
139

Overwatch: Learning Patterns in Code Edit Sequences

YUHAO ZHANG∗2, University of Wisconsin-Madison, USA

YASHARTH BAJPAI2,Microsoft, India

PRIYANSHU GUPTA2,Microsoft, India

AMEYA KETKAR∗2, Uber, USA
MILTIADIS ALLAMANIS,Microsoft Research, UK

TITUS BARIK,Microsoft, USA

SUMIT GULWANI,Microsoft, USA

ARJUN RADHAKRISHNA,Microsoft, USA

MOHAMMAD RAZA,Microsoft, USA

GUSTAVO SOARES,Microsoft, USA

ASHISH TIWARI,Microsoft, USA

Integrated Development Environments (IDEs) provide tool support to automate many source code editing

tasks. Traditionally, IDEs use only the spatial context, i.e., the location where the developer is editing, to

generate candidate edit recommendations. However, spatial context alone is often not sufficient to confidently

predict the developer’s next edit, and thus IDEs generate many suggestions at a location. Therefore, IDEs

generally do not actively offer suggestions and instead, the developer is usually required to click on a specific

icon or menu and then select from a large list of potential suggestions. As a consequence, developers often

miss the opportunity to use the tool support because they are not aware it exists or forget to use it.

To better understand common patterns in developer behavior and produce better edit recommendations,

we can additionally use the temporal context, i.e., the edits that a developer was recently performing. To enable

edit recommendations based on temporal context, we present Overwatch, a novel technique for learning

edit sequence patterns from traces of developers’ edits performed in an IDE. Our experiments show that

Overwatch has 78% precision and that Overwatch not only completed edits when developers missed the

opportunity to use the IDE tool support but also predicted new edits that have no tool support in the IDE.

CCS Concepts: · Software and its engineering→ Software maintenance tools; Reusability; · Computing

methodologies→ Symbolic and algebraic algorithms; Unsupervised learning.

Additional Key Words and Phrases: Program Generation, Artificial Intelligence, Program Synthesis

ACM Reference Format:

Yuhao Zhang, Yasharth Bajpai, Priyanshu Gupta, Ameya Ketkar, Miltiadis Allamanis, Titus Barik, Sumit

Gulwani, Arjun Radhakrishna, Mohammad Raza, Gustavo Soares, and Ashish Tiwari. 2022. Overwatch:

∗This work was done when these authors were employed at Microsoft
2Equal contribution

Authors’ addresses: Yuhao Zhang, yuhaoz@cs.wisc.edu, University of Wisconsin-Madison, USA; Yasharth Bajpai, ybajpai@

microsoft.com, Microsoft, India; Priyanshu Gupta, priyansgupta@microsoft.com, Microsoft, India; Ameya Ketkar, Uber,

USA, ketkara@uber.com; Miltiadis Allamanis, Microsoft Research, UK, miltos@allamanis.com; Titus Barik, Microsoft,

USA, tbarik@acm.org; Sumit Gulwani, Microsoft, USA, sumitg@microsoft.com; Arjun Radhakrishna, Microsoft, USA,

arradha@microsoft.com; Mohammad Raza, Microsoft, USA, moraza@microsoft.com; Gustavo Soares, Microsoft, USA,

gsoares@microsoft.com; Ashish Tiwari, Microsoft, USA, astiwar@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/10-ART139

https://doi.org/10.1145/3563302

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3563302

139:2 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

Learning Patterns in Code Edit Sequences. Proc. ACM Program. Lang. 6, OOPSLA2, Article 139 (October 2022),

29 pages. https://doi.org/10.1145/3563302

1 INTRODUCTION

Integrated Development Environments (IDEs) offer developers an overwhelming deluge of tools
to support source code editing tasks, including writing new code, performing refactorings, and
applying code fixes. Popular IDEs such as Microsoft Visual Studio [Microsoft 2021] and JetBrains
ReSharper [JetBrains 2021], for example, provide over 100 C# refactorings, code fixes, and snippet
tools. Traditionally, these tools use the location where the developer is editing code and the
surrounding code as spatial context to generate candidate edits to recommend.
However, the spatial context alone is often not sufficient for IDEs to confidently predict the

developer’s next edit. At a specific location, there may be multiple candidate tools available for
different editing tasks. For instance, Figure 1a shows all tools available when the developer clicks
on the screwdriver next to a property declaration. There are 8 edits that the IDE can automate at
that location. Unsurprisingly, developers have difficulty discovering these tools and applying them
at the appropriate time and place [Ge et al. 2012; Murphy-Hill et al. 2009].
To improve code edit recommendations, in addition to the spatial context, we can also use the

temporal context that the code edits which the developer was performing at a particular point in
time. For instance, suppose the developer has just added the Offset property in Figure 1a. Next,
the developer is more likely to add the corresponding parameter to the constructor and use it
to initialize the property (7th option in the menu) than replace the nearly introduced property
with a method (4th option). If the developer moves the cursor to the constructor, then it is very
likely that they are about to insert the parameter. Recently, Visual Studio announced that they
used this idea of temporal context to implement an analyzer to detect this edit sequence and offer
the suggestion as łgray textž (Figure 1b) to add the parameter to the constructor as soon as the
developer moves the cursor to the constructor after adding a new property. By using spatial and
temporal contexts to generate suggestions at the right time and location, the IDE can afford to
preemptively show these edit suggestions, avoiding discoverability (developers are unaware of
the existing tool) and late-awareness problems (developers get further in their workflow before
remembering an appropriate tool exists).
However, implementing tools that use temporal context is non-trivial. Tool builders have to

reason not only about the location where an edit should be suggested and how to automate the
edit but also how previous edits relate to the edit under consideration. Consider the example above,
developers can perform the "Insert Property", "Insert Parameter", "Insert Assignment" edit sequence
in any order but Visual Studio only handles the order shown in Figure 1. Given the complexity of
manually implementing these edit sequence patterns, only few of them are available today in IDEs.

Instead of manually implementing patterns to recommend code edits, researchers have proposed
several approaches to learn edit patterns from edits in source code repositories [Bader et al. 2019;
de Sousa et al. 2021; Kim et al. 2013; Rolim et al. 2017; Yin et al. 2019]. These patterns represent the
location where an edit should be applied and how to perform the desired edit. However, very few
approaches use previous edits as temporal context. Blue-Pencil [Miltner et al. 2019] use previous
edits to suggest similar repetitive edits. C3PO [Brody et al. 2020] learns a model to complete an
edit given other edits, but can only predict edits that do not generate new content. Additionally,
C3PO is trained on data from source code repositories, which do not capture the temporal context
because the data do not reflect the order of edits made by developers in an IDE.
In this paper, we propose Overwatch, a technique for learning Edit Sequence Patterns from

traces logged during editing sessions in the IDE. As input, Overwatch takes a set of source file
versions. Each version represents the state of the file while a developer is editing it. Given this

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

https://doi.org/10.1145/3563302

Overwatch: Learning Patterns in Code Edit Sequences 139:3

(a) Edit suggestions based on spatial context (b) Edit suggestion using spatial and temporal contexts

Fig. 1. Edits suggested by Visual Studio when the developer adds a property to a class

input, Overwatch’s problem is to find recurrent edit sequences and generalize them into Edit
Sequence Patterns (ESPs). In a nutshell, Overwatch performs three major steps: (1) generating edit
sequence sketches and their corresponding specifications, (2) synthesizing edit sequence patterns,
and (3) selecting and ranking the edit sequence patterns. Given a new development trace (i.e., edit
history), Overwatch can then use the learned edit sequence patterns to predict the next edit.

To evaluate Overwatch, we collected 335, 687 source file versions, which were logged from 12
professional software developers from a large company across several months. In our experiments,
Overwatch achieved 78.38% precision in the test set, showing a degree of domain-invariance,
when compared to its performance on the validation set collected 6 months earlier. Additionally,
we performed a qualitative analysis on the ESPs learned with Overwatch. Our findings show that
ESPs can be used not only to complete edits when developers typically miss the opportunity to
use the IDE tool support but also to predict new edits that have no tool support at all in the IDE.
Finally, we show that Overwatch outperforms the closest approaches, C3PO and Blue-Pencil, on
the task of predicting the next edit in the edit sequences from our dataset.
In short, the paper makes the following contributions:

(1) We formalize the problem of learning Edit Sequence Patterns (ESPs) (Section 3);
(2) We propose Overwatch, a technique for learning edit sequences patterns from traces col-

lected during editing sessions in the IDE (Sections 4-6);
(3) We show that the ESPs learned by Overwatch can be used to predict edits with 78.38%

precision (Section 7.2);
(4) Our qualitative analysis shows that ESPs can be used not only to complete edits when

developers missed the opportunity to use the IDE tool support but also predict new edits
that have no tool support at all in the IDE (Section 7.3);

(5) Our experiments shows that Overwatch outperforms C3PO and Blue-Pencil. While C3PO
does not support most of the edit sequences in our dataset, Blue-Pencil fails to synthesize
transformations at the right level of abstraction in an offline setting (Section 7.4).

2 OVERVIEW

We begin with an overview of Overwatch’s technique to learn ESPs and how we can use these
patterns to predict code edits. To illustrate the process, we show howOverwatch learns an ESP that
predicts the code edit recommended by Visual Studio in Figure 1b. As we mentioned, Visual Studio
developers had to manually implement this feature, which is time-consuming and hard to scale. In
Section 7.3 we present a list of other patterns that were automatically learned by Overwatch.
Consider the source file traces shown in Figures 2 and 3 depicting the sequences of versions

produced when developers were performing similar edits in an IDE. At a high level, the developers
are performing the same ESP: (a) adding a new property to the class, (b) adding a new parameter to

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

139:4 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

class Node {

Node() {

}

} (a) v0

class Node {

+ public str Id { }

Node() {

}

} (b) v1

class Node {

- public str Id { }

+ public str Id {get;}

Node() {

}

} (c) v2

class Node {

- public str Id {get;}

+ public str Id {get;set;}

Node() {

}

} (d) v3

class Node {

public str Id {get;set;}

- Node() {

+ Node(str id) {

}

} (e) v4

class Node {

public str Id {get;set;}

Node(str id) {

+ Id = id;

}

}

(f) v5

Fig. 2. Development Session: Syntactically correct versions while adding and initializing a property.

class Graph {

public int Id {get;set;}

Graph(int id) {

Id = id;

}

} (a) v6

class Graph {

public int Id {get;set;}

+ public int Id {get;set;}

Graph(int id) {

Id = id;

}

} (b) v7

class Graph {

public int Id {get;set;}

- public int Id {get;set;}

+ public int Size {get;set;}

Graph(int id) {

Id = id;

}

} (c) v8

class Graph {

public int Id {get;set;}

public int Size {get;set;}

- Graph(int id) {

+ Graph(int id , int size) {

Id = id;

}

} (d) v9

class Graph {

public int Id {get;set;}

public int Size {get;set;}

Graph(int id, int size) {

Id = id;

+ Size = size;

}

}

(e) v10

Fig. 3. Development Session: Syntactically correct versions while copying, updating, and initializing a property.

class H1{

H2

H3

}

pre

class H′
1
{

H′
2

public H4 H5 {get; set;}

H′
3

}

H′1 = H1 ∧ H
′
2 = H2 ∧ H

′
3 = H3

post

(a) InsertProperty

H
†
1
(

H6

)

pre

H∗
1
(

H′
6
,

H′
4

H′
5

)

H†1 = H∗1 ∧ H
′
6 = H6 ∧ H

′
4 = H4

∧ H′5 = ToLower(H5)

post

(b) InsertConstructorParam

{

H7

}

pre

{

H′
7

H
†
5

= H∗
5
;

}

post

H′7 = H7 ∧ H
†
5 = H5

∧ H∗5 = H′5

(c) InsertAssignment

Fig. 4. Example of an Edit Sequence Pattern learned by Overwatch for the workflow InsertProperty ·
InsertConstructorParameter ·InsertAssignment The variable component of the pattern (holes) are represented
by H. Below each pre and post representaion of the template, we present the Hole Predicates specifying the
relationship between holes across the edit pattern sequence.

the constructor with the same name as of the property (but lowercase) and same type, (c) adding a
statement assigning the parameter to the property. However, the developers take different paths
in the two casesÐin Figure 2, the developer directly types in the new code while in Figure 3, the
developer copies an existing property and changes the name. Figure 4 illustrates how Overwatch

represents this pattern. Each individual transition represents the pre and post template of an edit
template. We see that the insert property pattern in Figure 4a has templates with holes in it. Holes
H2 and H3, respectively, represent the surrounding class members and methods preceding and

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

Overwatch: Learning Patterns in Code Edit Sequences 139:5

class Metric {

Metric () {

}

} (a) v11

class Metric {

+ public float Cost { }

Metric () {

}

} (b) v12

class Metric {

- public float Cost { }

+ public float Cost {get;}

Metric () {

}

} (c) v13

class Metric {

- public float Cost {get;}

+ public float Cost {get;set;}

Metric () {

}

} (d) v14

class Metric {

public float Cost {get;set;}

- Metric () {

+ Metric(int val) {

}

} (e) v15

class Metric {

public float Cost {get;set;}

Metric(int val) {

+ Cost = Math.Abs(val);

}

}

(f) v16

Fig. 5. Another sequence of versions that is different from the edit sequence pattern learned in Fig 4.

following the location of the edit. The type and name of the added property in the post template
correspond to holes H4 and H5, respectively. Based on the newly added property, holes H4 and H5

can be replaced with the appropriate type and name to match the edit.
We use hole predicates to define relationships between holes in the pre- and post-templates. The

predicates H′𝑖 = H𝑖 for 𝑖 ∈ {1, 2, 3} represent that the class name and the class body does not change
apart from the newly added property. Similarly, in Figure 4b, the predicate H′

6
= H6 represents

that the constructor parameters do not change except the newly added parameter. The predicate
H′

5
= ToLower(H5) says that the name of the parameter is the lower case version of the property

name (e.g., if the property name is Id, the parameter name will be id). Note that this predicate
relates the holes in two different edit templates, i.e., H5 is in the InsertProperty template while H′

5

is in InsertConstructorParam. Hence, while learning an ESP, we need to consider the sequence of
edits as a whole, instead of separately learning single edit patterns and putting them together.

2.1 Using Edit Sequence Patterns to Predict Edits

We can use the above pattern to predict the next edits that the developer will perform. For instance,
consider the scenario shown in Figure 2. Suppose the developer has just performed the changes
v0 → v3. We can match this edit to InsertProperty to get the values of the holes H4 and H5, i.e., str
and Id, respectively. Now, using the predicates H′

4
= H4 and H′

5
= ToLower(H5), we can instantiate

InsertConstructorParam to obtain the next edit. In an IDE, we can use this instantiation to suggest
adding str id as soon as the developer moves the cursor to the constructor’s parameter list using
an interface similar to the one shown in Figure 1b. Note that in Figure 1b, we can predict two
subsequent changes (adding the constructor parameter and adding an assignment) at once using
edit patterns InsertConstructorParam and InsertAssignment in sequence.

Note that the predictions made using the ESP is just that, a prediction. As shown in Figure 5, the
developer may actually want to make a different sequence of changes, i.e., the name and type of the
property and the initialization expression are different that the ones predicted by the ESP. In our
IDE plugin implementation, the developer can press the Escape key to ignore the recommendation
from the edit sequence template and make their own change.

2.2 Learning Edit Sequence Patterns

Given the traces in Figures 2, 3, and 5 as input, Overwatch aims to learn the ESP in Figure 4.
Building the Edit Graph. Overwatch first creates the edit graph in Figure 6a to where the
nodes represent edits at different levels of granularity and the directed edges represent temporal
relation, i.e., one edit sequentially follows the other. For example, the figure contains both the node
v0 → v3, as well as the nodes v0 → v1, v1 → v2, and v2 → v3; these represent the same change

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

139:6 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

v0 → v1 v1 → v2 v2 → v3

v0 → v3 v3 → v4 v4 → v5

v6 → v7

v6 → v8

v7 → v8

v8 → v9 v9 → v10

v11 → v12 v12 → v13 v13 → v14

v11 → v14 v14 → v15 v15 → v16

(a) Part of edit graph for traces from Figures 2, 3, and 5

Insert Property

v0 → v1, v0 → v3
v6 → v7, v6 → v8

v11 → v12, v11 → v14

Insert Get

v1 → v2, v12 → v13

Update Name

v7 → v8

Insert Parameter

v3 → v4, v8 → v9
v14 → v15

Insert Set

v2 → v3, v13 → v14

Insert Assignment

v4 → v5, v9 → v10
v15 → v16

v0 → v1 → v2
v11 → v12 → v13

v0 → v1 → v2
v6 → v8 → v9

v11 → v12 → v13

v1 → v2 → v3
v12 → v13 → v14

v2 → v3 → v4
v13 → v14 → v15

v3 → v4 → v5
v8 → v9 → v10
v14 → v15 → v16

(b) Quotient graph for edit graph in Figure 6a

pre post pre post pre post Specification: {
v0 → v3 → v4 → v5 ,
v6 → v8 → v9 → v10 ,
v11 → v14 → v15 → v16 }

(c) Sketch for the edit sequence pattern łInsert Propertyž→ łInsert Parameterž→ łInsert Assignmentž

Fig. 6. Overwatch: From Edit Graphs to Edit Sequence Patterns. We omit edits v0 → v2 and v11 → v13 that
should be in the edit graphs for ease of presentation.

of adding the property public str Id { get; set; }, but at different levels of granularity. The
edit v0 → v3 represents adding the full property, while v0 → v1, v1 → v2, and v2 → v3 represent
adding the property with the empty accessor list, adding the get;, and adding the set;. The edges
between v0 → v1, v1 → v2, and v2 → v3 represent that each edit immediately follows the previous
in the trace. Note that the graph does not contain nodes for all changes (for example, v0 → v5).
We describe how we select the edits that should be there in the graph in Section 4śintuitively, we
ignore large and unrelated edits.
Creating Sketches for Edit Pattern Sequences. Next, Overwatch produces a quotient graph by
grouping together similar edits in the edit graph. Two edits are grouped together, i.e., in the same
partition, if they have the same edit type (Insert, Delete, or Update) and the same type of AST node
that is being modified (e.g., PropertyDeclaration and Parameter). In Figure 6a, the nodes are colored
by partition. For example, the green nodes all represent the insertion of a PropertyDeclaration.
Figure 6b shows the quotient graph produced by Overwatch. The quotient graph summarizes

the edit graph at the level of partitions: the vertices of the quotient graph are the partitions. An
edge between two partitions exists in the quotient graph iff there are at least 2 pairs of edits in the
partitions that sequentially follow each other. For example, there is an edge between InsertProperty
and InsertParameter as there are 3 pairs of edits where a parameter is added immediately af-
ter a property is added (see edge label in Figure 6b). However, there are no edges to and from
UpdateName since no two occurrences of update name are followed by edits of the same partition.
The paths in the quotient graph represent recurrent edit sequences applied by developers. For

each path in the quotient graph, the support is the set of all edit sequences that correspond to it.
For each path up to a size 𝑛 with sufficient support in the quotient graph, Overwatch creates a
sketch along with a specification that is given by its support. The right part of Figure 6c shows the
sketch of the ESP insert property, insert parameter, and assign property, and the specification given
by {edSeq

1
, edSeq

2
, edSeq

3
} which correspond to the traces from Figures 2, 3, and 5.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

Overwatch: Learning Patterns in Code Edit Sequences 139:7

From Sketches to Edit Sequence Patterns. In the next step, Overwatch uses these concrete
sequences to infer edit templates and hole predicates to complete the sketch. We use a procedure
based on anti-unification to generalize the edit sequences into edit templates and corresponding
hole predicates. In essence, anti-unification is a technique to generalize two ASTs into a template
by replacing differing subtrees with holes. However, we anti-unify edit sequences instead of ASTs
and further, generate predicates relating the holes in the individual templates (see Section 5.2).
Anti-unifying the edit sequences edSeq

1
, edSeq

2
, and edSeq

3
produces the ESP depicted in

Figure 4, but without the predicates H′
4
= H4, H

′
5
= ToLower(H5), and H∗

5
= ToLower(H5). This

pattern, while general, cannot be used to predict the next changes. The absence of these predicates
means that we can predict neither the name and type of the inserted parameter, nor the right-hand
side of the assignment. On the contrary, anti-unifying just edSeq

1
and edSeq

2
produces exactly the

pattern in Figure 4, which can be used for predictions as shown in Section 2.1. Overwatch uses
agglomerative hierarchical clustering over edit sequences to produce a hierarchy of increasingly
general ESPs. Hence, we will produce both ESPs (with and without anti-unifying edSeq

3
). We select

and rank a subset of the generated ESPs based on their predictive power on the input traces.

3 EDIT SEQUENCE PATTERNS

The goal of this paper is to learn a sequence of edit patterns from a set of developer edit traces and
to make editing suggestions by the learned patterns while a developer is working in an IDE. In
contrast to related works [Bader et al. 2019; de Sousa et al. 2021; Yin et al. 2019] that learn only a
single edit pattern, we aim to use the hole predicates among the sequence of edit patterns. In this
section, we show a novel representation for the sequence of edit patterns learned by our approach.
Versions and Development Sessions. A version v is a syntactically correct source file that occurs
while a developer is editing code. A development session or trace Trace = v0 . . . v𝑛 is the sequence of
all versions that appear during an editing session. Here, we identify each version with its abstract
syntax tree (AST). Hence, unparsable intermediate versions of code do not appear in the trace.
Edits and Edit Sequences. The edit ed = vpre → vpost changes version vpre to vpost. The function
Localize on edits that produce the smallest difference between the two ASTs in the edit. Formally,
Localize(vpre → vpost) = v∗pre → v∗post if: (a) v

∗
pre and v

∗
post are subtrees of vpre and vpost, respectively;

(b) replacing v∗pre by v∗post in vpre yields vpost; and (c) v∗pre is the smallest subtree of such kind.

Example 3.1. Consider the edit v3 → v4 in Figure 2, where the developer adds the parameter
str id to the constructor of Node. The localized version of this edit Localize(v3 → v4) is given by
v∗
3
→ v∗

4
where: (a) v∗

3
corresponds to the subtree of v3 that represents the empty parameter list (),

and (b) v∗
4
corresponds to the subtree of v4 that represents the parameter list (str id). □

An edit in the trace Trace = v0 . . . v𝑛 is given by v𝑖 → v𝑗 ∈ Edits(Trace) where 0 ≤ 𝑖 < 𝑗 ≤ 𝑛.
Given edits ed = v𝑖 → v𝑗 and ed′ = v𝑘 → vℓ from Trace, we say that ed′ sequentially follows
ed if 𝑖 < 𝑗 = 𝑘 < 𝑙 . This is written as ed →seq ed′. An edit sequence ed0 . . . ed𝑛 is a sequence of
contiguous edits, i.e., ∀𝑖 .ed𝑖 →seq ed𝑖+1.
Templates and Edit Templates. An AST template (or template for short) t is an AST where
some leaf nodes are holes, i.e., they do not represent a program fragment but are placeholders. A
substitution 𝜎 is a function that maps each hole to a finite sequence of AST nodes. The AST obtained
by replacing each hole H in t by the node sequence 𝜎 (H) is written as 𝜎 (t). We assume that holes
are unique, i.e., that a single hole does not appear in more than one location in a template and that
multiple templates cannot share holes.

Example 3.2. An example of a template t is (H, str id) where H is a hole. This template
represents all parameter lists of length 1 or more where the last parameter is str id. Note that we

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

139:8 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

are writing templates using the equivalent code for readability. The template t is represented as an
AST and does not contain a node for the comma separator.

With the substitution 𝜎0 = {H ↦→ 𝜖} that maps H to the empty sequence of nodes, we
have 𝜎0 (t) = (str id). Note that the comma disappears when we substitute the hole with
the empty listÐthis is an artifact of writing the template as code. For 𝜎1 = {H ↦→ int count}

and 𝜎2 = {H ↦→ int count, str attr} we have 𝜎1 (t) = (int count, str id) and 𝜎2 (t) =

(int count, str attr, str id). Note that 𝜎0, 𝜎1, and 𝜎2 map H to sequences of AST nodes of
length 0, 1, and 2, respectively. □

We represent common editing motifs using edit templates. Formally, an edit template et =

tpre → tpost is a pair of AST templates. We say that an edit vpre → vpost matches an edit template
tpre → tpost if: (a) Localize(vpre → vpost) = v∗pre → v∗post, and (b) there exists a substitution 𝜎 such

that v∗pre = 𝜎 (tpre) and v∗post = 𝜎 (tpost).

Example 3.3. An example of an edit template is et = (H1) → (H2, str id). Here, the first
template matches all parameter lists while the second matches all parameter lists where the last
parameter is str id. Hence, it would match the edit v3 → v4 in Figure 2. However, note that this
edit template does not relate the values ofH1 andH2 in pre- and post-versions of the edit. Therefore,
an edit like (int id)→ (str label, str id) will match the edit template et. We solve this issue
using hole predicates below.

Hole Predicates. We introduce the notion of hole predicates to (a) relate the values of holes across
multiple templates, and (b) restrict the set of substitutions that can be applied to a template. Formally,
a hole predicate is an expression of type Boolean over holes and is evaluated over a substitution 𝜎 .
• Unary predicates. The predicate IsNotNull(H) asserts that the hole H cannot be replaced
by an empty sequence, i.e., the substitution 𝜎 must satisfy 𝜎 (H) ≠ 𝜖 if IsNotNull(H) = True.
Another unary predicate IsKindlabel (H) is parametrized by an AST node type label (e.g.,
AssignExpr or ClassDeclaration). We have that IsKindlabel (H) = True for a substitution 𝜎
only if 𝜎 (H) = node and the label of node is label. Note that IsKindkind forbids the hole value
from being an empty sequence and a sequence with multiple elements.
• Binary predicates. We also use a class of predicates over two holes, written as H1 = F(H2)

where F is a function. The most common F is the identity function in terms of text value, in
which case, we write the predicate as H1 = H2. Other two functions F we use are ToLower
and ToUpper, which indicate that the text value of H1 in the substitution is the same as that
of H2, but the case of the first character changed appropriately.

Example 3.4 (Hole predicates). Consider the template t = (H, str id) from Example 3.2. Here,
imposing the predicate IsNotNull(H) ensures that any AST matched by t must have at least 2
parameters in the parameter list. Continuing from Example 3.3, we can augment the edit template
(H1) → (H2, str id) with the hole predicate H1 = H2 to ensure that we exactly capture the class
of edits that insert a new parameter str id to an existing parameter list. □

Example 3.5. Hole predicates can be used to relate holes across multiple edits to exactly capture
the common editing pattern illustrated in Figure 2.
• Add a new property to a class. This category of edits is captured by the edit template et1 =
{H1 H2}→ {H3 public H4 H5 {get;} H6}. Here, H1 and H2 represent the class members
that appear before and after the newly inserted property, respectively. The type and name of
the property are represented by H4 and H5, respectively. We can add the unary predicates
IsKindType (H4) and IsKindIdent (H5) to ensure thatH4 andH5 are a Type node and an Identifier
node, respectively. To ensure that the contents of the class do not change apart from the
newly inserted property, we need the predicates H3 = H1 and H6 = H2.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

Overwatch: Learning Patterns in Code Edit Sequences 139:9

• Add a new parameter to the constructor. This edit is captured by the edit template and predicates
similar to the ones presented in Example 3.4. We have et2 = (H7) → (H8, H9 H10) with
the predicate H8 = H7 to ensure that the parameter list is preserved apart from the new
parameter. We have the additional predicates H9 = H4 and H10 = ToLower(H5) to ensure
that the type and name match that of the inserted property. Note that the relation between
H5 and H10 is not strict equality, but involves an additional transformation ToLower to H5.
• Assign the new parameter to the new property. These edits add a new assignment statement
to the end of the block and are captured by et3 = {H11} → {H12; H13 = H14;} with the
predicates H12 = H11, H13 = H5, and H14 = H10. However, we omit some unary predicates if
the absence does not hinder understanding for ease of presentation in this paper.

Together, the edit templates et1, et2, and et3 along with the above predicates fully capture the
common editing pattern of adding a new property to a class and initializing it in the constructor. □

Edit Sequence Patterns. The main object of study in this paper is an Edit Sequence Pattern (ESP).
ESPs are used to capture sequences of common editing actions like in Example 3.5. Formally, an ESP
is a pair ⟨TS, Preds⟩ where: (a) TS is a restricted regular expression over edit templates, and (b) Preds

is a set of hole predicates. Here, the restricted regular expression TS is of the form et1 . . . et𝑛−1et
[∗]
𝑛

where [∗] represents an optional Kleene star. That is, TS is a sequence of edit templates where the
last template may have a Kleene star.

Example 3.6. The edit templates and hole predicates from Example 3.5 can be written as an
ESP ⟨TS, Preds⟩. Here, TS = et1et2et3 and Preds = {H3 = H1,H6 = H2,H8 = H7,H9 = H4,H10 =

ToLower(H5),H12 = H11,H13 = H5,H14 = H10} ∪ {IsKindType (H4), IsKindIdentifier (H5), . . .}.

class Comms {

// Edit 1

- void Write(Stream s,

- byte[] bs, bool flush) { }

+ void Write(Stream s,

+ byte[] bs) { }

}

void Main() {

// Edit 2

- Comms.Write(io, bytes , f);}

+ Comms.Write(io, bytes);

// Edit 3

- Comms.Write(io, result , f);

+ Comms.Write(io, result);

}

Fig. 7. Delete a Parameter and Delete Arguments

We say that a sequence of edits
ed1 . . . ed𝑛 matches ⟨TS, Preds⟩, where
TS = et1 . . . et𝑛−1et𝑛 , if there exists a substitu-
tion 𝜎 such that: (a) each ed𝑖 matches et𝑖 for
1 ≤ 𝑖 ≤ 𝑛, (b) the hole valuations in 𝜎 satisfy
all the predicates in Preds.
Extending this definition, we say that

a sequence of edits ed1 . . . ed𝑚 (with
𝑚 ≥ 𝑛) matches ⟨TS, Preds⟩, where
TS = et1 . . . et𝑛−1et

∗
𝑛 , if each of the se-

quences ed1 . . . ed𝑛−1ed𝑘 for 𝑛 ≤ 𝑘 ≤ 𝑚

matches ⟨et1 . . . et𝑛−1et𝑛, Preds⟩.

Example 3.7. Consider an ESP ⟨TS, Preds⟩,
where TS = et1et

∗
2
has a Kleene star, with et1 =

(H1,H2 H3) → (H4), et2 = (H5,H6) → (H7),
and Preds = {H1 = H4,H5 = H7, IsKindType (H2), IsKindIdent (H3), IsKindArg (H6)}. This pattern
represents an editing sequence where the developer deletes the last parameter in a declaration, and
then, deletes the corresponding argument in multiple callsites.
Consider the three edits ed1, ed2, and ed3 in Figure 7. We have that ed1ed2ed3 matches

et1et
∗
2
. To show this, we need to show that both ed1ed2 and ed1ed3 match the un-starred

ESP ⟨et1et2, Preds⟩. We can see that ed1ed2 matches et1et2 with the substitution 𝜎1 =

{H1 ↦→ Stream s, byte[] bs,H2 ↦→ bool,H3 ↦→ flush,H4 ↦→ Stream s, byte[] bs,H5 ↦→

io, bytes,H6 ↦→ f,H7 ↦→ io, bytes}. Similarly, we can show that ed1ed3 matches et1et2 with
the substitution 𝜎2, which is the same as 𝜎1 with bytes replaced by result for H5 and H7. □

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

139:10 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

Remark 3.8. In our implementation, we consider a slightly more general form of edit sequence
patterns. There, we can have ESPs where any edit template (not just the last one) may be starred.
These more general patterns can be formalized in a straightforward way, though we do not do so
here for ease of presentation.

Using Edit Sequence Patterns. After a edit sequence matches a prefix of an ESP, we can use the
next edit template in the ESP to predict the next change that the developer will make. We illustrate
an usage of an ESP in the following example and we will further describe the details in Section 6.

Example 3.9 (Usage of an ESP). Consider the ESP ⟨et1et2et3, Preds⟩ defined in Example 3.6, and
the edit sequence ed1 →seq ed2 from Figure 2, where ed1 = v0 → v3, ed2 = v3 → v4. We will
consider the task of predicting the next edit give that the developer has just performed ed1 and ed2.
• First, we find a substitution 𝜎 such that ed1 and ed2 match et1 and et2, respectively using
𝜎 . Further, we require that 𝜎 satisfies each predicate in Preds that is over only the holes
appearing in et1 and et2. Here, we have 𝜎 = {H2 ↦→ Node() { },H4 ↦→ str,H5 ↦→ Id,H6 ↦→

Node() { },H9 ↦→ str,H10 ↦→ id, } ∪ {H𝑖 ↦→ 𝜖 | 𝑖 ∈ {1, 3, 7, 8}}.
• Then, we find an AST node in v4 such that the node matches et3,pre using a substitution 𝜎

′.
We get 𝜎 ′ = {H11 ↦→ 𝜖} for the AST node that represents the empty body of the constructor.
And we require that 𝜎 ∪ 𝜎 ′ satisfies all predicates in Preds that are over the domain of 𝜎 ∪ 𝜎 ′.
• Now, we use the predicates in Preds that contain the holes from et3,post to predict the values
for those holes. Here, from the predicates H12 = H11, H13 = H5, and H14 = H10, we can predict
that H12 ↦→ 𝜖 , H13 ↦→ Id, and H14 = id.
• Filling in these values in et3,post, we get the new constructor body {Id = id;}. The predicted
version is obtained by replacing node in v4 with this new constructor body. This exactly
produces the version v5 in Figure 2.

Remark 3.10. Intuitively, ESPs are a mechanism for predicting the next edit based on the temporal
context, i.e., the sequence of atomic edits the developer has been performing. However, the ESPs
themselves may operate over the non-atomic edits, i.e., they may match coarse-grained non-atomic
edits in a session. Further, as we will see below, the ESPs are learned by generalizing patterns in
non-atomic edits over multiple sessions from different developers.

Problem Statement and Solution Sketch. The input to the ESP learning problem is a set of
traces. The expected output is a ranked set of ESPs ⟨TS1, Preds1⟩ . . . ⟨TS𝑛, Preds𝑛⟩. The aim is to
produce ESPs that are helpful in predicting the next version in any trace. To this end, we measure
the quality of the output using the standard notions of precision and recall, and a general F score
(see Section 7.2 for more details).

Our solution strategy is in 3 parts:
• Generating edit sequence sketches and specifications. (Section 4, Lines 1-6 in Algorithm 1) The
first step is to generate sets of concrete edit sequences (called the specification) that can
potentially all match the same ESP, alongwith a sketch for that ESP. To generate these sketches
and specifications, we (a) partition the set of all edits in Traces (Lines 1-3), (b) summarize the
edit graph by the partitions to build a quotient graph (Line 4), and (c) generate sketches and
specifications from paths of the quotient graph (Lines 5-6).
• Synthesizing ESPs. (Section 5, Lines 7-9 in Algorithm 1) Given these edit sequence sketches
and specifications, we generate a hierarchy of ESPs iteratively where each pattern in the
hierarchy is more general and matches more edit sequences in the specifications than the
patterns lower in the hierarchy. The core algorithm here takes as input a set of edit sequences
and produces a set of ESPs that can potentially matches the provided edit sequences.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

Overwatch: Learning Patterns in Code Edit Sequences 139:11

Algorithm 1 Overview of Overwatch

Require: Set of traces Traces
Ensure: Ranked list of ESPs

1: edits←
⋃
{Edits(Trace) | Trace ∈ Traces}

2: EditGraph← BuildEditGraph(edits)
3: Partitions← partition of edits based on Kind
4: QuotientGraph←Quotient(EditGraph, Partitions)
5: Paths← FreqentPaths(QuotientGraph)
6: SketchesAndSpecs← {GenerateSketchAndSpec(path) | path ∈ Paths}
7: Patterns← ∅
8: for (sk, spec) ∈ SketchesAndSpecs do
9: Patterns← Patterns ∪ LearnPatterns(sk, spec)

10: return FilterAndSelect(Patterns)

• Selecting and ranking ESPs. (Section 6, Line 10 in Algorithm 1) Once we build a hierarchy of
ESPs, we determine their predictive power by testing them on the input Traces. Based on
their precision on the Traces, we select a subset of the patterns and rank them accordingly.

4 FROM TRACES TO EDIT PATTERN SKETCHES

In this section, we produce sketches and specifications from a set of traces. Formally, an edit pattern

sketch sk is of the form 𝐴1 . . . 𝐴𝑛−1𝐴
[∗]
𝑛 where each 𝐴𝑖 is a placeholder for an edit template. A

specification spec for a sketch sk is a set of edit sequences such that the length of each edit sequence
in spec (a) is equal to 𝑛 if 𝐴𝑛 is un-starred in sk, and (b) is at least 𝑛 if 𝐴𝑛 is starred in sk.

Example 4.1. Given a set of input traces that include the traces from Figures 2 and 3, the technique
in this section will produce a set of pairs of the form (sk, spec). One such pair might be sk = 𝐴1𝐴2𝐴3

and spec = {ed1ed2ed3, ed
′
1
ed′

2
ed′

3
, . . .} where ed1 = v0 → v3, ed2 = v3 → v4, ed3 = v4 → v5,

ed′
1
= v6 → v8, ed

′
2
= v8 → v9, and ed′

3
= v9 → v10. Note that (a) ed1 and ed′

1
add a new property,

(b) ed2 and ed
′
2
add a new parameter to the constructor, and (c) ed3 and ed

′
3
assign the newly added

parameter to the newly added property. This sketch and specification will then be used in Section 5
to generate a hierarchy of ESPs. □

We synthesize sketches of ESPs from traces in three steps, (a) build an edit graph that contains
information about the granularity and sequencing of edits in the input traces, (b) produce a summary
of edit sequences by quotienting the edit graph based on a partitioning of edits, and (c) produce
sketches and specifications of ESPs by finding frequent paths in the summary quotient graph. We
explain each of these steps below.
Generating the Edit Graph. The edit graph represents all edits in all input traces, as a graph. First,
we collect the set of all edits at all granularities in the input traces, i.e., edits between all pairs (not
necessarily consecutive) of versions. Since the number of edits grows quadratically in the length of
the trace, in practice, we prune the edits as follows. First, we debounce the transient edits because
these edits are likely noisy, i.e., we delete edits where the two versions were separated by less than
500ms of time [Miltner et al. 2019]. Second, we remove edits where the change is larger than a given
threshold. Large edits are likely to incorporate changes that are completely unrelated to each other.
For example, the edit of adding a new class and implementing all its methods is likely to contain
many unrelated edits, and not be a part of any common editing workflow. Now, the individual edits
from this pruned set form the vertices of the graph and there is an edge between ed1 and ed2 if and
only if ed2 sequentially follows ed1, i.e., ed1 →seq ed2. Note that the edit graph contains edits at

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

139:12 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

different levels of granularity. For example, in the edit graph for a trace with versions v0v1v2, both
the coarse-grained edit v0 → v2, as well as the fine-grained edits v0 → v1 and v1 → v2.

Example 4.2. The edit graph of the trace shown in Figure 2 contains vertices of the form 𝑣𝑖 𝑗 =

v𝑖 → v𝑗 for 0 ≤ 𝑖 < 𝑗 ≤ 5. The edit graph is shown in Figure 6a. Note that the graph contains nodes
for both fine-grained edits v0 → v1, v1 → v2, v2 → v3, and v3 → v4, as well as the coarse-grained
edit v0 → v4. There is an edge between 𝑣03 → 𝑣34 as v3 → v4 sequentially follows v0 → v3. On the
other hand, there is no edge from 𝑣03 to 𝑣45.

Summarizing the Edit Graph. Once the edit graph is built, the next task is to create an abstract
version of the edit graph that groups together edits of similar kind. To define similar, we first define
an embedding of edits. We categorize edits into 3 types: insert, delete, and update. The edit insert
child Insert(parent, child, 𝑖) and the edit delete child Delete(parent, child, 𝑖) insert and delete AST
node child of parent’s children at position 𝑖 , respectively, whereas an update Update(old, new)
replaces the AST node old with new. Insert and delete child operations are also updates (of the
parent parent); however, we assume edits are written as insert or delete child when possible.
Given an edit ed, we define the kind of the edit Kind(ed) to be (operation, label) where:

(a) operation is one of Delete, Insert, or Update; and (b) label is the type of node that is being
deleted, inserted, or updated (e.g. MethodInvocation or Identifier). In an edit graph, we call the set
of all vertices (edits) of the same kind a partition.

Example 4.3. In Figure 6a, the edit v0 → v3 is of type (Insert, Property) and the type of v3 → v4
is (Insert, Parameter). The partition for (Insert, Property) is given by {v0 → v1, v0 → v2, v0 →
v3, v6 → v7, v6 → v8, v11 → v12, v11 → v13, v11 → v14, }.

The quotient graph of the edit graph summarizes the sequencing information present in the edit
graph at the level of partitions. We build the quotient graph by lifting the edit graph’s sequencing
information to the level of partitions.
• Quotient graph vertices. A vertex in the quotient graph is a partition, i.e., the set of edits from
the edit graph with the same Kind. We use the term Partitions to denote the set of all vertices
in the quotient graph.
• Quotient graph edges. Classically, an edge exists between two vertices P→ P′ in the quotient
graph when there exist ed ∈ P, ed′ ∈ P′ with an edge ed →seq ed′ between them (see,
for example, [Bloem et al. 2006]). Here, we strengthen the requirement by asking at least
𝑠 different pairs of such ed and ed′. This ensures that the ESPs we generate are general,
i.e., eliminating patterns corresponding to the editing mannerisms and habits particular to
individual developers. In our experiments, we use 𝑠 = 2.
• Quotient graph edge labels. We associate each edge P→ P′ in the quotient graph with a label
Label(P → P′) that is a set of edit pairs. We define Label(P → P′) to be {(ed, ed′) | ed ∈
P, ed′ ∈ P, ed→seq ed

′}, i.e., it contains all pairs of contiguous edits.

Example 4.4. The quotient graph for the edit graph in Figure 6a is shown in Figure 6b. There
are 3 different vertices (partitions) P1, P2, and P3 in the quotient graph corresponding to the
kinds (Insert, Property), (Insert, Parameter), and (Insert,Assignment), respectively. There is an
edge P1 → P2 from P1 to P2 as there are 3 > 𝑠 corresponding sequentially consecutive edit pairs:
(a) v0 → v3 and v3 → v4, (b) v6 → v8 and v8 → v9, and (c) v11 → v14 and v14 → v15. Further, the
label Label(P1 → P2) is given the same set of 3 edits.

Generating Sketches and Specifications. From the quotient graph, we generate ESP sketches
and corresponding specifications paths using paths in the quotient graph. First, we define the
support Support(P1 . . . P𝑛) as follows: (a) For the path with only 1 edge, we define Support(P1P2)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

Overwatch: Learning Patterns in Code Edit Sequences 139:13

to be the label Label(P1 → P2), and (b) Otherwise, we define Support(P1P2 . . . P𝑛) recursively as
{ed1ed2 . . . ed𝑛 | (ed1 → ed2) ∈ Support(P1, P2), (ed2ed3 . . . ed𝑛) ∈ Support(P2 . . . P𝑛)}.
Now, we define a frequent path in the quotient graph as any path P1 . . . P𝑛 where

Support(P1 . . . P𝑛) has cardinality greater than a threshold 𝑠 = 2. The set of frequent paths can be
computed recursively by starting with single edges and adding edges to the end as long as the
support is greater than the threshold.
From the set of frequent paths, we generate two different kinds of sketch specification pairs.
• For any simple path P1 . . . P𝑛 (i.e., satisfying 𝑖 ≠ 𝑗 =⇒ P𝑖 ≠ P𝑗), we define sk = 𝐴1 . . . 𝐴𝑛

and spec = Support(P1 . . . P𝑛).
• For a set of paths {P1 . . . P𝑛−1P𝑛, P1 . . . P𝑛−1P𝑛P𝑛, . . . , P1 . . . P𝑛−1P

𝑘
𝑛} where P1 . . . P𝑛−1 is sim-

ple, we define sk = 𝐴1 . . . 𝐴
∗
𝑛 and spec =

⋃
1≤𝑖≤𝑘 Support(P1 . . . P𝑛−1P

𝑖
𝑛).

Example 4.5. One possible frequent paths in Figure 6b are given by P1P2P3 where the partitions
are equivalent to insert property, insert parameter, and insert assignment as described in Example 4.4.
From this path, we generate the sketch sk = 𝐴1𝐴2𝐴3 and the specification spec = {(v0 → v3) (v3 →
v4) (v4 → v5), (v6 → v8) (v8 → v9) (v9 → v10), (v11 → v14) (v14 → v15) (v15 → v16)}.

Overall, putting together the steps depicted in this section, we generate a set of sketch-
specification pairs (sk, spec) that each represent a common editing sequence in the input Traces.

5 SYNTHESIZING EDIT SEQUENCE PATTERNS

From Section 4, we get as input a number of sketch-specification pairs. Here, we synthesize
a hierarchy of ESPs for each sketch-specification pair. The procedure to do this has 3 major
components: (a) generate an ESP from an edit sequence, (b) combine two ESPs to a more general
pattern, and (c) produce a hierarchy of ESPs using the previous two components. Components (a),
(b), and (c) are explained in Sections 5.1, 5.2, and 5.3, respectively.

5.1 Generating an Edit Sequence Pattern

Consider generating an ESP from an edit sequence ed1 . . . ed𝑛 and a sketch sk = 𝐴1 . . . 𝐴𝑛 .
• First, for each edit ed𝑖 , let Localize(ed𝑖) = ed𝑖,pre → ed𝑖,post. We set et𝑖 = ed𝑖,pre → ed𝑖,post and
Preds = ∅ and iteratively perform the following operations. (a) Identify AST nodes nodepre in
et𝑖,pre and nodepost in et𝑖,post such that there is a predicate that relates the two values. Further,
we pick nodepre and nodepost such that they are of the largest possible size. For example, we
may pick nodepre and nodepost such that nodepost = nodepre or nodepost = ToLower(nodepre).
(b) We replace nodepre and nodepost in et𝑖 by two fresh holes Hpre and Hpost, and add the
predicate that relates the two values to Preds (e.g., Hpost = Hpre or Hpost = ToLower(Hpre)).
We will also add unary predicates IsNotNull and IsKind of Hpost and Hpre if they satisfy the
constraints. (c) We add the generated mappings to a substitution 𝜎𝑖 .
• Then, we union all the substitutions 𝜎𝑖 into a single 𝜎 (note that domains of 𝜎𝑖 are disjoint).
Now, for each H1 → node1,H2 → node2 ∈ 𝜎 , we check if there exists a predicate that relates
node1 and node2. If so, we add that predicate on H1 and H2 to the Preds.

The produced ESP is ⟨et1 . . . et𝑛, Preds⟩. Note that the above procedure is for sketches without
Kleene starsÐwe discuss how to generate patterns with Kleene stars later.

Example 5.1. Consider the edit sequence ed1ed2ed3 where ed1 = v6 → v8, ed2 =

v8 → v9, and ed3 = v9 → v10 from Figure 3. We illustrate the ESP generation proce-
dure for ed1. First, we start with the localized edit Localize(ed1) = {<IdDecl> <Ctor>} →

{<IdDecl> public int Size {get; set;} <Ctor>}. The terms <IdDecl> and <Ctor> are short-
hand for public int Id {get; set;} and Graph(int id) {Id = id;}, respectively.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

139:14 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

Now, over all pairs of nodes in the localized edit, we check if there is a predicate that
is satisfied by the nodes. Here, we get that the node <IdDecl> is repeated in both the pre-
and post-versions. Replacing these with holes, we get the edit template {H1 <Ctor>} →

{H3 public int Size {get; set;} <Ctor>} and the predicate H1 = H3. Repeating this,
we replace <Ctor> with H2 and H4 to get the edit template et1 = {H1 H2} →

{H3 public int Size {get; set;} H4} and the predicate H4 = H2.
Doing the similar procedure on ed2 and ed3, we get the edit templates et2 = (H5) →

(H6, int size) and et3 = {H7}→ {H8 Size = size;}, with the predicatesH6 = H5 andH8 = H7.
We then compute the predicates across the different et𝑖 , and in this example, we do not find any.

The ESP returned is et1et2et3 along with the predicates Preds = {H3 = H1,H4 = H2,H6 =

H5,H8 = H7}. Note that the pattern does not create holes for the type or name of the inserted
property or parameter (int, Size, and size). With just a single edit sequence, we do not have any
evidence for the need to generalize these identifiersÐhypothetically, every property that is added
in the input traces might have the type int and name Size. We can generalize these identifiers
when we have two ESPs as we will describe next. □

5.2 Combining Edit Sequence Patterns

Using the previous step, we can generalize all concrete edit sequences in spec to ESPs. Now, we
discuss how to combine any two such ESPs into a single, more general, ESP. The primary tool we
use for this purpose is anti-unification [Plotkin 1970]. Anti-unification is a classical operation of
trees that retains the parts that are common to two trees, while replacing the parts that are different
with holes. It has been used in code edit analysis and synthesis literature to generalize ASTs and
edits in multiple contexts [Bader et al. 2019; de Sousa et al. 2021; Gao et al. 2020]. However, in
our technique, we need to anti-unify sequences of edit templates rather than ASTs or single edit
templates, and further, need to consider the predicates.

Formally, given two sequences of edit templates et1 . . . et𝑛 and et′
1
. . . et′𝑛 , the anti-unification of

the two sequences produces an edit template sequence et∗
1
. . . et∗𝑛 and two substitutions 𝜎, 𝜎 ′ such

that: For each et∗𝑖 , we have that et𝑖 = 𝜎 (et∗𝑖,pre) → 𝜎 (et∗𝑖,post) and et′𝑖 = 𝜎 ′(et∗𝑖,pre) → 𝜎 ′(et∗𝑖,post).

Intuitively, anti-unification is generalization: if any edit sequence ed1 . . . ed𝑛 matches et1 . . . et𝑛 or
et′

1
. . . et′𝑛 , it will also match et∗

1
. . . et∗𝑛 . Further, we also need to generalize hole predicates Preds

and Preds′. For this, we generate only those hole predicates that are satisfied by both substitutions
𝜎 and 𝜎 ′. As a result, the newly generated hole predicates is also a generalization.

Example 5.2 (Anti-unification of edit sequence patterns). Recall the edit templates et1et2et3 from
Example 5.1. Now consider another ESP from a similar sequence of edits shown in Figure 2, but
with the following changes: (a) the property and parameter added has a different name and type
(str Id and str id) and (b) the parameter list in the constructor and the body of the constructor
are empty. In the edit templates et′

1
et′

2
et′

3
for an ESP generated for this case, et′

1
is similar to et1

with the hole names replaced. However, et′
2
= ()→ (str id), i.e., it does not have H5 and H6 to

represent the already existing parameters in the parameter list. Similarly, et′
3
= { }→ {Id = id;}

and it does not contain H7 and H8.
To generalize the two edit templates et1et2et3 and et′

1
et′

2
et′

3
, we anti-unify the before and post

templates in each et𝑖 and et′𝑖 one by one:
• For et1 and et′

1
, we get the anti-unified edit template et∗

1
= {H∗

1
H∗

2
} →

{H∗
3
public H∗

9
H∗
10

{get; set;} H∗
4
}. Note that the type and name of the properties have

been replaced by new holes H∗
9
and H∗

10
.

• For generalizing, et2 and et
′
2
, additional care must be taken as there are no holes corresponding

to H5 and H6 in et′
2
. Some anti-unification approaches [Bader et al. 2019; de Sousa et al. 2021]

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

Overwatch: Learning Patterns in Code Edit Sequences 139:15

will produce an overly general edit template et∗
2
as (H∗

11
) → (H∗

12
). With this edit template,

we do not have any holes for the name and type of the parameter, and thus we cannot express
the hole predicate between parameter type and property type.
We propose to further generalize the lists of children, i.e., (H6, int size) and (str id),
inspired by Gao et al. [2020]. During anti-unification, we examine if the two children lists
can be better generalized by introducing additional holes which are substituted by the empty
token 𝜖 in one case. Doing so, we get et∗

2
= (H∗

5
) → (H∗

6
, H∗

11
H∗
12
).

• Similarly, for et3 and et′
3
, we get et∗

3
= {H∗

7
}→ {H∗

8
H∗
13

= H∗
14
}.

Note that we can get substitutions 𝜎 and 𝜎 ′ for free after we generalized these edit templates.
These substitutions can then be used to generate the hole predicates. (a) For a specific unary hole
predicate F, we enumerate every hole H in generalized edit templates and checking whether both
F(𝜎 (H)) and F(𝜎 ′(H)) are satisfied. Notice that 𝜎 (H) and 𝜎 ′(H) can still contain holes in the first
or the second ESP. If there are any holes in 𝜎 (H) or 𝜎 ′(H), we recursively repeat the substitution
procedure untilHmaps to an AST in concrete edit sequences. (b) We generate binary hole predicates
similarly but enumerate all pairs of holes in generalized edit templates. In this case, we end up
with the starred version of the predicates in Preds from Example 5.1, along with the predicates
{H∗

11
= H∗

9
,H∗

12
= ToLower(H∗

10
),H∗

13
= H∗

10
,H∗

14
= H∗

12
}.

The generalized edit templates et∗
1
et∗

2
et∗

3
along with the new predicates exactly capture the

editing sequence of adding a new property and initializing it in the constructor. □

As illustrated in the previous example, we cannot generalize ESPs using standard anti-unification
techniques. When two nodes in the edit templates have different numbers of children, we may need
to introduce new holes that map to 𝜖 . We do not explicitly write out our anti-unification algorithm
here for the lack of spaceÐinstead, it is available in the supplementary material. The algorithm
takes as input two ESPs ⟨TS1, Preds1⟩ and ⟨TS2, Preds2⟩, and produces a more general ⟨TS, Preds⟩.
Along with the generalized ESP, the algorithm also returns a cost of anti-unification. This cost
roughly measures how general the ⟨TS, Preds⟩ is compared to ⟨TS1, Preds1⟩ and ⟨TS2, Preds2⟩, with
more general patterns getting a higher cost than less general ones. This corresponds to the intuition
that anti-unification algorithms attempt to compute the least general generalization of two objects.
Based on the anti-unification costs, we will generate a hierarchy of ESP in the following section.

5.3 Building a Hierarchy of Edit Sequence Patterns

Algorithm 2 The procedure of building a dendrogram (LearnPatterns in Algorithm 1)

Require: Sketch of edit sequence pattern sk
Require: Specification for edit sequence pattern spec
Ensure: A set of edit sequence patterns Patterns
1: Nodes← {GeneratePattern(sk, ed1 . . . ed𝑛) | ed1 . . . ed𝑛 ∈ spec}
2: Patterns← ∅
3: while |Nodes| > 1 do

4: Pick Node1,Node2 such that AntiUnifyCost(Node1,Node2) is minimal

5: NewNode← AntiUnify(Node1,Node2)
6: Patterns← Patterns ∪ {NewNode}
7: Nodes← Nodes − {Node1,Node2} ∪ {NewNode}

8: return Patterns

Algorithm 2 shows the full procedure going from an ESP sketch sk and specification spec to
a set of ESPs Patterns. The algorithm performs a standard agglomerative hierarchical clustering
(AHC) [Day and Edelsbrunner 1984] with the distance metric given by the anti-unification cost.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

139:16 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

AHC builds a dendrogram where each node is an ESP. This is reminiscent of the techniques [Bader
et al. 2019], but performed over a sequence of edits rather than a single one. At line 1, we build
the leaf nodes in dendrogram by generalizing edit sequences to ESPs as described in Section 5.1.
At lines 4-5, we select two nodes in the dendrogram Node1,Node2 that have the lowest merging
anti-unification cost in anti-unification and anti-unify them into a new dendrogram nodeNewNode.
The procedure eventually returns the set of all nodes that were constructed.

Remark 5.3 (Handling Kleene stars). An ESP sketch𝐴1 . . . 𝐴𝑛−1𝐴
[∗]
𝑛 with Kleene stars may contain

edit sequences with various lengths. To handle the sketch with Kleene stars, we will compute a new
set of edit sequences, each of which has length 𝑛 equal to the sketch, such that we can build the
dendrogram in the same way as the sketches without Kleene stars. Concretely, for an edit sequence
ed𝑖

1
. . . ed𝑖𝑚 in the sketch we will collect all subsequences ed𝑖

1
. . . ed𝑖𝑛−1ed

𝑖
𝑘 for all 𝑛 ≤ 𝑘 ≤ 𝑚.

Suppose we have an ESP sketch𝐴1𝐴
∗
2
and an edit sequence ed1ed2ed3ed4, where ed1 corresponds

to 𝐴1 and ed2, ed3, ed4 correspond to 𝐴2. We will break the edit sequence into three edit sequence
with length 2, namely, ed1ed2, ed1ed3, and ed1ed4.

6 RANKING EDIT SEQUENCE PATTERNS

As we discussed in Section 2, we cannot simply pick more general ESPs over less general ones.
More general patterns may be less predictive than specific ones. In this section, we will select a
ranked list of ESPs from all dendrograms as the output of Overwatch.

Algorithm 3 The procedure of edit sequence pattern prediction

Require: An edit sequence pattern ⟨TS = et1 . . . et𝑛−1et
[∗]
𝑛 , Preds⟩

Require: A trace v0 . . . v𝑚
Ensure: Prediction for next version v̂ or ⊥
1: for all possible edit sequences ed1 →seq . . .→seq ed𝑘 ending at v𝑚 and 𝑘 ≤ 𝑛 do

2: if ed1 . . . ed𝑘 matches et1 . . . et𝑘 using a unique 𝜎 then

3: if 𝑘 < 𝑛 then

4: vpredicted ← Predict(et𝑘+1, 𝜎)
5: if vpredicted ≠ ⊥ then return vpredicted

6: else

7: vpredicted ← Predict(et𝑛, 𝜎)
8: if vpredicted ≠ ⊥ then return vpredicted

9: return ⊥

10: function Predict(et = tpre → tpost, 𝜎)
11: for all Every subtree v∗𝑚 in v𝑚 do

12: if ∃𝜎 ′.𝜎 ′(tpre) = v∗𝑚 ∧ 𝜎
′ satisfy Preds ∧ 𝜎 ⊆ 𝜎 ′ then

13: return v𝑚 with the subtree v∗𝑚 replaced by 𝜎 ′(tpost)

14: return ⊥

Predictions Using Edit Sequence Patterns First, we discuss how an ESP can be used for pre-
dicting the next change in Algorithm 3. As input, it takes an ESP ⟨TS, Preds⟩ and a trace v0 . . . v𝑚 .
Algorithm 3 will first match a developer’s edits against a prefix of a learned ESP (Lines 1-2) and
use the next edit template in the ESP to predict the change the developer is going to make next
(Lines 3-8).

Remark 6.1. In our implementation, instead of brute-force enumeration at Lines 1-2, we enumer-
ate all matched edit sequences by prefixes of an ESP in polynomial time. We do this by matching
edits on a deterministic finite automaton generated from the ESP. Also, note that we require the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

Overwatch: Learning Patterns in Code Edit Sequences 139:17

substitution 𝜎 to be unique to avoid over-generalization. Notice that we only let an ESP generate its
first prediction for a trace in Algorithm 3. However, we recorded all predictions that can be made
by an ESP in our evaluation and found that no ESP had made multiple predictions for a trace.

Remark 6.2. In our evaluation, we provide the cursor location information to Predict in Algo-
rithm 3 such that we only need to enumerate subtrees v∗𝑚 that contain the cursor location of the
user to make more precise predictions. We predict one single edit at a time because this evaluation
methodology precisely corresponds to how the ESPs are deployed. In practice, the fact that the
user navigated the cursor to the location for the next edit is (a) a confirmation that the prediction
is likely to be correct and (b) ensures that we do not interrupt the user’s workflow.

For each ESP, there are three outcomes at each version v𝑚 : (1) the pattern does not predict, i.e.,
returns ⊥, (2) correct prediction, the pattern predicts v̂ that is equal to v𝑙 , 𝑙 > 𝑚 in the later sessions,
and (3) otherwise, we consider the pattern makes a wrong prediction.
Ranking and Selecting Edit Sequence Patterns. From Section 5, we get a set of ESPs Patterns.
Let edSeqs be the union of all edit sequences in the specifications generated in Section 4. Patterns
may contain noisy ESPs that have high precision on the edit sequences in its own specification,
but low precision when evaluated on all version data. Thus, we try to solve the following problem:
select and rank a subset of Patterns such that we maximize the correctly predicted versions and
minimize the wrongly predicted versions. Algorithm 4 depicts the procedure for this.

Algorithm 4 The procedure of ranking edit sequence patterns (FilterAndSelect in Algorithm 1)

Require: A list of edit sequence patterns Patterns
Require: Input traces Traces
Require: Edit sequences EditSeqs
Require: Precision thresholds threshold1, threshold2
Ensure: A ranked list of edit sequence patterns Patterns
1: function FilterAndSelect

2: Patterns← GreedySelect(Patterns, EditSeqs, threshold1)
3: Patterns← GreedySelect(Patterns, Traces, threshold2)
4: return Patterns

5: function GreedySelect(Patterns, Data, threshold)
6: SelectPatterns← [],Uncovered← Data
7: for all 𝑝𝑖 ∈ Patterns do
8: correcti, incorrecti ← Evaluate(𝑝𝑖 ,Data)

9: Patterns← {𝑝𝑖 |
correcti

correcti+incorrecti
> threshold}

10: while Patterns ≠ ∅ ∧ Uncovered ≠ ∅ do

11: 𝑝 ← argmax𝑝𝑖 ∈Patternscorrecti − incorrecti
12: Patterns← Patterns − {𝑝}
13: SelectPatterns← SelectPatterns + [𝑝]
14: Uncovered← Uncovered − {data points covered by 𝑝}

15: Update all correcti and incorrecti according to Uncovered

16: return SelectPatterns

The core component of Algorithm 4 is the GreedySelect procedure. The procedure takes as
input a set of patterns Patterns and traces Data and produces a ranked subset of patterns based on
their predictive performance. Intuitively, GreedySelect works similar to the approximate set-cover
algorithm. We call each version in a trace in Data a data point. The procedure maintains a partial
list of selected patterns and a set Uncovered of data points on which no selected pattern has made
a prediction. We first measure the number of correct and incorrect predictions each pattern makes

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

139:18 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

on Data. With these count of correct and incorrect predictions, we then eliminate all patterns with
precision less than a given threshold. In each iteration of selection, (a) we update the partial list of
pattern with the best pattern as measured by the difference in the number of correct and incorrect
predictions, and (b) we remove the set of datapoints on which the best pattern made predictions
from Uncovered and update all correcti and incorrecti accordingly.

Algorithm 4 calls GreedySelect twice in two phases. In the first, we only consider the predictive
power of each pattern on the set edSeqs. Then, in the second step, we select and rank based on the
full training data, i.e., the input Traces. Ideally, we only need the second step at line 3 because the
precision on traces reflects the effectiveness of ESPs in real scenarios. However, we add the first
step of filtering to reduce the number of patterns evaluated in the second step because performing
GreedySelect over traces on all patterns is very expensive. We find the first step is able to filter out
most of the patterns, speeding up the second step by a large degree.

7 EVALUATION

In this section, we present our evaluation to address the following research questions:
• RQ1: How effective is Overwatch at predicting edit sequences performed in the IDE?
• RQ2: What kind of ESPs are learned by Overwatch?
• RQ3: How do different components of Overwatch compare to state-of-the-art techniques?

7.1 Data Collection

We developed a Visual Studio extension to record all syntactically correct versions of the documents
updated by the developer (in the background, without interruption). We selected Visual Studio as
the target IDE in this study as it is the most popular IDE for C#. We contacted 12 professional
software developers from a large software company who agreed to use the extension and participate
in the study. They were working on four separate C# code bases with a total of 377.5K source lines
of code. Initially, we recorded 682 development sessions (� 250 hours) containing 134, 545 versions
of 425 documents, which we refer to as training dataset. After 6 months, we collected an additional
399 sessions (containing 201, 142 versions), which we refer to as test dataset.

7.2 RQ1: Effectiveness of Overwatch

7.2.1 Experimental Setup. Overwatch requires a few runtime parameters : (a) The maximum
length 𝑛 of the sequences, (b) minimum support for the edit sequences 𝑠 (Section 4), (c) thresholds
threshold1 and threshold2 for selecting patterns based on the sketch and session analysis, respec-
tively (Section 5). We found n = 3 to be the sweet spot for learning useful patterns and chose s =

2 for the support so that we have at least two examples for each pattern. For larger 𝑛, Overwatch
will generate overly general patterns with unbound holes, i.e., holes for which values cannot be
predicted using the predicates learned. We study the effect of varying the values of threshold1 and
threshold2 in the experiments.
To answer RQ1, we (a) perform a 5-fold validation over our training dataset and (b) simulate

the learned patterns from the training dataset on our test dataset containing unseen development
sessions. To perform the 5-fold validation, we randomly split 682 training sessions into 5 equal
folds and for each fold, we evaluate the ESPs that were learned from the other 4 folds. We repeat the
5-fold validation varying threshold1, threshold2 ∈ [0, 1] by steps of 0.1. Using the best threshold
values found (as measured by the 𝐹3 metric defined below), we evaluate the ESPs learned from the
full training dataset on the test dataset.
For each ESP and version v in the dataset, we follow Algorithm 3 to predict the next version,

i.e., to produce a code edit suggestion. We compute the precision of the code edit suggestions
as the proportion of the total suggestions that are correct (see Section 6). To compute recall, we

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

Overwatch: Learning Patterns in Code Edit Sequences 139:19

Table 1. Precision and relative recall of Overwatch sorted by 5-fold Validation 𝐹3 scores

Threshold1 Threshold2

5-fold Validation (average) Test Set Evaluation

Precision Recall𝑟𝑒𝑙 F3 Precision Recall𝑟𝑒𝑙 F3 #Correct

(in %) (in %) (in %) (in %) (in %) (in %)

0.7 0.8 79.47 40.73 72.57 78.38 36.25 70.22 145

0.6 0.7 76.07 49.75 72.25 70.93 40.25 65.90 161

0.6 0.8 78.47 41.46 72.04 77.42 36.00 70.22 144

0.8 0.8 78.38 41.35 71.94 82.65 40.50 74.86 162

0.5 0.8 78.15 40.08 71.37 74.29 32.50 65.82 130

Baseline (0, 0) 49.23 100 51.86 38.17 100 40.68 400

need an oracle containing all the predictions expected from Overwatch. However, these expected
predictions (ground truth) are not easy to generate automatically. Overwatch is designed to infer
ESPs corresponding to patterns in developer’s editing behaviourÐsome of these patterns are not
known and do not correspond to any known refactoring or automated tool in any IDE. Furthermore,
it is not feasible to construct such an oracle by manual annotation because of scaleÐour dataset
consists of hundreds of thousands of fine-grained edits. Instead, for our experiments, we define
our baseline as the number of correct suggestions we get when using Overwatch in its most
general setting with threshold1 = 0 and threshold2 = 0 values in Algorithm 4. Using this baseline,
we define relative recall (recall𝑟𝑒𝑙) as the ratio of correct predictions Overwatch produces at a
given configuration with respect to the baseline. For example, if the baseline makes 400 correct
predictions and Overwatch with a new configuration threshold1 = 0.7 and threshold2 = 0.8

makes 145 correct predictions, the relative recall of Overwatch with the new configuration is
Recall𝑟𝑒𝑙 = 145/400 = 36.25%.
To consolidate the precision and recall metric into a single score, we make use of a variation of

the popular 𝐹𝛽 metric [Chinchor 1992; van Rijsbergen 1979]. Here, we use 𝐹𝛾 given by:

𝐹𝛾 =
(1 + 𝛾2) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙𝑟𝑒𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝛾2𝑟𝑒𝑐𝑎𝑙𝑙𝑟𝑒𝑙
(1)

Note that this definition is equivalent to the definition of 𝐹𝛽 with 𝛽 set to 1

𝛾
and the recall term

replaced by relative recall. The 𝛾 parameter allows us to choose the relative emphasis we put on
the precision term compared to recall term, with precision given 𝛾 times more importance over
recall [van Rijsbergen 1979]. For our evaluation, we make use of 𝐹𝛾=3 to give precision 3 times more
importance than recall𝑟𝑒𝑙 . We chose to increase the emphasis on precision because of two reasons:
(a) Reliability is one of main causes of disuse of automated refactorings in IDEs [Vakilian et al.
2012], so tool builders tend to favor precision over recall. (b) The use of recall𝑟𝑒𝑙 instead of recall
tend to introduce a bias towards recall because recall𝑟𝑒𝑙 will be higher than ground-truth recall.

For notational simplicity we use 𝐹3 instead of 𝐹𝛾=3 to refer to this metric in the rest of the paper.

7.2.2 Results. Table 1 summarizes the precision, relative recall and 𝐹3 statistics for the top-5
threshold configurations for both the 5-fold validation and the test set evaluation. In the bottom
row, we also report the statistics for the baseline configuration used to calculate relative recall. The
baseline configuration made 1048 predictions over the full test set out of which 400 were correct.
Among the top-5 configurations, Overwatch’s precision on the test set ranged from 70.93% to
82.65% compared to baseline’s 38.17%, their relative recall ranged from 32.25% to 40.25% compared
to Baseline’s 100%, and their 𝐹3 ranged from 65.82% to 74.86% compared to Baseline’s 40.68%. The
best configuration on 5-fold validation set uses threshold1 = 0.7 and threshold2 = 0.8 and achieves
78.38% precision, 36.25% relative recall, and 70.22% 𝐹3 on the test set evaluation. We also present
the number of correct predictions on the test set in the last column of Table 1.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

139:20 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

Comparing the statistics for 5-fold validation and test set evaluation, we observe high parallels
in terms of the precision and relative recall, hinting towards a degree of domain-invariance in the
learned patterns as the train dataset and test dataset were collected more than 6 months apart.

The effectiveness of Overwatch has a degree of domain-invariance and the best configuration
on 5-fold validation achieves 78.38% precision, 36.25% relative recall, and 70.22% 𝐹3 on the test
set evaluation.

7.3 RQ2: Nature of learned ESPs

7.3.1 Experimental Setup. To answer RQ2, we manually analyzed the ESPs learned by Overwatch
using the best threshold parameters found from the RQ1 study. Two authors, each with more than
5 years of professional development in C#, coded these ESPs using established guidelines from the
literature [Campbell et al. 2013; Saldana 2009]. They first iteratively refined the code set on 20%
of the patterns. Then, using this code set, they independently coded another 20% of the patterns.
We then use Cohen’s kappa to calculate inter-rater reliability. Their inter-rater reliability was 0.95,
which shows a high agreement between the two raters. We then split the rest of the patterns into
two sets, and they independently coded each set. We detail each code set in RQ2.

7.3.2 Results. Next, we present the results of our qualitative analysis.
Categorizing ESPs. Fixing the best configuration (threshold1 = 0.7 and threshold2 = 0.8) from
the previous study, Overwatch learned 135 edit sequence patterns. We classified these patterns
into four categories using the coding methodology from Section 7.3.1, as shown in Table 2.
• Workflows.We classified 25.9% of the ESP asWorkflow, which consists of an ESP that describe
the workflow of a developer performing a particular high-level task. For instance, to rename
a variable, the developer first renames the variable in the declaration, and then renames each
one of the variable uses. Each step of the workflow is represented as an edit template in the
ESP. The ESP detects the step that the developer is in the task, and predicts the next steps to
finish it.
• Repeats. 27.5% of the ESP were classified as Repeat, which consists of ESP that represent a
developer performing a single task multiple times. For instance, a developer performs an
edit to remove the qualifier łthisž from multiple parts of the code. The ESP detects that the
developer performed the edit in one location and when they move to another similar location,
the ESP predicts the change.
• Transients and Noise. Finally, we identified two categories of ESP that are not useful: Transient
and Noise. The former (13%) relates to edits that are too fine-grained, such as inserting
publicclass and then changing to public class. The latter (33.6%) relates to changes that
do not represent a high-level task, such as adding a specific switch statement and then adding
a break statement.

After removing noisy ESPs and accounting for ESPs that are variations of a single type of refactoring,
we get 51 unique pattern types. The list of these 51 pattern types is shown in supplementary material.
Relating ESPs to IDE features.We further sub-classified the Workflow and Repeat ESPs into two
categories: Existing Feature and New Feature. Table 3 presents a list of 20 learned ESPs, 10 existing
features and 10 new features. In the first category, we include ESPs that have a corresponding
automated tool or refactoring implemented in the IDE, which allows the IDE to automate the
complete edit in one step using just the spatial context. Existing Feature ESPs correspond to 53%
and 39% of the Workflow and Repeat ESPs, respectively. The New Feature category includes ESPs
for which we did not find a corresponding IDE feature. For instance, ESP 9 is the inverse of ESP 6,
Instead of adding a property and its corresponding parameter, the developers removes the property

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

Overwatch: Learning Patterns in Code Edit Sequences 139:21

Table 2. Categories of Edit Sequence Patterns

Id Category Description Examples %

1 Workflow A pattern that represents the workflow that a devel-
oper performs to complete a task. Each edit in the
edit sequence represent a step that the developer took.
The temporal context is used to detect the previous
steps that the developer performed and predict the
remaining ones.

(i) Developer changes the name of a variable in its dec-
laration and then renames each one of the references
(rename variable);
(ii) Developer changes the type of a variable in the
left-hand side of an assignment and then changes the
name of the constructor in the right-hand side of the
assignment.

25.9

2 Repeat A pattern that represents a developer performing the
same task multiple times. All edits in the sequence
have the same edit template. The temporal context
predicts that the developer will perform the task
again.

(i) A developer deletes the keyword this from multi-
ple locations in a class (Remove this);
(ii) Developer replaces a static method invocation with
a virtual method invocation in multiple locations.

27.5

3 Transient The sequence represented is too fine-grained to be
considered useful.

(i) Developer inserts i, then changes to i++;
(ii) Developer writes łpublicclassž then changes to
łpublic classž

13.0

4 Noise We could not identify a high-level task for this pat-
tern.

(i) Developer creates a switch statement with a specific
case, and then adds a break statement;
(ii) developer cuts and pastes a statement.

33.6

and the parameter. Note that this pattern shows that developers perform changes in a non-standard
wayÐthe ESP first deletes the parameter, then the assignment, and finally the property.
Analyzing Existing Feature ESPs. We discuss existing feature ESPs in detail here as they are
closely connected to our motivation of addressing the late-awareness and discoverability problems.
Overwatch learns existing feature ESPs only because developers manually performed these edits,
which created a trace of fine-grained edits, instead of using the IDE tool support, which would
lead to a single, larger edit. For instance, ESP 4 represents the edit sequence shown in Figure 7.
The complete edit is automated in one step by Visual Studio (Delete Parameter) using the spatial
context. To apply this refactoring, the developer needs to put the cursor on the parameter list, then
click on the Quick Actions pop-up (the screwdriver icon on the left side of the text pane) select
łChange signature...ž among all the code edit options, and then select the parameter to delete. To
apply this refactoring, not only does the developer need to be aware of this tool, but also needs to
use the tool before making any changes manually. If the developer starts by deleting the parameter
from the parameter list, Visual Studio will not generate a suggestion to finish the edit sequence by
deleting the corresponding arguments. Meanwhile, ESP 4 uses the fact that the developer manually
deleted the parameter to predict that the developer will delete the corresponding argumentśthe
developer can use a tool based on ESP 4 even if they have already started making changes.
These results suggest that IDE features were under used, in congruence with the observation

made by Ge et al. [2012]. They point to the fact that these tools are hard to discover (discoverability
issue) and even when they are discoverable, developers do not realize the possibility of using it
at the time when that suggestion is available (late-awareness). Overwatch can alleviate these
problems by producing code edit suggestions using the learned ESPs as shown in Figure 1b, while
the developer is editing (see the discussion section).

Our qualitative analysis shows that ESPs can be used not only to complete edits when developers
typically miss the opportunity to use the IDE tool support but also to predict edits based on new
patterns that have no tool support at all.

7.4 RQ3: Comparison to state-of-the-art

To our knowledge, there is no other technique or tool that addresses the problem of learning ESPs.
However, we compare Overwatch to two related state-of-the-art techniques: C3PO [Brody et al.
2020] and Blue-Pencil [Miltner et al. 2019].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

139:22 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

Table 3. Sample of 20 Edit Sequence Patterns Learned by Overwatch

Category Id Pattern Description Related Feature

Workflow

1 Rename method decl→ Rename method calls Rename Method

2 Insert variable decl→ Replace constants with new variable Introduce Local Variable

3 Insert parameter→ Insert argument to callsites Insert parameter

4 Delete parameter→ Delete argument from callsites Delete parameter

5 Replace variable declaration by assignment→ Insert new field Promote local variable to field

6 Insert Property→ Insert Parameter→ Insert Assignment Initialize property

7 Insert expression→ Replace it by assignment Introduce variable

8 Change type in variable decl→ Change constructor name in initializer New Feature

9 Delete parameter→ Delete assignment→ Delete property New Feature

10 Insert parameter with default value→ Replace constants with parameter New Feature

11 Delete field→ Delete assignment New Feature

12 Insert argument to callsite→ Remove default parameter value New Feature

13 Insert variable declaration→ Insert new variable as argument New Feature

14 Insert return statement→ Delete throw "NotImplementedException" New Feature

Repeat

15 Remove ‘this’ in multiple locations Remove unnecessary qualifier łthisž

16 Remove ‘cast’ in multiple locations Remove unnecessary cast

17 Change from qualified name to simple name Simplify Name Access

18 Converting static method calls to virtual in multiple locations New Feature

19 Remove a method invocation from many locations New Feature

20 Replace an expression by a method invocation New Feature

7.4.1 Comparison with C3PO. Recently researchers Brody et al. [2020] addressed the problem of
predicting the (next) edit that could be applied to a code snippet, given a previously applied edit to
the same code snippet. As input, C3PO requires a code snippet and a series of edits as input. On the
other hand, Overwatch takes as input a code snippet and is a series of source file version that
were produced during a development session in a IDE. As a sub-goal, Overwatch summarizes the
series of source code files into edit sequences of appropriate granularity. Moreover the series of
edits that C3PO accepts as input, have to be such that they were applied in spatially proximity of
the location where the prediction is made. On the other hand, Overwatch has no such limitation
(as seen from our motivating example - Figure 4).

While the Overwatch and C3PO are not directly comparable, it would be interesting to evaluate
how C3PO performs on our dataset of fine grained edit sequences. This would give us insight into
the applicability of such deep learning techniques at edit sequence completion tasks in an IDE
setting. Therefore, we evaluate C3PO’s effectiveness at predicting the next edit in the edit sequences
generated in the sketch-and-specification generation step of Overwatch (Algorithm 1 - line 6).
From each edit sequence ed1 . . . ed𝑛ed𝑛+1 in a specification, we can create an input to C3PO using
the location of the edit ed𝑛+1 as the code snippet and ed1 . . . ed𝑛 as the edits, and test if C3PO can
predict ed𝑛+1. Note that this is unlike the original setup for C3PO, as ed1 . . . ed𝑛 are on different
locations than the location of the code snippet where the prediction is to be made.

Dataset. Running the sketch-and-specification generation on the training and test datasets shown
in Section 7.1, we end up with 9958 and 13532 edit sequencesÐwe call these the edit sequence
training and test datasets, respectively.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

Overwatch: Learning Patterns in Code Edit Sequences 139:23

Experimental Setup. To perform this evaluation, we used open source codebase of C3PO, with
suitable adjustments for ingesting overwatch data1. For training and evaluation, we use the exact
scripts provided by the C3PO authors. In the first step, the script preprocesses the dataset to remove
edit sequences that are not supported by the model. In our dataset, C3PO cannot handle most of
the edit sequences of the edit sequence training and test sets. Most importantly, it cannot deal
with generative insertions, i.e., edits where new code that is not present in the input code snippet is
inserted (82% of the training data). This is because the edit representation that C3PO uses internally
to create edit predictions does not account for such changes. For example, it cannot handle edits
related to the ESP Insert-Property-Parameter-Assignment from Section 2. Further, C3PO is also
limited by: (a) the size of the edits (originally edits of at most 50 AST nodes, which we increased to
100); (b) other edits not being expressible in their edit representation in [Brody et al. 2020]; and
(c) in a small fraction of the cases, C3PO’s parser rejecting valid C# code that the official C# parser
accepts2. After filtering out all edit sequences containing edits that C3PO cannot handle, we are
left with only 453 and 314 edit sequences in the training and test edit sequence sets, respectively.

We ran experiments with 3 different configurations of C3PO: (1) C3PO(a) trained on the original
training data from [Brody et al. 2020]; (2) C3PO(b) trained on the training edit sequence data;
(3) C3PO(c) trained on the original training data from [Brody et al. 2020] and fine-tuned using the
training edit sequence data.

Results. Among the C3PO configurations, C3PO(c) performs the best, producing correct predictions
on 32 of the 314 test sequences, giving us an accuracy of 10.5%. C3PO(a) and C3PO(b) have an
accuracy of 0.3% and 7.3%, respectively.
The results for C3PO(a) suggest that edit sequences extracted from commits (C3PO’s original

training data) may not represent the same edit sequences performed by developers in the IDE. Each
edit sequence extracted from commits contained only edits spatially close in the file. Meanwhile,
our dataset contains temporal sequences of edits applied by developers in the IDE, and thus, may
contain non-local edits or other edits that are overwritten by the time the developer commits the
code to the repository. While C3PO’s performance drastically increases when we use our training
data, the overall performance is still low. We believe that the fact that C3PO was not able to handle
most of our data due to generative inserts, using only use 453 examples from our training data, is
the main reason for that. Collecting more data may thus improve the accuracy of the model.

Additionally, extending the C3PO model to support generative insertions where the new code is
not presented in the input code snippet but exists in one of the previous edits would allow C3PO to
copy temporal information from previous edits similar to Overwatch. Investigating this direction,
as well as exploring ways to combine the neural edit-completion model with symbolic techniques,
are important directions for future work.

7.4.2 Comparison to Blue-Pencil. Blue-Pencil is a program synthesis based technique for producing
repetitive edit suggestions in an IDE. As a developer is programming in an IDE, Blue-Pencil
(a) observes the developer’s changes, (b) synthesizes suggestion programs using repetitive edits
that the developer is making as input-output examples, and (c) runs these suggestion programs
to make suggestions at other similar locations in the code. Blue-Pencil is intended to be used in
an online manner, i.e., only the developer’s edits in the current session are used for learning; in
contrast, Overwatch learns patterns offline over historical data. The suggestion programs learned
by Blue-Pencil are meant to capture similar editing patterns as ESPs of the form et∗, i.e., a single
repetitive edit template, produced by Overwatch. To compare Overwatch with Blue-Pencil, we

1https://github.com/purug2000/TemporalC3PO
2https://github.com/dotnet/roslyn

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

https://github.com/purug2000/TemporalC3PO
https://github.com/dotnet/roslyn

139:24 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

run Blue-Pencil in an offline manner similar to Overwatch, learning suggestion programs from
historical training data and testing them on a different test dataset.

Experimental Setup. We reuse the training dataset and test datasets consisting of 134,545 and
201,142 versions, respectively. One important hyper-parameter for Blue-Pencil is the DAG size, the
size of the history over which Blue-Pencil looks for repetitive edits. Intuitively, with small DAG
sizes, Blue-Pencil only searches for repetitive edit programs where the example edit instances are
temporally close to each other in the training data, while they are allowed to be further apart for
large DAG sizes. Given that Overwatch can handle patterns where the example instances come
from anywhere in the training data, we leave the DAG size unbounded for our experiments.

Results. From the 135𝐾 versions of the training set, Blue-Pencil learned 587 unique suggestion
programs. These 587 programs produced suggestions at 30,683 locations in the 201k versions of
the test set of which only 177 were correct, leading to an extremely poor precision of 0.58%. In
contrast, the ESPs of the form et∗ produced by Overwatch produced suggestions at 111 locations
over the test set of which 86 were correct (precision = 77.48%). We also examined Blue-Pencil’s
per-program distribution of the number of suggestions and their precision. We found that 508
suggestion programs produced no suggestions at all on the test dataset. Of the 79 programs that did
produce suggestions, 53 had a precision of 0, i.e., they did not produce a single correct suggestion.
Overall, only 7 patterns had a precision of greater than 50%. Hence, most suggestion programs
produced by Blue-Pencil either overfit the training data and do not produce any suggestions on the
test data or produce too many incorrect, spurious suggestions on the test data. We found 2 main
reasons for the poor performance of Blue-Pencil in this experiment.
Abstraction level of learned programs. Overwatch works at a higher level of abstraction than

Blue-Pencil since the later completes a specific task that a user is doing, while the former learns
patterns of common tasks that users perform in general. As such, ESPs and suggestion programs
are defined at different levels of abstraction. For example, a Blue-Pencil suggestion program can
express a specific renaming the user may be doing (say renaming method m1 to m2), but cannot
express the renaming task pattern in general. However, an ESP can capture the general renaming
workflow that can produce suggestions whether a developer is renaming m1 to m2 or m3 to m4: it uses
the temporal context to capture the information that the developer is doing a particular rename in
the substitution and can then produce suggestions for that particular renaming task. The specific
programs that are learned by Blue-Pencil are unlikely to be useful beyond the current development
session. For example, the program the renames m1 to m2 will not produce any suggestions if the
test data does not contain code referring to the specific method m1. This is the reason that a vast
majority (508) of the suggestion programs learned by Blue-Pencil in the experiment do not produce
any suggestions at all.

Clustering and Filtering Techniques. Blue-Pencil selects programs by (i) filtering out programs that
have low score according to a set of heuristics and (ii) selecting the remaining programs in the least
colorful path of the DAG where these programs are stored. The least colorful path, in this context,
is a path that uses the fewest programs to represent all the edits performed by the developers. By
doing so, Blue-Pencil favors programs that are more general and thus can represent more edits
over multiple, more specific, programs that cover only a subset of the edits. We noticed that this
ranking and filtering approach led Blue-Pencil to synthesize many over-generalized suggestion
programs. Most of the 53 of 79 Blue-Pencil programs that produce only incorrect suggestions
fall into this categoryÐthey over generalize repetitive edits from different parts of the training
data and Blue-Pencil fails to eliminate them during the filtering step. The Blue-Pencil approach
works well for the online scenario (see Miltner et al. [2019]), where there are few examples and the
technique needs to generalize fast but not for the offline scenario where the high number of edits

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

Overwatch: Learning Patterns in Code Edit Sequences 139:25

leads to many incorrect clusters and over-generalization. Instead, Overwatch uses Agglomerative
Hierarchical Clustering, which has the advantage of producing a hierarchy of clusters from the
most specific to the more general ones, and ranks the ESPs based on their accuracy.

For example, our training dataset contained multiple sessions where developers delete multiple
throw statements. Blue-Pencil clustered these edits with other delete statement edits, which led
to an overgeneralized program that deletes any statement. Meanwhile, one of the clusters in the
cluster hierarchy produced by Overwatch contained only the examples of deleting the throw

statements. This cluster produced an ESP with a higher accuracy, given that the ESP only suggested
to delete a throw statement if the developer had just deleted another one before that.

Overwatch outperforms both C3PO and Blue-Pencil in our experiments. C3PO does not support
generative insertions thus rendering it incapable of handling 82% of our dataset, while Blue-Pencil
fails to synthesize transformations at the right level of abstraction in an offline setting.

8 DISCUSSION

Our empirical study shows that Overwatch could benefit developers by predicting edits based on
the temporal context. Overwatch uses temporal context to predict the next edit following the
user’s workflow using learned ESPs, rather than the developer having to invoke existing refactoring
tools manually. This avoids to discoverability and late awareness problems discussed in Section 1.
We implemented four ESPs to add temporal context for two existing refactorings in Visual Studio3Ð
now, these refactorings are provided as suggestions in the developer’s workflowwhen the developer
starts performing these refactorings manually. Although these refactoring features existed before,
we observed a 4x increase in the number of users using the tool to complete these tasks.

Overwatch synthesizes patterns from previous data and avoids the manual implementation of
these patterns. It took us almost 800 lines of code and several iterations to get four patterns correct
because of many entry points and corner cases. If we consider all the existing refactorings (>100
in Visual Studio) and all the different ways developers can perform each one of them, manually
writing these patterns will not scale. Overwatch provides a way of avoiding this manual work.

8.1 Limitations

Our qualitative analysis revealed some limitations of Overwatch. First, we observed that some
ESPs could be represented as a single more general ESP, which happened when two sketches could
be generalized into a single sketch. A possible solution for this problem is to try to merge the
top-ranked ESPs of each sketch in a second round of hierarchical clustering, filtering, and selection.
Additionally, we identified several transient and noisy ESPs. While only 13% of the ESPs were

considered transient, and this number can be reduced by implementing a few heuristics based on
these patterns, noisy ESPs represented 33.6% of the patterns. We observed that many of these noisy
ESPs were related to patterns that were too specific, which would not produce false positives, but
also would not likely trigger on other codebases. This problem can be alleviated with more data
and a higher threshold for the support of each edge in the quotient graph (we used support = 2).
Finally, our ranking step (Section 6) will filter out ESPs with unbounded holes that cannot be

filled by hole predicates because these ESPs will have zero precision. For example, our approach
will filter out the ESP when user copies a property declaration and then tries to update the name
of the copied property (v6 → v7 → v8 in Figure 3) because we do not know what will be the new
name of the property. To make these ESPs with unbound holes usable, a human-in-the-loop setup
where the user could concretize these unbounded holes is a viable solution. Additionally, we rank

3https://devblogs.microsoft.com/visualstudio/just-in-time-refactoring-intellicode-suggestions/

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

https://devblogs.microsoft.com/visualstudio/just-in-time-refactoring-intellicode-suggestions/

139:26 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

our ESPs using their performance on the training dataset. However, we could rank them adaptively
every time when making a prediction given the context of the code. We foresee that combining
large language models with our ESPs will be a fruitful research direction because the language
models can help fill in unbounded holes in ESPs and rank ESPs adaptively for each prediction.

8.2 Threats to validity

Construct Validity.We measured precision by checking if the edit predicted by Overwatch leads to
the exact same code of a subsequent version. Some correct predictions, however, may lead to code
that is similar but not exact the same. If the prediction adds a property to the beginning of the class
but the developer ended up ending it somewhere in the middle, we will classify the prediction as a
false positive, even though both edits are semantically equivalent. Therefore, our false positives
may contain some true positives.
Internal Validity. The choice of some parameters used in our evaluation may impact the results. To
reduce the bias on the choice of parameters, we performed a cross-validation to select the parameters
(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2) that would impact the most on the precision of Overwatch.
External Validity. Overwatch learned ESPs from 682 code development sessions from 12 Visual
Studio users (developers) that worked on 4 separate C# code bases. While our results suggest
that the ESPs generalize to other datasets, such as our test dataset collected several months after
the training dataset, these ESPs might not generalize to other IDEs or programming languages.
Nevertheless, we identified several ESPs that have corresponding features in the IDE, and the
proposed technique is independent of programming languages.
Verifiability. Our dataset is not publicly available due to a non-disclosure agreement with our
participants.

9 RELATED WORK

Our work distinguishes itself from existing work by simultaneously learning (i) the edits from
code development sessions in IDEs, and (ii) the temporal relation between the edits. Existing work
on edit patterns is mostly focused on coarse-grained edits, whereas existing work on edit sequence
patterns is limited in the scope of edits it considers.
Learning Edit Patterns from Commits Previous researchers have proposed a plethora of tech-
niques that learn edits patterns from the coarse commit level changes. de Sousa et al. [2021]
proposed a technique that infers code change pattern as rewrite rules (not specific fixes, or bugs)
using anti-unification and a greedy algorithm for clustering. Similarly, Bader et al. [2019] proposed a
technique (Getafix) to learn bug fix patterns using anti-unification. They presented a novel hierar-
chical, agglomerative clustering algorithm to cluster the examples. Getafix then applies an effective
ranking technique that uses three metrics to produce a small and appropriate number of fixes for
a given bug. Getafix inspires our design of the algorithms synthesizing edit sequence patterns,
including anti-unification and the hierarchical clustering algorithm. However, Overwatch learns
edit sequence patterns (not just an edit template) from fine-grained code development sessions
instead of commit level data.

Recently, Ketkar et al. [2022] proposed TCI-Infer that learns the rewrite rules to perform type
changes from the type changes identified by RefactoringMiner[Tsantalis et al. 2020] in the commit
level history of Java projects. Similarly, A3 [Lamothe et al. 2020] and MEditor [Xu et al. 2019] infer
the adaptations required to perform library migration by analyzing the changed control/data flow
across the commit. Kim et al. [2013] proposed a syntactic approach to automatically discover and
represent systematic changes as logic rules with the goal to enhance developer’s understanding
about the program’s evolution. Previously, Meng et al. [2011, 2013]; Ray et al. [2012] proposed
techniques to perform systematic code changes by creating a context-aware edit script, finding

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

Overwatch: Learning Patterns in Code Edit Sequences 139:27

potential locations and transforming the code. Andersen and Lawall [2008] propose a technique
that generates generic patches from a set of files and their updated versions and applies these to
other files. Yin et al. [2019] propose a model that combines neural encoder with edit encoder, to
express salient information of an edit and can be used to apply the edit. In contrast, Overwatch
learns sequences of edit patterns (as opposed to a single edit) that developers often apply while
performing their daily code development activities in an IDE. Blue-Pencil [Miltner et al. 2019]
identifies repetitive changes, and automatically suggests similar repetitive edits. However, all these
techniques either focus on a specific kind of edit or operate on coarse-grained VCS data which is
imprecise, incomplete and makes it impossible to involve the temporal aspect [Negara et al. 2012].
Learning Edit Patterns from Sequence of Changes.Mesbah et al. [2019] propose DeepDelta
to automatically suggest code fix for the common classes of build-time compilation failures. They
encode the human-authored, in-progress changes into a domain-specific language and feed them to
a neural machine translation network along with the compiler diagnostic. In contrast, Overwatch
operates over finer IDE level sequences of code changes to learn the sequences of edits performed
for a large variety of daily code development activities, not limited to compilation error fixes.
Previously Negara et al. [2014] proposed a technique to detect high-level code change patterns from
the fine-grained sequences of edits recorded in the IDE. In contrast, Overwatch learns sequences
of executable edit templates that not only captures the high-level code change patterns but also the
different workflows or sequences of edits that were applied to perform the change.
Detecting Sequences of Edit Patterns. Previous researchers have also tackled the temporal aspect
of applying edits like Overwatch. [Foster et al. 2012; Ge et al. 2012] identified that discoverability
and late-awareness led to underuse of refactoring tools, and proposed the techniques Benefactor
and WitchDoctor to overcome it. The users of these technique have to manually encode the
sequence of edits that are applied to perform a larger refactoring. The authors conducted interviews
with software developers to manually recorded the sequences of edits they apply to perform a
refactoring. These tools detect when the user is performing a refactoring, and suggest a completion.
On the other hand Overwatch, automatically learns the sequence of edits that developers apply to
perform any high level programming task (beyond refactorings) from code development sessions.
Overwatch basically automates the entire pipeline proposed by Benefactor and WitchDoctor.

10 CONCLUSION

We introduce and tackle the problem of learning edit sequence patterns, with the aim of adding
temporal context into IDE edit suggestion tools. ESPs capture fine-grained details in developers’
editing behaviour, and can be used to address the two key challenges towards broader usage of IDE
edit suggestion toolsÐdiscoverability and late awareness. Our experiments show that Overwatch
can not only learn and automate editing patterns related to existing IDE tools, but also discover
new patterns! Besides being useful to automatically make edit suggestions in the IDE, we foresee
the ESPs being used by IDE toolsmiths to decide and prioritize what new features they should
develop in a data-driven manner.
ESPs and temporal context can help develop tools that are more accurate, and in turn, allow

for more aggressive presentation of suggestions with hand-raising interfaces like łgrey textž. We
are currently exploring the design space for these interfaces to determine the best way to present
different kinds of insert, delete, and update edit suggestions based on the IDE’s confidence in those
suggestions. With the advent of powerful pre-trained language models for source code has also
opened up the possibility of extending Overwatch to cover more general patterns with unbounded
holes. Overall, ESPs offer the possibility of developing a new generation of IDE tools and exploring
a rich and exciting set of ideas from a range of research fields from HCI to AI to static analysis.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

139:28 Zhang, Bajpai, Gupta, Ketkar, Allamanis, Barik, Gulwani, Radhakrishna, Raza, Soares, Tiwari

REFERENCES

J. Andersen and J. L. Lawall. 2008. Generic Patch Inference. In Proceedings of the 2008 23rd IEEE/ACM International Conference

on Automated Software Engineering (ASE ’08). IEEE Computer Society, USA, 337ś346. https://doi.org/10.1109/ASE.2008.44

Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix: Learning to Fix Bugs Automatically. Proc.

ACM Program. Lang. 3, OOPSLA, Article 159 (Oct. 2019), 27 pages. https://doi.org/10.1145/3360585

R. Bloem, H. N. Gabow, and F. Somenzi. 2006. An algorithm for strongly connected component analysis in n log n symbolic

steps. Formal Methods in System Design 28, 1 (2006), 37ś56.

Shaked Brody, Uri Alon, and Eran Yahav. 2020. A structural model for contextual code changes. Proc. ACM Program. Lang. 4,

OOPSLA (2020), 215:1ś215:28. https://doi.org/10.1145/3428283

John L. Campbell, Charles Quincy, Jordan Osserman, and Ove K. Pedersen. 2013. Coding In-depth Semistructured Interviews.

Sociological Methods & Research 42, 3 (2013), 294ś320. https://doi.org/10.1177/0049124113500475

Nancy Chinchor. 1992. MUC-4 Evaluation Metrics. In Proceedings of the 4th Conference on Message Understanding (McLean,

Virginia) (MUC4 ’92). Association for Computational Linguistics, USA, 22ś29. https://doi.org/10.3115/1072064.1072067

William HE Day and Herbert Edelsbrunner. 1984. Efficient algorithms for agglomerative hierarchical clustering methods.

Journal of classification 1, 1 (1984), 7ś24.

Reudismam Rolim de Sousa, Gustavo Soares, Rohit Gheyi, Titus Barik, and Loris D’Antoni. 2021. Learning Quick Fixes from

Code Repositories. In SBES ’21: 35th Brazilian Symposium on Software Engineering, Joinville, Santa Catarina, Brazil, 27

September 2021 - 1 October 2021, Cristiano D. Vasconcellos, Karina Girardi Roggia, Vanessa Collere, and Paulo Bousfield

(Eds.). ACM, 74ś83. https://doi.org/10.1145/3474624.3474650

S. R. Foster, W. G. Griswold, and S. Lerner. 2012. WitchDoctor: IDE support for real-time auto-completion of refactorings.

In 2012 34th International Conference on Software Engineering (ICSE). 222ś232. https://doi.org/10.1109/ICSE.2012.6227191

Xiang Gao, Shraddha Barke, Arjun Radhakrishna, Gustavo Soares, Sumit Gulwani, Alan Leung, Nachiappan Nagappan, and

Ashish Tiwari. 2020. Feedback-Driven Semi-Supervised Synthesis of Program Transformations. 4, OOPSLA, Article 219

(Nov. 2020), 30 pages. https://doi.org/10.1145/3428287

Xi Ge, Quinton L. DuBose, and Emerson Murphy-Hill. 2012. Reconciling Manual and Automatic Refactoring. In Proceedings

of the 34th International Conference on Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE Press, 211ś221.

JetBrains. 2021. ReSharper. (2021). At https://www.jetbrains.com/resharper/.

Ameya Ketkar, Oleg Smirnov, Nikolaos Tsantalis, Danny Dig, and Timofey Bryksin. 2022. Inferring and Applying Type

Changes. In 44th International Conference on Software Engineering (ICSE ’22) (Pittsburgh, United States) (ICSE ’22). ACM.

https://doi.org/10.1145/3510003.3510115

M. Kim, D. Notkin, D. Grossman, and G. Wilson. 2013. Identifying and Summarizing Systematic Code Changes via Rule

Inference. IEEE Transactions on Software Engineering 39, 1 (2013), 45ś62. https://doi.org/10.1109/TSE.2012.16

Maxime Lamothe, Weiyi Shang, and Tse-Hsun Peter Chen. 2020. A3: Assisting Android API Migrations Using Code Examples.

IEEE Transactions on Software Engineering (2020), 1ś1. https://doi.org/10.1109/TSE.2020.2988396

Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Sydit: creating and applying a program transformation from an

example. In SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-19) and

ESEC’11: 13th European Software Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011, Tibor Gyimóthy

and Andreas Zeller (Eds.). ACM, 440ś443. https://doi.org/10.1145/2025113.2025185

Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: Locating and Applying Systematic Edits by Learning from

Examples. In Proceedings of the 2013 International Conference on Software Engineering (San Francisco, CA, USA) (ICSE ’13).

IEEE Press, 502ś511.

Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian. 2019. DeepDelta: Learning to Repair

Compilation Errors. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing

Machinery, New York, NY, USA, 925ś936. https://doi.org/10.1145/3338906.3340455

Microsoft. 2021. Visual Studio. (2021). At https://www.visualstudio.com.

Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo Soares, Ashish Tiwari, and Abhishek

Udupa. 2019. On the Fly Synthesis of Edit Suggestions. Proc. ACM Program. Lang. 3, OOPSLA, Article 143 (Oct. 2019),

29 pages. https://doi.org/10.1145/3360569

Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2009. How We Refactor, and How We Know It. In Proceedings

of the 31st International Conference on Software Engineering (ICSE ’09). IEEE Computer Society, USA, 287ś297. https:

//doi.org/10.1109/ICSE.2009.5070529

Stas Negara, Mihai Codoban, Danny Dig, and Ralph E. Johnson. 2014. Mining Fine-Grained Code Changes to Detect Unknown

Change Patterns. In Proceedings of the 36th International Conference on Software Engineering (Hyderabad, India) (ICSE

2014). Association for Computing Machinery, New York, NY, USA, 803ś813. https://doi.org/10.1145/2568225.2568317

Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph E. Johnson, and Danny Dig. 2012. Is It Dangerous to Use Version Control

Histories to Study Source Code Evolution?. In Proceedings of the 26th European Conference on Object-Oriented Programming

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

https://doi.org/10.1109/ASE.2008.44
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3428283
https://doi.org/10.1177/0049124113500475
https://doi.org/10.3115/1072064.1072067
https://doi.org/10.1145/3474624.3474650
https://doi.org/10.1109/ICSE.2012.6227191
https://doi.org/10.1145/3428287
https://www.jetbrains.com/resharper/
https://doi.org/10.1145/3510003.3510115
https://doi.org/10.1109/TSE.2012.16
https://doi.org/10.1109/TSE.2020.2988396
https://doi.org/10.1145/2025113.2025185
https://doi.org/10.1145/3338906.3340455
https://www.visualstudio.com
https://doi.org/10.1145/3360569
https://doi.org/10.1109/ICSE.2009.5070529
https://doi.org/10.1109/ICSE.2009.5070529
https://doi.org/10.1145/2568225.2568317

Overwatch: Learning Patterns in Code Edit Sequences 139:29

(Beijing, China) (ECOOP’12). Springer-Verlag, Berlin, Heidelberg, 79ś103. https://doi.org/10.1007/978-3-642-31057-7_5

Gordon D. Plotkin. 1970. A Note on Inductive Generalization. Machine Intelligence 5 (1970), 153ś163.

Baishakhi Ray, Christopher Wiley, and Miryung Kim. 2012. REPERTOIRE: A Cross-System Porting Analysis Tool for Forked

Software Projects. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering (Cary, North Carolina) (FSE ’12). Association for Computing Machinery, New York, NY, USA, Article 8,

4 pages. https://doi.org/10.1145/2393596.2393603

Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn

Hartmann. 2017. Learning syntactic program transformations from examples. In 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE). IEEE, 404ś415.

J Saldana. 2009. The coding manual for qualitative researchers. https://doi.org/10.1108/QROM-08-2016-1408

Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2020. RefactoringMiner 2.0. IEEE Transactions on Software Engineering

(2020), 21 pages. https://doi.org/10.1109/TSE.2020.3007722

Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P. Bailey, and Ralph E. Johnson. 2012.

Use, disuse, and misuse of automated refactorings. In 2012 34th International Conference on Software Engineering (ICSE).

233ś243. https://doi.org/10.1109/ICSE.2012.6227190

C. J. van Rijsbergen. 1979. Information Retrieval. Butterworth. 133ś134 pages. https://doi.org/10.1002/asi.4630300621

Available at http://www.dcs.gla.ac.uk/Keith/Preface.html.

Shengzhe Xu, Ziqi Dong, and Na Meng. 2019. Meditor: Inference and Application of API Migration Edits. In Proceedings of the

27th International Conference on Program Comprehension (Montreal, Quebec, Canada) (ICPC ’19). IEEE Press, Piscataway,

NJ, USA, 335ś346. https://doi.org/10.1109/ICPC.2019.00052

Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. 2019. Learning to

Represent Edits. In ICLR 2019. https://www.microsoft.com/en-us/research/publication/learning-to-represent-edits/

arXiv:1810.13337 [cs.LG].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 139. Publication date: October 2022.

https://doi.org/10.1007/978-3-642-31057-7_5
https://doi.org/10.1145/2393596.2393603
https://doi.org/10.1108/QROM-08-2016-1408
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/ICSE.2012.6227190
https://doi.org/10.1002/asi.4630300621
http://www.dcs.gla.ac.uk/Keith/Preface.html
https://doi.org/10.1109/ICPC.2019.00052
https://www.microsoft.com/en-us/research/publication/learning-to-represent-edits/

	Abstract
	1 Introduction
	2 Overview
	2.1 Using Edit Sequence Patterns to Predict Edits
	2.2 Learning Edit Sequence Patterns

	3 Edit Sequence Patterns
	4 From Traces to Edit Pattern Sketches
	5 Synthesizing Edit Sequence Patterns
	5.1 Generating an Edit Sequence Pattern
	5.2 Combining Edit Sequence Patterns
	5.3 Building a Hierarchy of Edit Sequence Patterns

	6 Ranking Edit Sequence Patterns
	7 Evaluation
	7.1 Data Collection
	7.2 RQ1: Effectiveness of Overwatch
	7.3 RQ2: Nature of learned ESPs
	7.4 RQ3: Comparison to state-of-the-art

	8 Discussion
	8.1 Limitations
	8.2 Threats to validity

	9 RELATED WORK
	10 Conclusion
	References

