graduate class on

relational database management systems. Subjects

were recruited using an email message that stated that

participants needed to be at least moderately familiar

with Java and unfamiliar with Stench Blossom.

Subjects from the class were asked to volunteer to

participate in exchange for extra credit on one pro-

gramming assignment. Professional subjects were

drawn from a pool of local professional programmers

who had volunteered previously at Java and Eclipse

user group meetings. Professional subjects were not

compensated.

Based on self-reporting in a preexperiment ques-

tionnaire, it appeared that subjects arrived with the

requisite amount of programming experience and a

varied level of experience with refactoring and smells.

All subjects had previously used integrated develop-

ment environments (IDEs; 9 of 12 were Eclipse users)

and were at least moderately familiar with Java. All

professional subjects had some knowledge of refactor-

ing, while four of six student subjects did. Four of six

professional subjects had some knowledge of smells,

while none of the student subjects did. Professional

subjects reported a median of 12.5 years of program-

ming experience, while student subjects reported 5.5

years.

Table 3 summarizes the demographics of the sub-

jects, where each row represents a subject. The Class

column indicates whether the subject was recruited

from the graduate class. The Job Title column indi-

cates each participant’s job title. The Experience col-

umn indicates how many years of programming

experience each subject had. The remainder of the

columns in the table will be explained shortly.

Methodology

We conducted the experiment using a laptop (1.7

GHz, 2 GB RAM, 15.4-inch-wide screen of 1280 3

800 pixels) with an external mouse. Each experiment

was conducted one-on-one, with the first author as

experiment administrator.

Subjects were divided into four groups to mitigate

learning effects via counterbalancing. Half of the sub-

jects performed tasks without the aid of Stench

Blossom first, then with the aid of it, while the other

half used Stench Blossom first, then performed the

task without it. In Table 3, the Tool 1st column indi-

cates whether subjects used the tool first. Within these

two groups, half of the subjects worked over codeset A

first, then B second, and half over codeset B first, then

A second. In Table 3, the Code column indicates this

order for each subject. We chose codesets A and B to

contain an approximately equal variety of smells. Each

codeset contained four classes selected from the

Vuze35 and core Java libraries.36

We designed the experiment to last approximately

1 h. The experiment started with a training phase, then

had three parts in which we tested four hypotheses, as

described below.

Training. Subjects were given eight 3993 599 cards,

each containing a smell name and description on the

front and an example on the back. The eight smells on

the cards were the first eight smells listed in Table 1.

Table 3. Participant demographics and results summary.

Class Job title Experience Tool 1st Code Smells found

No tool Tool

No Software Analyst 7 years Yes AB 11 18
No Software Developer 30 years No AB 9 14
No Advisory Software Engineer 10 years Yes BA 12 22
No Senior Software Engineer 18 years No BA 20 35
Yes IT Support 9 years Yes AB 17 27
Yes Graduate Teaching Assistant 6 years No BA 11 23
Yes Software Engineer 4 years Yes BA 22 20
Yes Technologist 19 years No AB 11 22
No Software Engineer 15 years Yes BA 14 18
Yes Hardware Validation Intern 3 years Yes AB 8 13
Yes Systems Engineer 5 years No BA 9 17
No Contract Programmer 10 years No AB 10 22

116 Information Visualization 12(2)

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

Subjects were given a few minutes to read these cards

and were told that they would later be asked to find

smells as well as explore details of some smells.

Task 1: identifying smells in code. Subjects were asked

to skim four Java files, top to bottom, and mention any

smells that they noticed. For two of the files, subjects

looked for the smells manually, and for the other two,

they used Stench Blossom. Before using Stench

Blossom, the administrator gave each subject a demon-

stration and read aloud a short description of the

Ambient View visualization.

The subject then began the task, and the adminis-

trator recorded which of the eight smells the subject

noticed and said aloud, with and without Stench

Blossom. When using Stench Blossom, the subjects

could simply repeat what the visualization was telling

them, but in practice, most subjects appeared to cross-

validate what the tool said by briefly looking over the

code. This allowed us to test our first hypothesis:

Hypothesis 1. Programmers identify more smells using the

tool than not using the tool. If the number of smells that

subjects reported when using the tool significantly

exceeds the number of smells when subjects were not

using the tool, then the hypothesis is confirmed.

Note that while this hypothesis may seem obviously

true, little evidence exists in the literature to confirm it.

The only experiment that we know of that has tested

this hypothesis was performed by Parnin et al.,28 where

one of the authors found more smells using a tool in a

small software project than did five other code readers

without a tool. Thus, our confirmation of this hypoth-

esis serves to confirm Parnin et al.’s result, for an audi-

ence beyond the people who designed the tool: smell

detectors can be effective in finding smells.

We also asked subjects to evaluate, and say aloud,

whether they agreed with the tool’s quantification of

the smell. This allowed us to test another hypothesis:

Hypothesis 2. Code smells are subjective. If subjects

expressed disagreement with each others’ estimation

of smells and with the tool’s quantification of the

smell, then the hypothesis is confirmed.

Previous evidence for this hypothesis has been pro-

vided by Mäntylä et al.,37 who asked 12 developers

from the same company to identify smells in their own

closed-source software and compared that evaluation

to a smell detector’s findings for three smells. They

found that the findings of the developers and the find-

ings of the tools did not correlate, confirming this

hypotheses. Our study thus attempts to qualitatively

replicate their findings in the context of more smells, a

wider variety of programmers, and for open-source

software.

Task 2: making refactoring judgments. Next, subjects

made refactoring judgments about code. When the

subject used Stench Blossom, the administrator gave

the subject a demonstration of the tool and read aloud

a description of how the Explanation View displays

FEATURE ENVY. The subject was then told the task was

to ‘‘use the tool to help you make some judgments

about the code: how widespread the FEATURE ENVY is,

how likely you are to remove it, and how you might do

it.’’ The subject performed this task in four different

methods: two methods with Stench Blossom and two

methods without. We recorded these judgments during

the experiment. A similar task description was used

when the subject did not use the tool.

We used this task to evaluate the following

hypothesis:

Hypothesis 3. Programmers make more confident and

informed refactoring judgments when using the tool than

when not using the tool. In the questionnaire (described

in the next section), we asked subjects whether they

felt that the tool helped them to make more confident

and informed judgments. These two questions about

being confident and informed allowed yes-or-no

responses with optional comments. If the number of

subjects who reported being more confident and

informed about their judgments exceeded the number

who did not, then the hypothesis is confirmed.

Questionnaire. Finally, subjects were asked about their

experiences using Stench Blossom and about their

opinion of smell detectors in general. In the question-

naire, we also asked subjects to rate whether the nine

usability guidelines (described in Table 2) were impor-

tant. Similar to a heuristic evaluation, where people

evaluate a user interface according to a set of guide-

lines,38 our ratings instead tried to have subjects evalu-

ate the guidelines themselves. By phrasing the

guidelines in a programmer-centric way, we hoped

that subjects could judge whether each guideline was

important to them personally. Because the two tasks

allowed the subject to explore the breadth and depth

of our tool (several smells and all three views), we feel

that the subjects were qualified to make an informed

judgment about our tool and of the guidelines that it

follows.

Additionally, the questionnaire asked subjects to

rate two other guidelines that a smell detector might

exhibit but that we did not postulate in section

Murphy-Hill et al. 117

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

‘‘Guidelines’’ and which Stench Blossom does not

follow.

� Decidability. ‘‘The tool should help me decide

whether to remove a smell from the code,’’ similar

to Shneiderman’s31 recommendation for construc-

tive guidance (p. 58).
� Consistency. ‘‘The tool should have a user interface

consistent with the rest of the environment,’’

derived from Nielsen’s39 ‘‘consistency and stan-

dards’’ heuristic.

We included these two guidelines because we postu-

late that they are not important to smell detectors.

Thus, they provide a baseline against which to test the

guidelines that we do postulate to be important. This

leads to our fourth hypothesis:

Hypothesis 4. The guidelines represent desirable design con-

siderations for smell detectors. If subjects rank the guide-

lines that we believe are important to smell detectors

significantly higher than the guidelines that we believe

are not important, then the hypothesis is confirmed.

Results

The experiment confirmed Hypothesis 1 that program-

mers identify more smells using the Stench Blossom

tool than not using it. In Table 3, the Smells Found
columns indicate the number of smells identified with

and without Stench Blossom. The median number of

smells found without the assistance of Stench Blossom

was 11, while the median number of smells found with

the assistance of Stench Blossom was 21. The differ-

ence between smells found with Stench Blossom and

those found without is statistically significant (p =

.003, df = 11, z = 2.98, using a Wilcoxon matched-

pairs signed-ranks test, where a= :05). This aligned

with subjects’ opinions: all indicated that it was diffi-

cult to look for all eight smells at once without the

assistance of the tool. All subjects indicated that the

smell detector found information that they would not

have found as quickly. Eight of the 12 indicated that

the detector found information that they would not

have found at all.

When subjects did not use Stench Blossom, they

sometimes found the task of recognizing smells diffi-

cult, suggesting that one factor that made Stench

Blossom effective was that it served as memory aid.

When the administrator asked subjects to look for the

8 smells in the code, subjects reported that they found

it difficult to keep them all in mind at once. Overall,

four subjects ‘‘somewhat agreed’’ and eight ‘‘strongly

agreed’’ that ‘‘it was difficult to look for all 8 smells at

the same time.’’ While looking for smells, a subject

remarked ‘‘I realize [that] I forgot about the LONG

METHOD one’’ and ‘‘TYPECAST: I’d totally forgotten,’’

even though this subject had reviewed the smells less

than 10 min prior and was among the three subjects

who rated themselves most knowledgeable about code

smells. Likewise, even when readily apparent by

inspection, some smells were overlooked by subjects.

For example, after overlooking a switch statement

several times, one subject commented ‘‘I can’t believe

I didn’t see it.’’

The experiment provided evidence to support

Hypothesis 2 that smells are subjective. For example,

several subjects had different definitions of what ‘‘too

big’’ means for LONG METHOD and LARGE CLASS.

Several subjects agreed with Stench Blossom—that

counting the number of characters is useful for gau-

ging how long something is—although some commen-

ted that the tool should not have included comments

when gauging size. Other subjects stated that counting

statements or expressions in the abstract syntax tree is

the only useful metric for length. One subject noted

that ‘‘if it fits on the page, it’s reasonable.’’ There was

some indication, beyond LONG METHOD and LARGE

CLASS, that other smells were subjective as well. For

instance, one subject saw some instances of DATA

CLUMPS as not a problem because the developers who

wrote the code had little choice. Likewise, subjects

made comments indicating that smells were not binary

but encompassed a range of severity; for instance,

smells were ‘‘borderline,’’ ‘‘obvious,’’ or ‘‘relative’’ to

the surrounding code.

The experiment confirmed Hypothesis 3 that sub-

jects make more confident and informed refactoring

judgments when using the tool than when not using

the tool. Ten of 12 subjects said that the tool improved

their confidence in refactoring judgments, and 11 of

12 said that the tool helped them to make more

informed judgments.

A feature that appeared to help subjects make refac-

toring judgments was Stench Blossom’s ability to per-

form and express precise program analysis. Without

the tool, several subjects inaccurately analyzed source

code for FEATURE ENVY, which led to poorly informed

refactoring judgments. The inaccuracy of the subjects’

analyses appeared to stem from their use of faulty

heuristics. For example, one subject explicitly declared

a heuristic that if the method being inspected ‘‘is static

. [then] we’re not referencing . this class.’’ This

heuristic, used by several developers, is faulty because

static methods can access static fields. Using this heur-

istic will cause subjects to conclude that there is more

FEATURE ENVY than actually exists, potentially result-

ing in unnecessary refactoring. Because Stench

Blossom performed accurate program analysis, sub-

jects did not need to rely on faulty heuristics and thus

118 Information Visualization 12(2)

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

could make refactoring judgments that were confident

and informed.

The experiment confirmed Hypothesis 4 that the

guidelines represent desirable design considerations

for smell detectors. Overall, subjects rated our guide-

lines as important to the design of smell detectors.

Table 4 lists how subjects rated each guideline that we

postulated in Table 2. In the left column, the guideline

name is listed (the subject had read the description

of the guideline, but not the name of the guideline).

The right columns list how the many subjects rated

each guideline at what level of importance to the

design of smell detectors. For example, 1 subject

marked Unobtrusiveness as ‘‘Very Important’’ while

11 marked it as ‘‘Essential.’’ The aggregates of all

responses are displayed; the darker the table cell, the

more participants marked that response. In the table,

guidelines are ordered by mean guideline scores.

Guidelines that were not included in the originally

postulated list of nine guidelines are italicized in Table

4. Subjects tended to rank the postulated guidelines,

as a whole, significantly higher than the guidelines that

we did not postulate (p \ .001, df = 130, z = 3.69,

using a Wilcoxon rank-sum test), suggesting that pro-

grammers believe that our guidelines are generally

important to usable smell detectors. However, indivi-

dually, only the Unobtrusiveness, Context-Sensitivity,

and Restraint guidelines were ranked significantly

higher than both guidelines that we did not postulate

(Table 5).

A minority of subjects appeared to believe that

some guidelines are not at all important. For example,

the postulated guideline that was judged the least

important, Lucidity, was judged as ‘‘not important’’ by

three subjects. Interestingly, these three subjects were

all volunteers from the classroom and were the second,

third, and fourth least experienced programmers

among the 12 subjects. Our interpretation is that, per-

haps, less experienced programmers do not value a

tool that explains its reasoning because they believe

that needing such an explanation is a sign of poor pro-

gramming skills.

Limitations

There are several limitations in the design of our

experiment. We restricted subjects to discussing only 8

smells, when Fowler2 lists 22 code smells, and those 8

are not necessarily a representative sample. Likewise,

we only focused on one smell in the Explanation

View—FEATURE ENVY—so subjects’ refactoring judg-

ments may be different for other kinds of smells. For

the most part, subjects were unfamiliar with the source

Table 4. Results of postexperiment guideline questionnaire.

How important is the characteristic to any smell detection tool?

Not important Somewhat important Important Very important Essential

Unobtrusiveness 0 0 0 1 11

Context-Sensitivity 0 1 1 3 7

Restraint 0 1 1 3 7

Partiality 0 1 0 6 5

Estimability 0 0 3 3 6

Nondistracting 0 1 1 5 5

Relationality 1 1 3 4 3

Availability 1 2 2 4 3

Consistency 1 2 2 5 2

Lucidity 3 0 3 3 3

Decidability 3 2 4 2 1

Table 5. Differences between postulated guidelines (at
left) and guidelines that we did not postulate (top),
compared using pairwise p-values calculated using a
Wilcoxon rank-sum test.

Consistency Decidability

Unobtrusiveness \ .001* \ .001*
Context-Sensitivity .042* .003*
Restraint .042* .003*
Partiality .065 .003*
Estimability .086 .004*
Nondistracting .107 .006*
Relationality .742 .086
Availability .834 .125
Lucidity .858 .286

Statistically significant differences are denoted with an asterisk
symbol, at an a = :05 level.

Murphy-Hill et al. 119

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

code; the results may be different for code with which

they are familiar. A further limitation is that the source

code that we selected may not be representative of all

source code in the wild. Further studies are needed to

validate our results for different smells, with code

familiar to subjects and with a wider variety of code

bases.

Visualizations for grammar smells

In this section, we describe how we repurposed Stench

Blossom as a style and grammar advisor. Our goal was

to demonstrate the generalizability of interactive ambi-

ent visualizations by applying them to a domain out-

side software engineering. Revision in writing is an

appropriate avenue for such a tool because a revision

task can occur at any time in the subprocesses of writ-

ing, as opposed to being linearly performed in a single

postwriting stage of the composing process.40

Implementation

To closely parallel the implementation of visualizing

code smells, the style and grammar advisor also uses

Eclipse as its underlying editing environment.

Specifically, we use TeXlipse,41 a plugin for editing

LaTeX documents, to provide a convenient platform

for retargeting Stench Blossom to English writing,

rather than programming. This implementation deci-

sion also allows us to reuse much of the existing visua-

lization framework.

The retargeting of Stench Blossom as a style and

grammar advisor is greatly facilitated by the use of the

open-source style and grammar-checking library

JLanguageTool.42 Designed by Daniel Naber, this

library offers the ability to grammar check plain-text

documents in multiple languages and includes an

ample number of rule-based grammar patterns.

The fact that JLanguageTool processes plain-text

presents an interesting parsing challenge, since LaTeX

is a markup language and LaTeX documents contain

markup as well as text: special characters, variables,

command and environment definitions and applica-

tions, and comments. Precautions must be taken

before passing such a document to the JLanguageTool

grammar checker by preprocessing the input LaTeX

text. Specifically, LaTeX tags are stripped of program-

ming commands before grammar checking the docu-

ment; these commands are then added back after

checking. This requires that we adjust the character

positions to compensate for the grammar checker’s

changes. While this eliminates many issues, such as

formatting commands like bold or underline, our

transformation does not actually compile or execute

the LaTeX code. Consequently, if the LaTeX

document contains programming statements that add

or remove content from the document itself, these

statements cannot be detected, causing incorrect input

text to be sent to JLanguageTool. This issue is not

unique to our implementation but is inherent to the

fact that LaTeX is a Turing-complete programming

language. The spelling engine of TeXlipse, for exam-

ple, is similarly unable to spell-check text in macros.

JLanguageTool first performs part-of-speech tag-

ging; the core rule-checking engine then uses part-of-

speech information and regular expressions to encode

grammar rules. This type of grammar error detection

and recommendation mechanism is thus roughly ana-

logous to a generalized search and replace mechanism.

This results in some limitations in the tool’s ability to

recognize and encode complex grammar issues, such

as incorrect parallel structures.

Gamon43 summarizes the power of this form of rec-

ognition by identifying two extremes. The first is that

of preposition and article errors, which require large

amounts of contextual information to arrive at a cor-

rect identification. The second is that of overregular-

ized verb inflection and is detectable without any

contextual information. As an example of the second

extreme, the word ‘‘goed’’ is incorrect, even without

knowing the context; the word should be changed to

‘‘went’’. Regular expression–based tools like

JLanguageTool implement more checks in the latter

category and fewer in the former. While the library

offers the ability to write advanced contextual rules in

Java, few such rules are provided in the JLanguageTool

implementation. Implementing our visualization on

top of these rules still provides useful information,

although more advanced visualizations could be devel-

oped if more sophisticated grammar rules become

available.

JLanguageTool places grammar rules into a small

number of distinct categories, so it was convenient to

map each category to a separate petal. Within each

category, the number of rules violated by the text in

the visible document region determines the length of

the petal. Categories include bad style, commonly con-

fused words, nonstandard phrases, and possible typos;

Table 6 shows a complete list of categories, along with

representative rules from each.

Usage

Figure 4 shows a typical editing session within the

TeXlipse environment. Hovering over the petal reveals

a tooltip with the name of the category of that petal.

The default behavior is that clicking on the name of

the category toggles the Explanation View, which high-

lights the grammar issues within the visible document

120 Information Visualization 12(2)

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

region. The user can opt to display the Explanation

View for as many categories as she desires.

Obviousness for grammar issues is presented in a

manner similar to code smells, with the least obvious

grammatical errors presented in the " direction and

the most obvious errors presented in the # direction.

While code smells used a variety of different metrics

for determining the size of a petal, the grammar visua-

lization uses only the number of visible issues in the

category to determine the size. We discuss the diffi-

culty of designing appropriate metrics for obviousness

and severity in the next two subsections.

Determining obviousness

For code smells, we determined the obviousness of

each smell using our experience as software

developers. In doing so, we made the assumption that

obviousness is an objective quality. For the grammar

advisor, that is not so, and thus, the ordering of cate-

gories by obviousness raises some new difficulties.

Evidence for the subjective nature of obviousness

for errors in natural language comes both from our

everyday experience and from the linguistics literature.

Han et al.,44 for instance, states that one of the most

complex problems faced by a nonnative speaker of

English is the correct use of articles (a, an, and the)

and that using articles correctly is particularly difficult

for speakers of Japanese, Chinese, and other languages

that do not have articles. It seems reasonable to con-

clude that a native English speaker might find issues of

article agreement to be obvious, whereas a nonnative

speaker may find them quite nonobvious, indeed

immensely difficult to detect without the aid of a tool.

Table 6. Grammar categories within JLanguageTool and example rules for each.

Category Description Incorrect usage Correct usage

Bad Style Starting a sentence with a numeral,
starting a sentence with
‘‘Hopefully,’’ and three nouns in a
row.

12 soldiers were
killed!

Twelve soldiers
were killed!

Capitalization Corrects case of incorrectly
lowercased and uppercased words.

Who do you think
i am?

Who do you think
I am?

Collocations Suggests collocations—associated
words that often appear together.

I’m going home
today evening.

I’m going home
this evening.

Commonly Confused Words Words that sound alike but that
have different meanings.

Please except my
apologies.

Please accept my
apologies.

General Grammar General grammar issues involving
agreement and incorrect sentence
structure.

The dogs barks
loudly.

The dogs bark
loudly.

Miscellaneous Miscellaneous grammar issues,
including repetition of words,
double negations, and other types
of duplicated words and phrases.

The a thing is
this.

The thing is this.

Nonstandard Phrases Phrases that are nonstandard for
native English speakers but
commonly said by nonnative
speakers.

No, in the
moment not.

No, currently
not.

Possible Typos Possible typos in words determined
by context, which would not be
detected using spell checking
alone.

Do not duplicate
or redistribute in
any from.

Do not duplicate
or redistribute in
any form.

Redundant Phrases Redundant expressions—the
removal of one expression would
be more concise without resulting
in loss of clarity.

Their voices
blend together in
lovely harmony.

Their voices
blend in lovely
harmony.

Slang Slang word or phrase is used in a
formal context. Currently,
JLanguageTool contains only a
single rule in this category.

Did you receive
an invite?

Did you receive
an invitation?

Murphy-Hill et al. 121

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

A possible response might be to have the visualiza-

tion use different scales of obviousness for native and

nonnative writers, as determined by analyzing the text.

This too is fraught with difficulties; it turns out that

native and near-native speakers may not exhibit signifi-

cant differences in competence. For example,

Coppieters45 performed extensive interviews of

French speakers and found that native and near-native

speakers of French have strikingly different intuitions

on French sentences, in spite of the fact that the two

groups appear to be equivalent at the level of language

use and proficiency.

One solution is to allow the user to determine the

ordering of the categories based on individual prefer-

ences. Indeed, this is exactly what we have done; the

current obviousness rankings are a reflection of the

authors’ preferences as native English speakers. Other

solutions include asking the user directly (‘‘Are you a

native speaker?’’), detecting the appropriate obvious-

ness order based on the frequency with which the user

makes certain grammatical mistakes or by providing a

training session that scores the user’s ability to recog-

nize grammar issues.

Determining severity

Obviousness is only one metric in the design space of our

visualization. It alone tells us nothing about the severity

of the problem. Recall that the severity has a visual effect

on the petal: increased severity corresponds to increased

petal size. To analyze severity, it seems reasonable to look

at which of the individual rules within a category have

been violated. But how should we decide which rule vio-

lations are trivial and which serious?

As with obviousness, there seems to be no clear-

cut metric for severity. A plausible approach to deter-

mining the severity of each grammar rule might be to

examine the literature on academic grading of

writing samples. Unfortunately, there appears to be

wide variability in this area. Lee,46 for example,

Figure 4. Stench Blossom displaying grammar issues for the categories General Grammar and Possible Typos.

122 Information Visualization 12(2)

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

investigated the grading behavior of Korean and

native English-speaking graders and found that

Korean graders were more severe in scoring gram-

mar, sentence structure, and organization, whereas

the native English graders were stricter on content

and overall scores. Similarly, Derwing et al. con-

ducted a study of native and nonnative speakers that

identified grammatical errors in sentences and rated

them on gravity and annoyance, two measures of

severity. Their findings show differences between the

two groups due to error salience and language aware-

ness.47 They present evidence that nonnative speak-

ers were significantly more annoyed by a high

frequency of errors than native speakers, regardless

of the kind of error, and that nonnative speakers con-

sidered all errors to be more serious than native

speakers.

For the purposes of visualization, we can approach

this issue from two opposite directions. The first direc-

tion is to consider modifying the weighting of a rule so

that the tool’s assessment of severity more closely

matches the expectations of the user. The second

direction is to have a panel of language experts decide

on the severity of each error, to use this ranking to fix

the weighting of each rule, and to use the tool as means

to train the user by informing them of the ‘‘actual’’

severity of their grammar errors, which may or may

not align with their perceived idea of the severity. In

short, we can either let the user train the visualization

or let the visualization train the user.

Rather than deliberate over the most appropriate

solution for classifying severity, our implementation

simply uses the count of the number of issues in that

category to determine the length of the petal; each rule

violation is given equal weight. We use a linear scale

with a maximum cap; through trial and error, it

appears that a linear calculation for petal size is more

appropriate for grammar issues than the logarithmic

calculation that we use for code smells. We speculate

that this may be because code has more repetitive ele-

ments due to its explicit structure and limited vocabu-

lary when compared with the subtleties of natural

language. Certainly, the issue of assigning severity to

grammar errors is an open problem that merits further

investigation.

Visualizing redundant phrases

Most of the possible errors detected by JLanguageTool

can be visualized quite adequately using simple high-

lighting in the Explanation View, as shown in Figure 4.

This is because most of the tool’s rules simply point

out a problem word or phrase. However, a few rule-

based patterns lend themselves to more expressive

visualizations, among them, redundant phrases.

In its simplest form, redundant phrasing, also

known as pleonasm, can be described as a pair of

expressions in which one of the pair can be removed

without changing the overall meaning, such as the

phrase ‘‘rustic country.’’ Redundant phrases are inter-

esting in that while they have recommended replace-

ments, small changes to the context surrounding the

sentence can often allow the writer to choose either

member of the redundant pair. For instance, in the

phrase ‘‘ATM machine,’’ one could either remove the

word machine or replace the abbreviation ‘‘ATM’’ by

‘‘automated teller.’’ The phrase ‘‘PM in the evening’’

could either be replaced by ‘‘PM’’ or ‘‘in the evening.’’

More complicated redundant phrases require more

context. The redundant phrase ‘‘foreign import’’ could

be replaced by either ‘‘foreign’’ or ‘‘import.’’ Here, the

selection of expression depends on context. If the con-

text is the prefix ‘‘is,’’ then the only choice is ‘‘foreign.’’

If, on the other hand, the context is ‘‘is an,’’ the only

possible choice of expression is ‘‘import.’’

Because the user must choose between two resolu-

tions and because redundant phrases occur as pairs of

words or expressions, we provide a more informative

visualization: Figure 5 shows the result of activating

Explanation View for the Redundant Phrases petal.

The entire redundant phrase is highlighted in color,

but the expression that the JLanguageTool rule recom-

mends be kept is surrounded by a box.

Our visualization of redundant phrases also demon-

strates the ability of Stench Blossom to encode additional

information within its visualizations. Instead of simply

indicating an error with highlighting, it is possible for the

system to provide more information about the error, such

as a suggested fix. If necessary, a separate visualization

technique can be used for each category of error.

Having described our implementation of a gram-

mar advisor in Stench Blossom and examined some of

the ways that the grammar domain differs from code

smells, we now consider how our visualization tech-

nique differs from existing approaches to displaying

grammar issues.

Differences from grammar advisors and
writing activity visualizations

In this section, we contrast Stench Blossom for gram-

mar issues with existing approaches, such as the wavy

underlines used by word processors like Microsoft

Office, Computer Program, http://office.microsoft.

com (2012). Open Office, Computer Program, http://

www.openoffice.org (2012). At first glance, it may

appear that our implementation is similar to these sys-

tems in the way it alerts the user to possible errors.

However, there are key differences.

Murphy-Hill et al. 123

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

While the wavy underlining technique shows that a

grammar error exists, it does so for all errors on screen

simultanously. Given a large and varying number of

errors within the screen, the user may be overwhelmed

and may find it difficult to isolate individual items of

interest. In contrast, our implementation offers the

ability to reveal classes of errors by selecting one or

more categories, helping the user to focus her atten-

tion on each class of error in turn.

A second difference is that existing systems present

grammar errors without any visual context for the rec-

ommended correction. As we have shown using the

example of redundant phrases, our system offers the

ability to tailor the visualization for a particular cate-

gory of errors to make it more effective for the user.

The conventional model of writing in word proces-

sors like Microsoft Word interleaves use of the gram-

mar tools with the writing process, much like writing

code in an IDE. This flies in the face of a common

approach to creative writing, which holds that it is

important to separate the act of writing, which should

be as free of distractions as possible, from the process

of revision and improvement of what has already been

written. For example, Boice48 reports that mixing cre-

ation with revision can lead to writers’ block, particu-

larly in writers who tend toward perfectionism. A tool

designed to promote distraction-free writing would

attempt to provide a composition environment that

hides or removes features that are not essential to the

task of writing itself.

A crop of such ‘‘distraction-free’’ editing tools have

recently emerged. Examples are JDarkRoom,49 Q10,50

and WriteRoom.51 A sample screenshot of the editing

environment Q10 is shown in Figure 6. MacIntyre

describes these distraction-free environments as ‘‘zen-

ware,’’ noting that ‘‘unlike in Word, the choices are

kept shrewdly off-screen: WriteRoom’s blank slate

reduces the urge to twiddle with margins and other

formatting gewgaws. Instead, I find myself forgoing

cosmetic changes for more functional ones, like bump-

ing up the type size when my office window light starts

to falter.’’52

Figure 5. Stench Blossom displaying an alternative visualization for Redundant Phrases.

124 Information Visualization 12(2)

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

Our approach, using ambient visualization, does

not go as far as the proponents of distraction-free writ-

ing would like, in completely separating the creative

writing phase from a later editing and revision phase.

Instead, we offer a compromise between the para-

digms of integrated writing and distraction-free writ-

ing. During the creative writing phase, Explanation

View is hidden by default, allowing the user to focus

on generating content, although the Ambient View is

still present. Should the user wish to switch to an edit-

ing and revision mode, she can interact with Stench

Blossom to reveal any grammar issues of interest.

As with Stench Blossom’s grammar advisor, other

visualization tools have been developed to address var-

ious content generation and revision demands as

related to writing activities. The VisRA readability

visualization tool was built to help users identify and

correct problems with English writing.53 VisRA pro-

vides several visualizations, but the most detailed is

similar to Stench Blossom’s in that they both depict

problems as continuous variables and both allow users

to see several types of problem at once. The main

differences are that Stench Blossom is ambient instead

of task focused and that it provides more detailed

information about the rationale behind its advice

through progressive disclosure. In contrast with the

floss revising strategy of Stench Blossom, which

focuses on the current writing context, the Writing

Blocks system is an alternative visualization tool that

focuses on a more root canal revising approach

through global activities that allow authors to visualize

and understand the overall structure of documents.54

The authors envision that global tools such as Writing

Blocks can be combined with local tools like Stench

Blossom, depending on type of revision needing to be

performed. Lastly, Popout Prism is an overview and

detail document interface designed to replace the tra-

ditional ‘‘find and highlight’’ technique used in docu-

ment search.55 Like Stench Blossom, Popout Prism

utilizes perceptual principles to minimize distraction

from the user’s primary activity by removing the

emphasis in Detail View (analogous to our Active

View) when the user is not specifically performing a

navigation task.

Figure 6. Distraction-free editing using Q10.

Murphy-Hill et al. 125

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

Evaluation

To evaluate our style and grammar advisor, we con-

ducted a remote heuristic evaluation. We recruited

evaluators through convenience sampling by contact-

ing 10 human–computer interaction (HCI) experts in

both academia and industry that were known to the

authors, of which 7 responded. We asked these seven

evaluators to watch a 2-min video demonstrating the

usage of the grammar visualization. The video is based

on the document and editing environment shown in

Figure 4 and demonstrates typical interactions a user

might perform when interacting with the advisor, such

as scrolling through the document and toggling one or

more categories. In the video, the visualization over-

lapped the text at all times.

On a webpage, we provided evaluators with the fol-

lowing tool description:

For this evaluation, the general tool has been purposed

for the task of grammar checking a LaTeX document

within Eclipse. Although we have implemented our tool

in Eclipse with LaTeX, the visualization technique is not

specific to these technologies. The visualization is

intended to be shown at all times, and to be used while

creating and editing a document.

The visualization is composed of sectors in a semicircle

on the right-hand side of the editor pane. We call these

sectors petals: each petal corresponds to a grammar cate-

gory. The radius of the petal is proportional to the sever-

ity, so that an increased severity corresponds to an

increased petal size.

Clicking on the petal toggles the highlighting of the gram-

mar issues within the visible document region. For most

categories, only simple highlighting is used, but more

sophisticated highlighting is possible. For instance, for

‘‘Redundant Phrases,’’ the entire redundant phrase is high-

lighted, but with the addition of a box surrounding the

expression indicating the recommended expression to keep.

After watching the video, we asked the experts to com-

plete Mankoff et al.’s14 heuristic evaluation. They were

allowed to rewatch the video as needed during the pro-

cess of completing the evaluation. We asked each evalua-

tor to identify both the positive and the negative aspects

of the visualization for each heuristic. For the negative

aspects of the heuristic, evaluators were additionally asked

to indicate the severity of the issue from least severe (1) to

most severe (5). To mitigate bias incurred as a result of

the recruitment technique, we explicitly informed the

evaluators that the primary purpose of a heuristic evalua-

tion is to identify design problems and that strong criti-

cism was expected and encouraged.

Results. Mankoff et al.’s14 evaluation covers eight dif-

ferent heuristics: (1) useful and relevant information,

(2) ‘‘peripherality’’ of display, (3) match between

design of ambient display and environments, (4) suffi-

cient information design, (5) consistent and intuitive

mapping, (6) easy transition to more in-depth infor-

mation, (7) visibility of state, and (8) aesthetic and

pleasing design. We summarize each of these heuristics

before presenting the evaluators’ comments.

In presenting these results, the evaluators have been

labeled as E1 through E7. When the evaluators identi-

fied a negative aspect, their assessment of the severity

of the problem is indicated in parentheses. When we

omit a comment from an evaluator, either the evalua-

tor did not provide a comment or made an irrelevant

comment. For example, a few of the comments were

related to either the Eclipse IDE or JLanguageTool. As

another example, due to the way in which the video

demo was presented, E1 and E3 were inadvertently led

to believe that the visualization tool presents all out-

standing issues within the document rather than just

the issues in the currently visible text; this led them to

make irrelevant comments.

We made one change to the tool before making the

demonstration video. Since the visualization is

designed to be shown at all times, the toolbar icon that

allows the user to disable and enable the tool was

removed in the demonstration.

Useful and relevant information. Mankoff defines

this heuristic as: the information should be useful and

relevant to the users in the intended setting.

Positives. E1, E2, E4, and E7 indicated that presenting

grammar issues in categories was a positive aspect of

the design. E3 and E4 said that it was useful to be able

to toggle information in one category on and off inde-

pendently of other categories. E7 noted that selecting

a category highlights the errors for that category.

Negatives. E1 indicated that to know where a category

is, you have to interact with the visualization or mem-

orize its position (3). E2 indicated that the mapping

between the color and the problem type was unclear

(1), as was the metric used for severity (2). E2 was also

concerned that only a limited number of categories

can be presented (2). E3 commented that it is difficult

to differentiate categories when multiple categories are

activated (3). Though E2 and E4 indicated that cate-

gorization was a positive aspect of the visualization,

they also noted that they are not sure how useful it is

to classify grammatical issues by category (1, 3).

Peripherality of display. Heuristic: the display

should be unobtrusive and remain so unless it requires

the user’s attention. User should be able to easily

monitor the display.14

126 Information Visualization 12(2)

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

Positives. E1, E3, and E5 indicated that the display is

unobtrusive. E2 commented that it allows people to

focus on their main task, which is to edit the docu-

ment. E4, E5, and E6 mentioned the translucency as

a positive aspect that aided unobtrusiveness.

Negatives. E1, E2, E5, and E6 indicated a problem in

that the visualization overlaps the text (3, 3, 4, 2).

While most evaluators did not provide a reason for

why this is a problem, E2 stated that having the

colored petals beneath the black text and surrounded

by a white background makes it noticeable and there-

fore affects the legibility. E2 and E4 questioned

whether persistent display of the visualization was a

good idea, particularly for distraction-free writing

(3, 3). E3 was unsure whether varying petal length is

necessary for the visualization, since all errors must

eventually be corrected anyway (2).

Match between design of ambient display and
environments. Heuristic: One should notice an ambi-

ent display because of a change in the data it is pre-

senting and not because its design clashes with its

environment.

Positives. E1 indicated that the visualization does not

change unless a new error is introduced in the current

display or unless you interact with it. E2, E5, and E6

mentioned that the colors are suited to the environ-

ment. E7 indicated that the design is ambient in that

it falls into the background when reading the

document.

Negatives. E1 believes that the typical use case for doc-

ument editing is to correct issues as they arise.

Consequently, the size of the petals would never

increase to the point that they would become notice-

able (4). Conversely, E1 and E7 indicated that if the

petals grow too large, they are distracting (3, 2). E2,

E3, and E5 all indicated that the overlay on existing

text is distracting (1, 3, 4), an issue that was also

identified in the display heuristic about peripherality.

E5 added that some of the colors clash with the exist-

ing design of Eclipse (3), and E2 commented that

the angles stand out when the document is scrolling,

since most of the angles in Eclipse are horizontal or

vertical (2).

Sufficient information design. Heuristic: The display

should be designed to convey ‘‘just enough’’ informa-

tion. Too much information cramps the display, and

too little makes the display less useful.

Positives. E2 mentions that it displays a nice summary,

and E3 indicates that it is the ‘‘right mix of detail’’ ver-

sus giving an overview. E4 felt that the visualization

allows you to focus on the task at hand, and E5

indicated that the information being displayed is use-

ful. E6 observed that there was good use of labels and

highlighting. E7 noted that the visualization makes

users aware that they might have issues without domi-

nating the screen space.

Negatives. E6 indicated that some of the petal seg-

ments are missing or very small, making them hard to

activate; in fact, all petals, regardless of size, can be

selected with equal ease, but this was not clear from

the video. Furthermore, if a petal is not shown, a user

may not even realize that the tool is monitoring that

category (3). E7 thought it was confusing not to know

how many problems exist in relation to the petal size

(3). All other evaluators either indicated issues related

to JLanguageTool or evaluated this heuristic under the

incorrect assumption that the visualization displays all

errors in the entire document.

Consistent and intuitive mapping. Heuristic:

Ambient displays should add minimal cognitive load.

Cognitive load may be higher when users must

remember what states or changes in the display mean.

The display should be intuitive.

Positives. E1, E3, and E4 provided no positive aspects

for the design for this heuristic. E2 indicated that the

severity ‘‘makes perfect sense’’ in that the visualization

grows when there are a lot of issues and shrinks when

they are resolved; E5 and E7 made similar remarks.

E6 felt that users would become used to the order of

the categories over time.

Negatives. E1 and E4 intuitively felt that the petal

should point to something in the document (5, 2). As

a result of the demo, E1 perceived that there were

more errors at the bottom of the document window

than at the top because of the way the petals were

arranged. E2, E4, E5, and E6 all had criticisms about

the lack of obvious meaning with respect to the colors

of the petals (2, 2, 2, 3). E3 and E4 observed that the

user needs to mouse over the petals in order to

remember what the categories are (2, 2). E6 observed

that the highlighting of the other categories was light

blue but that ‘‘Redundant Phrases’’ used a different

color for each error in the category (2). E5 commen-

ted that this is an unusual visualization because most

people think it is a pie, but it is not, since only the

radius, and not the central angle, matters. Experts

may think it is a rose diagram, but unlike a rose dia-

gram, the order of the petals does not indicate orienta-

tion within the document (5). E5 further suggests that

a bar graph may be an alternative visualization.

Easy transition to more in-depth information. Heuristic:

if the display offers multileveled information, the display

Murphy-Hill et al. 127

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

should make it easy and quick for users to find out more

detailed information.

Positives. E1 and E5 mentioned that the interaction is

intuitive, with E2 indicating that on-demand informa-

tion makes sense. E2 also liked the fact that the

‘‘active hover area’’ is larger than the petal itself. E3,

E4, and E7 commented that clicking a petal, mousing

over the petal, and selecting categories were positive

aspects of meeting this heuristic. E6 liked the fact that

multilevel information is available.

Negatives. E1 indicated that certain functionality

might be difficult to access because the colors of adja-

cent petals are difficult to distinguish (2). E2 and E6

were concerned that the user would accidentally click

the document and not the visualization (1, 3). E5

believes that it is not immediately obvious that the pie

menu is clickable, since such menus are still not very

common in user interfaces today (3).

Visibility of state. Heuristic: an ambient display

should make the states of the system noticeable. The

transition from one state to another should be easily

perceptible.

Positives. E1 and E2 indicated that there are very clear

transitions between states and that it is easy to tell

what state the tool is in. E4 indicated that the mouse

hover actions change only one category at a time. E5

and E7 indicated that the petal growth is a positive

indicator of the visibility of state.

Negatives. E3 was not sure how to tell when a category

was active or inactive (2), and E4 noticed that there is

no way to see all the errors at once without toggling

each category petal one by one (3). E5 identified that

the constantly changing petals could be quite distract-

ing (3). E6 noted that, depending on position, the

mouse rollover labels can obscure the problem that is

being highlighted (4). E6 also observed that the dark-

ness of some petals can obscure the text, which is yet

another indication that it can be distracting for the

visualization to overlay the text (1). E7 was unsure of

the rate at which the petals grow (2).

Aesthetic and pleasing design. Heuristic: The dis-

play should be pleasing when it is placed in the

intended setting.

Positives. E1, E2, E3, E4, and E5 identified the color

scheme as being generally pleasing, with E3 indicating

that the colors had low saturation, low contrast from

the background, but were still visibly different. E7

indicated that the transparent display had a ‘‘good feel

to it’’ and was well placed.

Negatives. E1 commented that the visualization is

cluttered where it overlaps with the text, making it

busy looking (2). E2 mentions that the angles are a

bit jarring given the boxy look and feel of the docu-

ment editor (1). E5 was unsure if users would be

pleased with the visualization constantly changing as

they type (3).

Evaluation summary

An examination of the heuristic evaluation results

reveals a set of issues that were commonly identified

by many of the evaluators. A recurring issue with

respect to color is that while the use of pastels is

aesthetically pleasing, the colors should encode some

form of intuitive meaning. Although we intended to

have the blue-to-orange gradients signify less-obvious

to more-obvious problems, this was not apparent to

the evaluators. This problem exists despite the fact

that the colors are not strictly necessary to interpret

the visualization.

Many of the evaluators also criticized the visualiza-

tion for overlapping the text. This is a problem that

was not so pronounced in code because code typically

has hard line breaks and does not extend to the right-

hand margin, whereas English text is usually word

wrapped and so occupies the full width of the editing

pane. This criticism suggests that users may want a

separation between the visualization and the text.

A number of other issues merit attention because

they were identified by individual evaluators as very

severe. In ‘‘Match between design of ambient display

and environments,’’ E1 believes that the ‘‘typical use

case’’ of document editing is to correct issues as they

arise, which suggests a behavior that is reminiscent of

‘‘floss refactoring’’ for code smells. In such a scenario,

the petals would likely remain small and hard to notice,

and therefore, a binary representation (on or off) may

be more valuable than a continuous representation for

grammar issues. In contrast, E2 indicates that he

‘‘like[s] to get all the ideas down, not worrying about

little issues like grammar,’’ which can be fixed in later

iterations. In such a case, grammar issues would con-

tinue to accrue until the evaluator addressed them. We

can infer that this evaluator seems to prefer a ‘‘root

canal refactoring’’ approach to tackling grammar issues.

The dichotomy is interesting because the Stench

Blossom’s design originated from our desire to support

floss refactoring. The received wisdom for code is that

flossing is good; this is not so clear for writing.

In the evaluation, E5 explicitly stated that the visua-

lization can be confusing because it is a hybrid between

a pie chart and a rose diagram. Implicitly, E1 and E4

mentioned the same issue because they felt that the

petals should point to something; this supports the

128 Information Visualization 12(2)

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

idea that the use of petals may be confusing. In the

broader context, E2 mentioned the general idea of

angles as being distracting because of the horizontal

and vertical angles of most user interfaces, including

Eclipse. E5’s suggestion that the visualization should

instead represent issues as a bar graph would solve this

particular problem.

Some of the identified issues can be used to

improve the tool, since they can be implemented by

making small changes that do not conflict with Stench

Blossom’s overall design. For instance, E3 was not

sure when a category was active, an issue that can be

resolved by rendering the active petals at full satura-

tion whenever their explanation view is displayed. As

for E1’s suggestion that users will not allow more than

a few issues to accumulate at any one time, the func-

tion controlling petal size could also be adjusted, so

that even a small number of issues for a category

quickly amplifies the size of the petal.

Many of the evaluators’ criticisms may stem from

the fact that they may have unconsciously been com-

paring Stench Blossom against existing grammar tools

that use the ‘‘wavy underlining’’ user interface. For

instance, some evaluators questioned whether categor-

izing issues is useful in the first place. This is an una-

voidable shortcoming of this style of evaluation: a new

visualization may be criticized for being ‘‘different,’’

even though these differences may offer affordances for

addressing style and grammar issues that are not avail-

able in existing tools. For example, existing grammar-

checking tools may simply omit the presentation of

subjective issues (such as starting a sentence with a

conjunction) or frequently occurring issues (such as

passive voice), to avoid overwhelming the user. A ben-

efit of Stench Blossom’s ‘‘difference’’ is that it offers a

means to display a greater range of style and grammar

issues because the user can choose to view them selec-

tively or not at all.

Future work

We feel that future work on Stench Blossom could pro-

ceed in at least three directions. First, the Stench

Blossom smell detector can be improved in several ways.

Second, the Stench Blossom grammar tool can also be

improved. Third, the concepts used in the design of

Stench Blossom may be beneficial in other areas.

Improvements to Stench Blossom

As we discussed in section ‘‘Experiment,’’ subjects

sometimes did not agree with the tool’s estimate of the

strength of a code smell. One way to deal with this

would be to allow the programmer to drag the edges

of the petals toward or away from the center of the

visualization, so that the visualization more closely

matches the intuition of the developer. This would

provide a convenient way for developers to specify

individual preferences so that the tool can adapt to

those preferences in the future. Likewise, if developers

do not agree with our ranking of the obviousness of

smells, then the visualization could allow the developer

to change the petals’ vertical ordering by dragging the

petals.

Some subjects in the evaluation suggested that there

were fundamental differences in the granularity of the

smells, and displaying them uniformly was confusing.

Specifically, LARGE CLASS was at the class level, while

the other smells were at the method level. In future

versions of Stench Blossom, making a visual distinc-

tion between the different levels of granularity may

help programmers understand the visualization more

quickly.

Another possible modification to Stench Blossom

would be to display information about which smells

are increasing or decreasing as a programmer is coding

rather than displaying information about the code as it

is now (we thank Bill Pugh for this suggestion). Using

this information, the programmer would be made

aware of the effect that her changes are having on the

smelliness of the code.

Grammar improvements to Stench Blossom

The addition of more elaborate rules in the

JLanguageTool library would provide an avenue for

more advanced visualizations. Since most rules are

based on patterns, grammar issues in JLanguageTool

are detected locally rather than globally. For instance,

a possible bad style issue not correctly detected is that

of mixed verb tenses within a document. One visuali-

zation could color verbs from one tense in a color and

verbs from another tense in a different color. The user

could then visually determine the weighting between

the two verb tenses and make an appropriate decision.

A current limitation of the Stench Blossom system is

that there is no assisted correction. For rules that require

minimal context, such as overregularized verb inflection

(‘‘goed’’ versus ‘‘went’’), the system should provide a

user interface to quickly correct the issue. Right-clicking

on the visualized word and selecting an appropriate cor-

rection from a drop down menu is one possible solution.

For redundant phrases, the user might opt to double-

click on the expression they wish to keep, telling the sys-

tem to automatically remove the other.

Further applications

We feel that the visualization technique and guidelines

that we have presented in this article are useful beyond

Murphy-Hill et al. 129

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

the code smell and grammar tools that we have

described. Based on our experience implementing

Stench Blossom in these two domains, we believe that

it is useful for visualizing information that has the fol-

lowing properties:

� Acting on the information is not an urgent priority;
� Users interpret the information subjectively;
� The information relates to complex properties of

artifacts;
� The information relates to user-changeable proper-

ties of artifacts, but users are unlikely to completely

eliminate those properties; and
� The information is useful primarily in the context

of working with existing artifacts for tasks loosely

related to that information.

These properties may hold for other tools used in

software development and for soft advice systems in

other domains.

As an example of another software development

tool that might benefit from our guidelines, consider

Ensemble, a system that recommends collaborators to

software developers, based on the work that they are

doing.56 Ensemble might notice that Ira is working in

a method, recognize that three other developers are

currently working on similar methods, and then rec-

ommend that Ira collaborate with those developers.

Generalizing our Estimability guideline suggests that

Ensemble should give an approximation of how much

effort would be required if Ira took Ensemble’s advice

and collaborated with one of the other developers. For

instance, the tool might tell Ira that Jan is working

from home today (high effort to collaborate), Kim has

a meeting in a few minutes (medium effort), and Lou

has an open schedule and is sitting in close proximity

to Ira (low effort).

Our experience in applying our visualization tech-

nique to a grammar advisor has widened our view of

what interactive ambient visualizations can be used

for. For example, although our code smell detector

and grammar advisor both work over text-based arti-

facts, our visualization technique may be useful for

other artifacts such as graphic design documents. In

such documents, a graphic designer may be using a

program like Adobe Illustrator or CorelDRAW to crea-

tively compose a graphical depiction for an intended

audience, such as the logo for a business or a poster for

a conference. Like programming and writing, graphic

design has numerous soft guidelines that not only pro-

duce quality results when followed but also can pro-

duce quality results when expertly disobeyed.

Examples of such guidelines include ‘‘use one or two

odd shapes and make the rest regular shapes’’ and ‘‘use

the same color palette throughout.’’57 Standard

highlighting techniques where the graphic design doc-

ument is constantly analyzed for guideline violations

and violations are immediately shown as highlights on

the document (similar to text underlines) is especially

inappropriate in the graphic design setting; such high-

lights would immediately pollute and distort the docu-

ment’s aesthetic value. Instead, we hypothesize that

using interactive ambient visualizations can provide

immediate feedback to graphic designers without

diminishing the aesthetic experience.

Conclusion

Tools that offer soft advice can help the users of a soft-

ware system to improve the quality of their work.

However, soft advice should ideally be delivered in a

way that is deeply explanatory, that does not over-

whelm the user, that is not obtrusive or distracting,

that is sensitive to the user’s working context, that is

easily accessible at all times, that depicts relationships

between artifacts, that emphasizes difficult-to-identify

issues, and that helps the user to estimate the extent of

the underlying problem. Our experience building,

using, and evaluating Stench Blossom, in the context

of both code smells and grammar issues, has allowed

us to reflect on why these ideals are important and

how they can be achieved. We hope that this research

has helped to clarify the role of tools that present soft

advice: not front and center stage, where they get in

the way of the primary task, but in the background,

always ready to offer advice on when requested, but

keeping a low profile when the user is focused on other

tasks.

Funding

The National Science Foundation partially funded this

research under grant CCF-0520346.

References

1. Apache. Tomcat, Computer Program, http://tomcat.

apache.org/ (2012).

2. Fowler M. Refactoring: improving the design of existing

code. Boston, MA: Addison-Wesley Longman Publishing

Co., Inc., 1999.

3. van Emden E and Moonen L. Java quality assurance by

detecting code smells. In: Proceedings of the ninth working

conference on reverse engineering, Richmond, VA, USA, 28

October - 1 November 2002, pp. 97–106. IEEE Com-

puter Society, Los Alamitos, CA, USA.

4. Drozdz M, Kourie DG, Watson BW, et al. Refactoring

tools and complementary techniques. In: AICCSA’06:

proceedings of the IEEE international conference on computer

systems and applications, Dubai/Sharjah, UAE, 8-11

130 Information Visualization 12(2)

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

March 2006, pp. 685–688. IEEE Computer Society,

Los Alamitos, CA, USA.

5. Mäntylä MV. An experiment on subjective evolvability

evaluation of object-oriented software: explaining factors

and interrater agreement. In: Proceedings of the interna-

tional symposium on empirical software engineering, Noosa

Heads, Queensland, Australia, 17-18 November 2005,

pp. 287–296. IEEE, Los Alamitos, California.

6. Al-Shaer ES and Hamed HH. Firewall policy advisor

for anomaly discovery and rule editing. In: IFIP/IEEE

eighth international symposium on integrated network man-

agement, Colorado Springs, USA, 24-28 March 2003,

pp. 17–30. Kluwer Academic Publishers, Norwell,

Massachusetts.

7. Rakshit A, Krishnamurthy N and Yu G. System opera-

tions advisor: a real-time decision support system for

managing airline operations at united airlines. Interfaces

1996; 26(2): 50–58.

8. Valentin G, Zuliani M, Zilio DC, et al. DB2 advisor: an

optimizer smart enough to recommend its own indexes.

In: Proceedings of the 16th international conference on data

engineering, San Diego, California, USA, 28 February -

3 March 2000, pp. 101–110. IEEE, Los Alamitos, CA,

USA.

9. Murphy-Hill E and Black AP. An interactive ambient

visualization for code smells. In: Proceedings of the 5th Inter-

national Symposium on Software Visualization (SOFTVIS

’10). ACM, New York, USA, pp. 5-14. DOI=10.1145/

1879211.1879216. http://doi.acm.org/10.1145/1879211.

1879216.

10. Murphy-Hill E and Black AP. Refactoring tools: fitness

for purpose. IEEE Software 2008; 25(5): 38–44.

11. Simon F, Steinbrückner F and Lewerentz C. Metrics

based refactoring. In: Proceedings of the fifth European

conference on software maintenance and reengineering, Lis-

bon, Portugal, 14-16 March 2001, pp. 30–38. IEEE

Computer Society, Los Alamitos, CA, USA.

12. Murphy-Hill E, Parnin C and Black AP. How we refac-

tor, and how we know it. In: ICSE ’09: proceedings of the

31st international conference on software engineering, Van-

couver, Canada, 16–24 May 2009, ACM, New York.

13. Wettel R and Lanza M. Visually localizing design prob-

lems with disharmony maps. In: Proceedings of the

ACM 2008 symposium on software visualization (eds R

Koschke, CD Hundhausen and A Telea), Ammersee,

Germany, 16–17 September 2008, pp. 155–164. ACM,

New York.

14. Mankoff J, Dey AK, Hsieh G, et al. Heuristic evaluation

of ambient displays. In CHI ’03: proceedings of the Sigchi

conference on human factors in computing systems, Florida,

USA, 05-10 April 2003, pp. 169–176. ACM, New York.

15. Parnin C and Görg C. Design guidelines for ambient

software visualization in the workplace. Visualizing soft-

ware for understanding and analysis, 2007. In: 4th IEEE

international workshop on VISSOFT, Alberta, Canada,

25-26 June 2007, pp. 18–25. IEEE, Los Alamitos, CA,

USA.

16. Maes P. Agents that reduce work and information over-

load. Commun ACM 1994; 37(7): 30–40.

17. Callahan J, Hopkins D, Weiser M, et al. An empirical

comparison of pie vs. linear menus. In: CHI ’88: proceed-

ings of the SIGCHI conference on human factors in comput-

ing systems, Florence, Italy, 5-10 April 1988, pp. 95–100.

ACM, New York.

18. Pousman Z and Stasko J. A taxonomy of ambient infor-

mation systems: four patterns of design. In: Proceedings

of the working conference on advanced visual interfaces, AVI

’06, Venezia, Italy, 23-26 May 2006, pp. 67–74. ACM,

New York.

19. Xiong R and Donath J. PeopleGarden: creating data por-

traits for users. In: Proceedings of the 12th annual ACM

symposium on user interface software and technology, UIST

’99, Asheville, NC, 7–10 November 1999, pp. 3744.

ACM, New York.

20. Van Dantzich M, Robbins D, Horvitz E, et al. Scope:

providing awareness of multiple notifications at a glance.

In: Proceedings of the working conference on advanced visual

interfaces, AVI ’02, Trento, Italy, 22–24 May 2002, pp.

267–281. ACM, New York.

21. Neukirchen H and Bisanz M. Utilising code smells to

detect quality problems in TTCN-3 test suites. In: Pro-

ceedings of the 19th IFIP international conference on testing

of communicating systems and 7th international workshop on

formal approaches to testing of software, Tallinn, Estonia,

26-29 June 2007, pp. 228–243. Springer, Heidelberg.

22. Slinger S. Code smell detection in eclipse. Master’s Thesis,

Delft University of Technology, The Netherlands, 2005.

23. McFarlane D. Comparison of four primary methods

for coordinating the interruption of people in human-

computer interaction. Human Compu 2002; 17(1):

63–139.

24. Robertson TJ, Prabhakararao S, Burnett M, et al.

Impact of interruption style on end-user debugging. In:

CHI ’04: proceedings of the SIGCHI conference on human

factors in computing systems, Vienna, Austria, 24-29 April

2004, pp. 287–294. ACM, New York.

25. Treisman AM and Gelade G. A feature-integration the-

ory of attention. Cognitive Psychol 1980; 12(1): 97–136.

26. Gluck J, Bunt A and McGrenere J. Matching attentional

draw with utility in interruption. In: CHI ’07: proceedings

of the SIGCHI conference on human factors in computing

systems, San Jose, California, USA, 28 April - 3 May

2007, pp. 41–50. ACM, New York.

27. Raskin J. The humane interface: new directions for designing

interactive systems. ACM Press/Addison-Wesley Publish-

ing Co., 2000, New York.

28. Parnin C, Görg C and Nnadi O. A catalogue of light-

weight visualizations to support code smell inspection.

In: Proceedings of the ACM 2008 symposium on software

visualization (eds R Koschke, CD Hundhausen and A

Telea), Ammersee, Germany, 16–17 September 2008,

pp. 77–86. ACM, New York.

29. Hayashi S, Saeki M and Kurihara M. Supporting refac-

toring activities using histories of program modification.

IEICE T Inf Syst 2006; 4: 1403–1412.

30. Tsantalis N, Chaikalis T and Chatzigeorgiou A. JDeo-

dorant: identification and removal of type-checking

bad smells. In: CSMR, Athens, Greece, 1–4 April 2008,

Murphy-Hill et al. 131

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

pp. 329–331. IEEE Computing Society, Los Alamitos,

CA.

31. Shneiderman B. System message design: guidelines and

experimental results. In: Badre A and Shneiderman B

(eds) Directions in human/computer interaction, human/

computer interaction, ch. 3. Norwood, NJ: Ablex Publish-

ing Corporation, 1982, pp. 55–78.

32. Shneiderman B. Designing the user interface: strategies for

effective human-computer interaction. 2nd ed. Boston, MA:

Addison-Wesley Longman Publishing Co., Inc., 1987.

33. Kersten M and Murphy GC. Mylar: a degree-of-interest

model for IDEs. In: AOSD ’05: proceedings of the 4th inter-

national conference on aspect-oriented software development,

Lancaster, UK, 22-26 March 2005, pp. 159–168. ACM,

New York.

34. Parnin C and Görg C. Building usage contexts during

program comprehension. In: ICPC ’06: proceedings of the

14th IEEE international conference on program comprehen-

sion, Athens, Greece, 14–16 June 2006, pp. 13–22. IEEE

Computer Society, Los Alamitos, CA.

35. Azureus Software and Vuze, Computer Program, http://

vuze.com (2012).

36. Oracle. OpenJDK, Computer Program, http://openjdk.

java.net (2012).

37. Mantyla MV, Vanhanen J and Lassenius C. Bad Smells’’

Humans as Code Critics. In: Proceedings of the 20th IEEE

International Conference on Software Maintenance (ICSM

’04), IEEE Computer Society, Washington, DC, USA,

2004, pp. 399–408.

38. Nielsen J and Molich R. Heuristic evaluation of

user interfaces. In: CHI ’90: proceedings of the SIGCHI

conference on human factors in computing systems, Seattle,

Washington, USA, 01-05 April 1990, pp. 249–256.

ACM, New York.

39. Nielsen J. Ten usability heuristics. Internet, http://www.

useit.com/papers/heuristic/heuristic_list.html (2005).

40. Fitzgerald J. Research on revision in writing. Rev Educ

Res 1987; 57(4): 481–506.

41. Karlsson K. TeXlipse, Computer Program, http://texlip

se.sourceforge.net (2012).

42. Naber D. A rule-based style and grammar checker. Diploma

Thesis, Technische Fakultat and Universitat Bielefeld,

Germany, 2003.

43. Gamon M. Using mostly native data to correct errors in

learners’ writing: a meta-classifier approach. In: Human

language technologies: the 2010 annual conference of the

North American chapter of the association for computational

linguistics. HLT ’10, Los Angeles, CA, USA, 2-4 June

2010, pp. 163–171. Association for Computational Lin-

guistics, Stroudsburg, PA.

44. Han N-R, Chodorow M and Leacock C. Detecting

errors in English article usage by non-native speakers.

Nat Lang Eng 2006; 12(02): 115–129.

45. Coppieters R. Competence differences between

native and near-native speakers. Language 1987; 63(3):

544–573.

46. Lee H-K. Native and nonnative rater behavior in grad-

ing Korean students’ English essays. Asia Pac Educ Rev

2009; 10: 387–397.

47. Derwing TM, Rossiter MJ and Ehrensberger-Dow M.

‘They speaked and wrote real good’: judgements of

non-native and native grammar. Lang Aware 2002;

11(2): 84–99.

48. Boice R. Professors as writers. Stillwater, OK: New Forum

Press, 1990.

49. Jauncey D. JDarkRoom, Computer Program, http://

www.codealchemists.com/jdarkroom (2012).

50. Bernal J. Q10, Computer Program, http://www.baara.

com/q10/ (2012).

51. Grosjean J. WriteRoom, Computer Program, http://

www.hogbaysoftware.com/products/writeroom (2012).

52. MacIntyre J. The Tao of Screen, Computer Program,

http://www.slate.com/id/2182744 (2012).

53. Oelke D, Spretke D, Stoffel A, et al. Visual readability

analysis: how to make your writings easier to read. In:

IEEE symposium on visual analytics science and technology

(VAST), Salt Lake City, UT, USA, 24-29 October 2010,

pp. 123–130.

54. Xu S and Shibata H. Writing blocks: a visualization to

support global revising. In: Proceedings of the 2007 confer-

ence of the computer-human interaction special interest group

(CHISIG) of Australia on computer-human interaction:

design: activities, artifacts and environments—OZCHI ’07,

Adelaide, Australia, 28-30 November 2007, p. 61.

ACM, New York.

55. Suh B, Woodruff A, Rosenholtz R, et al. Popout prism.

In: Proceedings of the SIGCHI conference on human factors

in computing systems changing our world, changing

ourselves—CHI ’02, Minneapolis, Minnesota, USA, 20-

25 April 2002, p. 251. ACM, New York.

56. Xiang PF, Ying ATT, Cheng P, et al. Ensemble: a rec-

ommendation tool for promoting communication in

software teams. In: RSSE ’08: proceedings of the 2008

international workshop on recommendation systems for soft-

ware engineering. Atlanta, Georgia, 10 November 2008,

pp. 1–2. ACM, New York, USA.

57. The basics of graphic design. Internet, http://www.onli

ne.tusc.k12.al.us/tutorials/grdesign/grdesign.htm

Appendix 1

On the following pages, you will find the experimen-

ter’s notebook used in the experiment, including the

pretest questionnaire, experiment administrator’s

guide, posttest questionnaire, and 399 3 599 code smell

cards.

132 Information Visualization 12(2)

 at NORTH CAROLINA STATE UNIV on November 25, 2013ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/

