
reCode: A Lightweight Find-and-Replace Interaction in the IDE
for Transforming Code by Example

Wode Ni
woden@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, USA

Joshua Sunshine
sunshine@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, USA

Vu Le
levu@microsoft.com

Microsoft
Redmond, USA

Sumit Gulwani
sumitg@microsoft.com

Microsoft
Redmond, USA

Titus Barik
tbarik@microsoft.com

Microsoft
Redmond, USA

Figure 1: reCode is a mixed-initiative tool that automates code transformations via an example-driven interaction. The devel-
oper finds relevant locations in their codebase and directly perform changes inline. Based on the search results and user edits, reCode
automatically generalizes edits to other applicable locations as the developer iteratively refines code changes.

ABSTRACT
Software developers frequently confront a recurring challenge of
making code transformations—similar but not entirely identical
code changes in many places—in their integrated development en-
vironments. Through formative interviews (n = 7), we found that
developers were aware of many tools intended to help with code
transformations, but often made their changes manually because
these tools required too much expertise or effort to be able to use
effectively. To address these needs, we built an extension for Vi-
sual Studio Code, called reCode. reCode improves the familiar
find-and-replace experience by allowing the developer to specify a
straightforward search term to identify relevant locations, and then
demonstrate their intended changes by simply typing a change
directly in the editor. Using programming by example, reCode
automatically learns a more general code transformation and dis-
plays these transformations as before-and-after differences inline,
with clickable actions to interactively accept, reject, or refine the

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8635-7/21/10.
https://doi.org/10.1145/3472749.3474748

proposed changes. In our usability evaluation (n = 12), developers
reported that this mixed-initiative, example-driven experience is
intuitive, complements their existing workflow, and offers a unified
approach to conveniently tackle a variety of common yet frustrating
scenarios for code transformations.

KEYWORDS
code transformation, program synthesis, find-and-replace
ACM Reference Format:
Wode Ni, Joshua Sunshine, Vu Le, Sumit Gulwani, and Titus Barik. 2021. re-
Code: A Lightweight Find-and-Replace Interaction in the IDE for Transform-
ing Code by Example. In The 34th Annual ACM Symposium on User Interface
Software and Technology (UIST ’21), October 10–14, 2021, Virtual Event, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3472749.3474748

1 INTRODUCTION
Maria, a front-end developer, wants to rewrite the visual styles
in her project to use vanilla CSS instead of the current styled-
components library. In other words, she wants to find lines of code
in her project that look like this:

reCode: A Lightweight Find-and-Replace Interaction in the IDE
for Transforming Code by Example

Wode Ni
woden@cs.cmu.edu

Carnegie Me

sumitg@microsoft.com tbarik@microsoft.com
Microsoft Microsoft

Redmond, USA Redmond, USA

llon University
Pittsburgh, USA

sunshine@cs.cmu.edu
Carnegie Mellon Universit

Pittsburgh, USA

levu@microsoft.com
y Microsoft

Redmond, USA

Sumit Gulwani Titus Barik

Joshua Sunshine Vu Le

Figure 1: reCode is a mixed-initiative tool that automates code transformations via an example-driven interaction. The devel-
oper fnds relevant locations in their codebase and directly perform changes inline. Based on the search results and user edits, reCode
automatically generalizes edits to other applicable locations as the developer iteratively refnes code changes.

ABSTRACT
Software developers frequently confront a recurring challenge of
making code transformations—similar but not entirely identical
code changes in many places—in their integrated development en-
vironments. Through formative interviews (� = 7), we found that
developers were aware of many tools intended to help with code
transformations, but often made their changes manually because
these tools required too much expertise or efort to be able to use
efectively. To address these needs, we built an extension for Vi-
sual Studio Code, called reCode. reCode improves the familiar
fnd-and-replace experience by allowing the developer to specify a
straightforward search term to identify relevant locations, and then
demonstrate their intended changes by simply typing a change
directly in the editor. Using programming by example, reCode
automatically learns a more general code transformation and dis-
plays these transformations as before-and-after diferences inline,
with clickable actions to interactively accept, reject, or refne the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8635-7/21/10.
https://doi.org/10.1145/3472749.3474748

proposed changes. In our usability evaluation (� = 12), developers
reported that this mixed-initiative, example-driven experience is
intuitive, complements their existing workfow, and ofers a unifed
approach to conveniently tackle a variety of common yet frustrating
scenarios for code transformations.

KEYWORDS
code transformation, program synthesis, fnd-and-replace

ACM Reference Format:
Wode Ni, Joshua Sunshine, Vu Le, Sumit Gulwani, and Titus Barik. 2021. re-
Code: A Lightweight Find-and-Replace Interaction in the IDE for Transform-
ing Code by Example. In The 34th Annual ACM Symposium on User Interface
Software and Technology (UIST ’21), October 10–14, 2021, Virtual Event, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3472749.3474748

1 INTRODUCTION
Maria, a front-end developer, wants to rewrite the visual styles
in her project to use vanilla CSS instead of the current styled-
components library. In other words, she wants to fnd lines of code
in her project that look like this:
border: 1px solid ${props => props.theme.black};

and replace them to look like this:
border: 1px solid var(--black);

and replace them to look like this:

reCode: A Lightweight Find-and-Replace Interaction in the IDE
for Transforming Code by Example

Wode Ni
woden@cs.cmu.edu

Carnegie Me

sumitg@microsoft.com tbarik@microsoft.com
Microsoft Microsoft

Redmond, USA Redmond, USA

llon University
Pittsburgh, USA

sunshine@cs.cmu.edu
Carnegie Mellon Universit

Pittsburgh, USA

levu@microsoft.com
y Microsoft

Redmond, USA

Sumit Gulwani Titus Barik

Joshua Sunshine Vu Le

Figure 1: reCode is a mixed-initiative tool that automates code transformations via an example-driven interaction. The devel-
oper fnds relevant locations in their codebase and directly perform changes inline. Based on the search results and user edits, reCode
automatically generalizes edits to other applicable locations as the developer iteratively refnes code changes.

ABSTRACT
Software developers frequently confront a recurring challenge of
making code transformations—similar but not entirely identical
code changes in many places—in their integrated development en-
vironments. Through formative interviews (� = 7), we found that
developers were aware of many tools intended to help with code
transformations, but often made their changes manually because
these tools required too much expertise or efort to be able to use
efectively. To address these needs, we built an extension for Vi-
sual Studio Code, called reCode. reCode improves the familiar
fnd-and-replace experience by allowing the developer to specify a
straightforward search term to identify relevant locations, and then
demonstrate their intended changes by simply typing a change
directly in the editor. Using programming by example, reCode
automatically learns a more general code transformation and dis-
plays these transformations as before-and-after diferences inline,
with clickable actions to interactively accept, reject, or refne the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8635-7/21/10.
https://doi.org/10.1145/3472749.3474748

proposed changes. In our usability evaluation (� = 12), developers
reported that this mixed-initiative, example-driven experience is
intuitive, complements their existing workfow, and ofers a unifed
approach to conveniently tackle a variety of common yet frustrating
scenarios for code transformations.

KEYWORDS
code transformation, program synthesis, fnd-and-replace

ACM Reference Format:
Wode Ni, Joshua Sunshine, Vu Le, Sumit Gulwani, and Titus Barik. 2021. re-
Code: A Lightweight Find-and-Replace Interaction in the IDE for Transform-
ing Code by Example. In The 34th Annual ACM Symposium on User Interface
Software and Technology (UIST ’21), October 10–14, 2021, Virtual Event, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3472749.3474748

1 INTRODUCTION
Maria, a front-end developer, wants to rewrite the visual styles
in her project to use vanilla CSS instead of the current styled-
components library. In other words, she wants to fnd lines of code
in her project that look like this:
border: 1px solid ${props => props.theme.black};

and replace them to look like this:
border: 1px solid var(--black);

To estimate the scope of this task, Maria invokes the find interface
in her IDE and searches for props.theme. The interface returns

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3472749.3474748
https://doi.org/10.1145/3472749.3474748

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

around 30 results, scattered across multiple files. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based find-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural find-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difficult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identified
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difficult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that offers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar find-and-replace experience. reCode users first
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after differences inline, and offers the developer click-
able actions through which they can interactively accept, reject, or
refine the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar find-and-replace experience through
programming-by-example. This interaction removes the
need to need write regular expressions or other complicated
scripts for a variety of code transformations. We implement
this interaction as an extension, called reCode, for Visual
Studio Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we
demonstrate that the reCode example-driven experience
is intuitive, complements their existing workflow, and of-
fers a unified approach to conveniently tackle a variety of
common yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like find and replace. Just start edit-
ing after you find things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

calls in class constructors. These

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifies her code by: (1) deleting all lines
that look like

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

and (2) rewriting
the corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

in the Search Box (Figure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

) shows 80 matches spread
across 32 files!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

search with find-and-
replace has already activated the reCode tool. She clicks on the
first result in App.jsx and starts to edit the relevant lines for the

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

function. She removed the

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

call from line 25 and added

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

before

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

and

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

after on
line 29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

Figure 2: The user interface of reCode. In the Summary View (

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

), the developer enters a simple query in the Search Box (

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

). The developer directly edits the source code in the main editor (

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

) and reCode synthesizes a generalized transformation. In
the Inline Diff, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

). The developer can
accept or reject the suggestions via Inline Actions (

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

), reCode gives two sug-
gestions related to

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

. The first one seems correct: reCode
proposes to delete the whole line with the

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

call is removed, and reCode correctly
kept the argument

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

)
to review the changes proposed by reCode. In the first three files,
she clicks “Accept Changes” for each suggestion that she is con-
fident about. To speed things up, she then goes to the rest of the
files, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workflow,
inspecting each file takes about 10 to 20 seconds, and she finishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a find-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATEDWORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a different work-
flow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fix” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

In contrast, reCode supports developers who frequently desire to
have more control over their code transformations (Section 4).

The rest of this section describes related work on challenges
developers have making code transformations and the multitude of
programmatic approaches to code transformations.

3.1 Challenges of Making Code
Transformations

Developers edit their code in a patterned and repetitive way to fix
bugs [43], migrate from one API/language to another [11, 21], or
make systematic changes to their codebases [22].

Nguyen et al. [41] conducted a large-scale study to show that
70-100% of small changes are repeated, and the repetitiveness of
changes decreases exponentially as the change size increases. The
smaller, fine-grained changes are especially meaningful and perva-
sive in both time and space: a given code change is often repeated
by others, and the same developer has usually made the same kind
of change in the past [42]. Within the same codebase, Kim et al.
[23] found that “locally unfactorable, consistently changing clones”
(that is, duplicated code that cannot be easily factored out and al-
ways change together) are common, and changing these clones
together can be error-prone and difficult.

Automated tools aim to help developers make code transfor-
mations, but they are often too hard to use, leading to tool aban-
donment. For instance, Murphy-Hill et al. [38] found that 90% of
changes that refactoring tools already support are performed with-
out the help of tools. Most editors have find-and-replace functionali-
ties baked in and support regular expressions for more general code
transformations. However, find-and-replace can be error-prone [33]
and regular expressions are especially hard to use [32].

reCode addresses the need for a more intuitive and reliable tool
to automate repetitive code changes. It improves on the familiar
find-and-replace user experience and leverages program synthesis
to generate semantic code transformations from developers’ direct
edits.

3.2 Programmatic Approaches to Code
Transformations

To automate code transformations, developers can write queries or
scripts that typically operate in batch across their repository. These
tools emphasize either text-level or tree-level transformations.

Text-based tools allow developers to perform changes to pro-
grams by matching a string pattern and treating the code as an
unstructured string of text. Tools in this space include regular ex-
pressions [14] or regex-based codemods [1].

Instead of operating on strings, developers also can use tools that
provide access to the code’s abstract syntax tree (AST), types, or
another language-specific information. Structural find-and-replace
tools let developers transform their code by specifying patterns and
grammatical constructs that take the code structure into account.
For example, in these representations it becomes possible for the
developer to specify constraints like “within class constructors only”
or “fields of type integer.” JetBrain’s family of IDEs supports struc-
tural find-and-replace for a variety of programming languages [36].
Comby [50] introduces a simpler query syntax for find-and-replace
by generating parser combinators. Because Comby understands the

syntax of code blocks, strings, and comments, Comby queries are
usually more concise and readable than alternatives like regular
expressions.

More elaborate code transformations require developers to go
beyond queries and rewrite rules to scripts that directly operate
on ASTs. jscodeshift transforms JavaScript programs via an API
for JavaScript AST nodes. Rafazar includes a domain-specific lan-
guage that encodes AST-level edit actions for program transfor-
mations [47]. Although these APIs may suffer from a variety of
usability problems [40], AST transformers have shown their robust-
ness and scalability for transforming ultra-large codebases [13, 51].
Refactorings tools [5, 7, 31, 37] are also instances of code transfor-
mation scripts, as are linters [2, 4].

Developers using reCode sidestep the decision of which ap-
proach to code transformation to choose. Developers edit examples
and reCode “invisibly” [39] programs code transformations for
them.

3.3 Editing by Example
In editors, programming-by-example systems infer changes to
text or source code based on concrete user actions on the source
text and/or other representations of the program. These inferred
changes are often high-level programs consistent with the user
actions but generalized to similar instances [18].

Several early programming-by-example tools, beginning in the
1980s, can operate on text [15, 25–27, 44, 45, 48, 49, 52], either by
inferring a program from input-output examples (result-based) or
recording users’ edit steps (action-based). Nix synthesizes string
transformation patterns from a set of input-output examples pro-
vided by the user [44]. The transformations are expressed as gap
programs. SMARTEdit does not require an output example upfront
and learns string-based macros from direct edits on an input ex-
ample [25]. It requires an explicit start/stop command and treats
all the text in the editor as the input example. Some editors allow
developers to record edit steps as scripts called keyboard macros.
For instance, both GNU Emacs [48] and vi [45] users can encode
edit actions as a program and replay the same sequence of actions
elsewhere. Because ordering is important in the edit steps, macros
are known to be brittle and difficult to specify correctly [26, 49].
Different from text-based tools, reCode is tree-based and gener-
ates AST transformations. The resulting code transformations are
resilient to edit ordering and formatting variations.

Sydit and Lase are Eclipse plugins for transforming functions
or methods [29, 30]. In contrast to reCode’s lightweight user expe-
rience which allows for fine-grained code transformations, Sydit
requires developers to make code transformation at the method
level. ReSynth is an Eclipse plugin that generates a sequence of
refactoring operations from user edits [46]. reCode supports code
transformations that are not limited to an existing catalog of refac-
torings.

Lapis [34] is a specialized editor that allows users to edit multiple
lines of code concurrently. Lapis asks users to specify a natural-
language like query to seed the examples. reCode differs in that
it allows a straightforward, keyword-style search, and provides a
more sophisticated synthesis backend. Codelink is an extension for
XEmacs. The tool requires the developer to “link” code duplicates,

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

or code clones, explicitly. Once these code clones are linked, any
edits the developer makes simultaneously updates the other linked
locations. In other words, Codelink’s interaction is a variation of
multi-cursor editing in modern editors [8, 9]. By contrast, reCode
does not rely on cursor position and uses the developers’ initial
search term to bootstrap relevant locations. reCode presents a
lightweight interaction workflow different from existing tools.

4 FORMATIVE INTERVIEWS AND DESIGN
GOALS

To discover challenges that developers have with existing code
transformation tools, we sent out an initial recruitment survey at
a large software company to developers with at least three years
of experience, sampled from their company address book. The sur-
vey pre-screened for prior experience using tools in participants’
programming environments that allow them to perform code trans-
formations, such as find-and-replace, refactoring, or other structural
find-and-replace tools. We interviewed 7 of these survey respon-
dents (F1-F7) to understand how they use tools to automate code
editing. The interviews serve as a need-finding activity, from which
we derive design goals for reCode.

In the interviews, we asked about the challenges they faced
with code transformations, which tools they use to automate them,
and why the tools they use work or don’t work for them. Five
participants showed us code samples from recent tasks, which we
used to design tasks for our later usability evaluation (Section 6).
From these interviews, we identified three common problems across
participants.

First, developers reported having to make continuous trade-offs
between performing code transformation tasks manually and reach-
ing for programmatic approaches that enable automation, which
resulted in decision fatigue. While some participants experimented
withwriting custom scripts (F1, F3) or regular expressions (F2, F4, F6,
F7) to automate tasks, F2 reported encountering unanticipated bar-
riers: “I could use find-and-replace, copy-paste, use multi-cursors,
or use refactorings. But none of them worked exactly the way I
wanted.” Given these uncertainties, participants often impulsively
gravitated towards more familiar, manual strategies like find-and-
replace because it minimized their decision fatigue and was the
path of least resistance (F1-F7). As F2 described, “there’s probably
already a secret tool or some magical trick [in my editor]. I just
don’t want to look.”

Second, writing a robust regular expression or script is tricky, and
several participants desired more lightweight but still expressive
approaches. As one example, F7 described trying to use a regular
expression but that the language lacked a “good way to specify
context or scope.” They also used macros, which were more generic
but indicated that “the amount of time it takes to remember how to
do macros doesn’t justify using it for ordinary tasks” (F7). F1 added
that when scripting, they “often run into these corner cases that the
script doesn’t handle” and wonders, “Do I really have to write my
own static analyzer to do it correctly?” They desired an editor to
“do it automagically, sees you doing this many times, and automates
this.“ F6 explicitly described an example-driven experience: “I want
to find-and-replace by example. I want to edit a file directly and
say ‘Apply that elsewhere’ ”.

Third and finally, participants reported a need for human over-
sight and inspection in automated approaches. F3 and others (F1, F2,
F4, F5) worried about “over-replacing” and “matching on the wrong
thing. Because things like find-and-replace are syntax-based, your
compiler may not catch the error, so I have to check it manually.”
Several participants mentioned that ‘Apply all’ is “dangerous” (F1-
F6) and F2 had to “watch very carefully to make sure I don’t replace
things I don’t want.” To guard against these issues, all participants
shared their experiences building up search queries iteratively from
a simple keyword, and then further narrowing down their results
as needed.

Participants reported that their existing tools were mismatched
with their desire for inspection. F3, for example, said that they
“spend one hour to click apply and next and apply, and I’ll just give
up and apply all, hoping the compiler catches errors for me,” and F5
reports that automated tools “stress me out and I don’t really trust
them” because they can’t easily verify if the code transformations
have been correctly applied. Towards improvements in the editor,
F2 and F4 suggested “live previews and highlights” to inspect the
changes within the editor. F5 indicated that comparisons in current
editors are difficult because they use too little “screen real estate”
and require them to refine code transformations through “tiny text
boxes.”

Based on their reported experiences and feedback, we reflected
on their needs and formulated several design goals to address them:

D1. Provide a unified entry point for code transforma-
tions. To minimize decision fatigue, developers should be
able to make a variety of common code transformations
through a familiar user experience.

D2. Offer a lightweight way to transform code.Writing reg-
ular expressions and custom scripts are difficult. An intel-
ligent user experience should provide this capability “au-
tomagically,” offloading script building to the system.

D3. Design affordances that enable oversight and inspec-
tion for code transformations. Developers were cautious
about automated tools over-replacing or matching on the
wrong things, and existing tools were mismatched with de-
veloper expectations. Developers should be able to incremen-
tally inspect code transformations and more easily compare
their results.

5 SYSTEM DESIGN AND IMPLEMENTATION
reCode realizes the design goals from Section 4 and offers a user
experience that: 1) reduces the decision overhead of having to
choose among different tools; instead, the developer can use find-
and-replace as a unified entry-point for their code transformation
(D1), 2) eliminates the burden of having to author complicated reg-
ular expressions or scripts; instead, the developer can directly type
their change in the editor (D2), and 3) removes the requirement to
inspect all code transformations in bulk; instead, the developer can
incrementally inspect, apply, and revise their code transformations
(D3).

reCode is implemented as an extension of Visual Studio Code
(VSCode). Most of its features are implemented within the Search
View and main editor pane. First, we augmented the Search View
to indicate the state of each search match. Second, the main editor

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

captures developer edit events and the ReFazer* synthesizer runs
as an editor service in the background and generates transformation
programs based on the edits. Finally, we implemented inline code
diffs to surface the synthesizer’s suggestions and we adapted Code
Lenses2 to allow the developers to interact with the synthesizer.

5.1 reCode Workflow
In this section, wewill walk through the detailed design of reCode’s
mixed-initiative workflow (Figure 1), which we demonstrated in
Section 2.

5.1.1 Step 1: Bootstrapping Synthesis via Find. The developer initi-
ates the workflow by typing search terms in the Search Box (Fig-
ure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

). The search and results are displayed in the corresponding
Result View (Figure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

). As we described in Section 4, our par-
ticipants were comfortable with constructing search queries via
simple keywords and narrowing down results using find. Conse-
quently, we made an intentional design decision to sacrifice some
expressiveness in search (for example reCode users cannot limit
search to “only within fields of a class”) to favor simplicity. reCode
only supports conventional plain-text search.

Because the developer provides search terms that are less precise
than the locations they actually intend to change, the search results
will be a superset of what they actually intended to change. This
has implications for programming-by-example, and there are two
approaches to tackle this situation—both of which are supported in
reCode.

The first approach is manual: the developer can navigate to the
Summary View (Figure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

), hover over one of the extraneous
matches (Figure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

), and click the ‘x’ icon to remove it from the
search results. The second approach is to for the synthesis engine
to filter matches: ReFazer* considers all search results as candidate
additional inputs, and applies an anti-unification mechanism to dis-
card candidates that are incompatible with the developer-provided
changes. Thus, the first approach is useful if the developer wants to
use the Summary View for manual investigation and bookkeeping;
the second approach is useful if the developer just wants to the
reduce the amount of work needed to do their code transformation.

5.1.2 Step 2: Transforming Code by Example. Through our forma-
tive study, we learned that a barrier to correctly authoring regular
expressions or scripts is the need for developers to construct a
complete specification upfront. In textual or modal transformation
tools, the developer also typically needs to know the tool exists
and learn the syntax of a language or the UI to perform their code
transformation task.

By contrast, reCode lets developers demonstrate program
changes directly in the editor. Essentially, developers are able to
construct this specification incrementally through a more intuitive
editing affordance. reCode’s by-example workflow is also designed
to solve the problem of discoverability and provide better context.
Because the developer types their examples within the main editor
pane (Figure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

), they can take advantage of the full range of
editor support, including syntax highlighting and auto-completion.

2https://code.visualstudio.com/blogs/2017/02/12/code-lens-roundup

5.1.3 Step 3: Iteratively Refining the Synthesis Results. The inter-
action so far has been developer-initiated. But once the developer
types their first code transformation, the synthesizer takes the
initiative.

ReFazer* accepts each developer’s code transformation as a posi-
tive input-output example to drive synthesis, uses the search results
as candidate locations, and returns suggestions to the user interface.
reCode renders these suggestions directly in the editor as Inline
Diffs—the original code is highlighted in pink and the suggested
replacement is highlighted in green (Figure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

). Users can act
on each suggestion by clicking Accept, Reject, or Accept All in This
File above the suggestion. We decided to limit Accept All to the
current file based on our formative study, where participants were
reluctant to accept all changes from a code transformation tool
without inspection (however, “Accept All” is available under the
kebab menu to the lower right of Figure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

).
Since the synthesizer is operating in the background in a black-

box manner, the visibility of system status is an important aspect
of reCode. In addition to code diffs inline, the Summary View also
conveys the status of the synthesizer by directly highlighting search
results:

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

captures developer edit events and the ReFazer* synthesizer runs
as an editor service in the background and generates transformation
programs based on the edits. Finally, we implemented inline code
difs to surface the synthesizer’s suggestions and we adapted Code
Lenses2 to allow the developers to interact with the synthesizer.

5.1 reCode Workfow
In this section, we will walk through the detailed design of reCode’s
mixed-initiative workfow (Figure 1), which we demonstrated in
Section 2.

5.1.1 Step 1: Bootstrapping Synthesis via Find. The developer initi-
ates the workfow by typing search terms in the Search Box (Fig-
ure 2 A). The search and results are displayed in the corresponding

Result View (Figure 2 B). As we described in Section 4, our par-
ticipants were comfortable with constructing search queries via
simple keywords and narrowing down results using fnd. Conse-
quently, we made an intentional design decision to sacrifce some
expressiveness in search (for example reCode users cannot limit
search to “only within felds of a class”) to favor simplicity. reCode
only supports conventional plain-text search.

Because the developer provides search terms that are less precise
than the locations they actually intend to change, the search results
will be a superset of what they actually intended to change. This
has implications for programming-by-example, and there are two
approaches to tackle this situation—both of which are supported in
reCode.

The frst approach is manual: the developer can navigate to the
Summary View (Figure 2 A), hover over one of the extraneous
matches (Figure 2 C), and click the ‘x’ icon to remove it from the
search results. The second approach is to for the synthesis engine
to flter matches: ReFazer* considers all search results as candidate
additional inputs, and applies an anti-unifcation mechanism to dis-
card candidates that are incompatible with the developer-provided
changes. Thus, the frst approach is useful if the developer wants to
use the Summary View for manual investigation and bookkeeping;
the second approach is useful if the developer just wants to the
reduce the amount of work needed to do their code transformation.

5.1.2 Step 2: Transforming Code by Example. Through our forma-
tive study, we learned that a barrier to correctly authoring regular
expressions or scripts is the need for developers to construct a
complete specifcation upfront. In textual or modal transformation
tools, the developer also typically needs to know the tool exists
and learn the syntax of a language or the UI to perform their code
transformation task.

By contrast, reCode lets developers demonstrate program changes
directly in the editor. Essentially, developers are able to construct
this specifcation incrementally through a more intuitive editing af-
fordance. reCode’s by-example workfow is also designed to solve
the problem of discoverability and provide better context. Because
the developer types their examples within the main editor pane
(Figure 2 D), they can take advantage of the full range of editor
support, including syntax highlighting and auto-completion.

2https://code.visualstudio.com/blogs/2017/02/12/code-lens-roundup

5.1.3 Step 3: Iteratively Refining the Synthesis Results. The inter-
action so far has been developer-initiated. But once the developer
types their frst code transformation, the synthesizer takes the
initiative.

ReFazer* accepts each developer’s code transformation as a posi-
tive input-output example to drive synthesis, uses the search results
as candidate locations, and returns suggestions to the user interface.
reCode renders these suggestions directly in the editor as Inline
Difs—the original code is highlighted in pink and the suggested
replacement is highlighted in green (Figure 2 E F). Users can act
on each suggestion by clicking Accept, Reject, or Accept All in This
File above the suggestion. We decided to limit Accept All to the
current fle based on our formative study, where participants were
reluctant to accept all changes from a code transformation tool
without inspection (however, “Accept All” is available under the
kebab menu to the lower right of Figure 2 B).

Since the synthesizer is operating in the background in a black-
box manner, the visibility of system status is an important aspect
of reCode. In addition to code difs inline, the Summary View also
conveys the status of the synthesizer by directly highlighting search
results: Green highlights indicate original edits done by the user;
Yellow highlights indicate matches with available suggestions;
Blue highlights show the current selection.
One consideration is when to send the developer-provided code

transformation to the synthesizer: they may be typing slowly, paus-
ing to think, or any variety of other activities that may cause the
user interface to prematurely roundtrip to the synthesizer and incor-
rectly update the suggestions to the developer. Our unsophisticated
solution to this problem was to add a short debounce—delaying
sending examples to the synthesizer until the developer pauses for
a few seconds—which worked reasonably well.

Another consideration is what happens when the developer
edits a line that does not match the original search. For example,
consider when a developer searches for a comment like // TODO,
but makes all of their actual edits to the line below. Again, we
implemented a simple approach that constructs a window around
the search location overlaps the edit location (in the above example,
the window size is ±1). This heuristic also worked reasonably well,
with the caveat that ReFazer* becomes sluggish if the window-size
becomes too large.

Any suggestions the developer chooses to accept becomes an ad-
ditional positive input-output example. To avoid infnite recursion,
once a region of code is accepted, it will not be considered again as
a candidate location for synthesis. Any suggestion that a developer
chooses to reject becomes a negative input-output example, or flter.
Finally, accept all changes in the current fle works essentially the
same as accept, but sends all of the accepted suggestions at once.

These iterations continue until the user closes the fnd UI.

5.2 Overview of ReFazer*
ReFazer* [16] is a robust, general-purpose synthesizer that reasons
about diferences in abstract syntax trees to learn code transforma-
tions. Although ReFazer* is not specifcally designed to support
a fnd-and-replace user experience, the engine has several proper-
ties that reCode is able to usefully exploit. This section presents a
high-level overview of these properties; detailed formal semantics

highlights indicate original edits done by the user;

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

captures developer edit events and the ReFazer* synthesizer runs
as an editor service in the background and generates transformation
programs based on the edits. Finally, we implemented inline code
difs to surface the synthesizer’s suggestions and we adapted Code
Lenses2 to allow the developers to interact with the synthesizer.

5.1 reCode Workfow
In this section, we will walk through the detailed design of reCode’s
mixed-initiative workfow (Figure 1), which we demonstrated in
Section 2.

5.1.1 Step 1: Bootstrapping Synthesis via Find. The developer initi-
ates the workfow by typing search terms in the Search Box (Fig-
ure 2 A). The search and results are displayed in the corresponding

Result View (Figure 2 B). As we described in Section 4, our par-
ticipants were comfortable with constructing search queries via
simple keywords and narrowing down results using fnd. Conse-
quently, we made an intentional design decision to sacrifce some
expressiveness in search (for example reCode users cannot limit
search to “only within felds of a class”) to favor simplicity. reCode
only supports conventional plain-text search.

Because the developer provides search terms that are less precise
than the locations they actually intend to change, the search results
will be a superset of what they actually intended to change. This
has implications for programming-by-example, and there are two
approaches to tackle this situation—both of which are supported in
reCode.

The frst approach is manual: the developer can navigate to the
Summary View (Figure 2 A), hover over one of the extraneous
matches (Figure 2 C), and click the ‘x’ icon to remove it from the
search results. The second approach is to for the synthesis engine
to flter matches: ReFazer* considers all search results as candidate
additional inputs, and applies an anti-unifcation mechanism to dis-
card candidates that are incompatible with the developer-provided
changes. Thus, the frst approach is useful if the developer wants to
use the Summary View for manual investigation and bookkeeping;
the second approach is useful if the developer just wants to the
reduce the amount of work needed to do their code transformation.

5.1.2 Step 2: Transforming Code by Example. Through our forma-
tive study, we learned that a barrier to correctly authoring regular
expressions or scripts is the need for developers to construct a
complete specifcation upfront. In textual or modal transformation
tools, the developer also typically needs to know the tool exists
and learn the syntax of a language or the UI to perform their code
transformation task.

By contrast, reCode lets developers demonstrate program changes
directly in the editor. Essentially, developers are able to construct
this specifcation incrementally through a more intuitive editing af-
fordance. reCode’s by-example workfow is also designed to solve
the problem of discoverability and provide better context. Because
the developer types their examples within the main editor pane
(Figure 2 D), they can take advantage of the full range of editor
support, including syntax highlighting and auto-completion.

2https://code.visualstudio.com/blogs/2017/02/12/code-lens-roundup

5.1.3 Step 3: Iteratively Refining the Synthesis Results. The inter-
action so far has been developer-initiated. But once the developer
types their frst code transformation, the synthesizer takes the
initiative.

ReFazer* accepts each developer’s code transformation as a posi-
tive input-output example to drive synthesis, uses the search results
as candidate locations, and returns suggestions to the user interface.
reCode renders these suggestions directly in the editor as Inline
Difs—the original code is highlighted in pink and the suggested
replacement is highlighted in green (Figure 2 E F). Users can act
on each suggestion by clicking Accept, Reject, or Accept All in This
File above the suggestion. We decided to limit Accept All to the
current fle based on our formative study, where participants were
reluctant to accept all changes from a code transformation tool
without inspection (however, “Accept All” is available under the
kebab menu to the lower right of Figure 2 B).

Since the synthesizer is operating in the background in a black-
box manner, the visibility of system status is an important aspect
of reCode. In addition to code difs inline, the Summary View also
conveys the status of the synthesizer by directly highlighting search
results: Green highlights indicate original edits done by the user;
Yellow highlights indicate matches with available suggestions;
Blue highlights show the current selection.
One consideration is when to send the developer-provided code

transformation to the synthesizer: they may be typing slowly, paus-
ing to think, or any variety of other activities that may cause the
user interface to prematurely roundtrip to the synthesizer and incor-
rectly update the suggestions to the developer. Our unsophisticated
solution to this problem was to add a short debounce—delaying
sending examples to the synthesizer until the developer pauses for
a few seconds—which worked reasonably well.

Another consideration is what happens when the developer
edits a line that does not match the original search. For example,
consider when a developer searches for a comment like // TODO,
but makes all of their actual edits to the line below. Again, we
implemented a simple approach that constructs a window around
the search location overlaps the edit location (in the above example,
the window size is ±1). This heuristic also worked reasonably well,
with the caveat that ReFazer* becomes sluggish if the window-size
becomes too large.

Any suggestions the developer chooses to accept becomes an ad-
ditional positive input-output example. To avoid infnite recursion,
once a region of code is accepted, it will not be considered again as
a candidate location for synthesis. Any suggestion that a developer
chooses to reject becomes a negative input-output example, or flter.
Finally, accept all changes in the current fle works essentially the
same as accept, but sends all of the accepted suggestions at once.

These iterations continue until the user closes the fnd UI.

5.2 Overview of ReFazer*
ReFazer* [16] is a robust, general-purpose synthesizer that reasons
about diferences in abstract syntax trees to learn code transforma-
tions. Although ReFazer* is not specifcally designed to support
a fnd-and-replace user experience, the engine has several proper-
ties that reCode is able to usefully exploit. This section presents a
high-level overview of these properties; detailed formal semantics

highlights indicate matches with available suggestions;

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

captures developer edit events and the ReFazer* synthesizer runs
as an editor service in the background and generates transformation
programs based on the edits. Finally, we implemented inline code
difs to surface the synthesizer’s suggestions and we adapted Code
Lenses2 to allow the developers to interact with the synthesizer.

5.1 reCode Workfow
In this section, we will walk through the detailed design of reCode’s
mixed-initiative workfow (Figure 1), which we demonstrated in
Section 2.

5.1.1 Step 1: Bootstrapping Synthesis via Find. The developer initi-
ates the workfow by typing search terms in the Search Box (Fig-
ure 2 A). The search and results are displayed in the corresponding

Result View (Figure 2 B). As we described in Section 4, our par-
ticipants were comfortable with constructing search queries via
simple keywords and narrowing down results using fnd. Conse-
quently, we made an intentional design decision to sacrifce some
expressiveness in search (for example reCode users cannot limit
search to “only within felds of a class”) to favor simplicity. reCode
only supports conventional plain-text search.

Because the developer provides search terms that are less precise
than the locations they actually intend to change, the search results
will be a superset of what they actually intended to change. This
has implications for programming-by-example, and there are two
approaches to tackle this situation—both of which are supported in
reCode.

The frst approach is manual: the developer can navigate to the
Summary View (Figure 2 A), hover over one of the extraneous
matches (Figure 2 C), and click the ‘x’ icon to remove it from the
search results. The second approach is to for the synthesis engine
to flter matches: ReFazer* considers all search results as candidate
additional inputs, and applies an anti-unifcation mechanism to dis-
card candidates that are incompatible with the developer-provided
changes. Thus, the frst approach is useful if the developer wants to
use the Summary View for manual investigation and bookkeeping;
the second approach is useful if the developer just wants to the
reduce the amount of work needed to do their code transformation.

5.1.2 Step 2: Transforming Code by Example. Through our forma-
tive study, we learned that a barrier to correctly authoring regular
expressions or scripts is the need for developers to construct a
complete specifcation upfront. In textual or modal transformation
tools, the developer also typically needs to know the tool exists
and learn the syntax of a language or the UI to perform their code
transformation task.

By contrast, reCode lets developers demonstrate program changes
directly in the editor. Essentially, developers are able to construct
this specifcation incrementally through a more intuitive editing af-
fordance. reCode’s by-example workfow is also designed to solve
the problem of discoverability and provide better context. Because
the developer types their examples within the main editor pane
(Figure 2 D), they can take advantage of the full range of editor
support, including syntax highlighting and auto-completion.

2https://code.visualstudio.com/blogs/2017/02/12/code-lens-roundup

5.1.3 Step 3: Iteratively Refining the Synthesis Results. The inter-
action so far has been developer-initiated. But once the developer
types their frst code transformation, the synthesizer takes the
initiative.

ReFazer* accepts each developer’s code transformation as a posi-
tive input-output example to drive synthesis, uses the search results
as candidate locations, and returns suggestions to the user interface.
reCode renders these suggestions directly in the editor as Inline
Difs—the original code is highlighted in pink and the suggested
replacement is highlighted in green (Figure 2 E F). Users can act
on each suggestion by clicking Accept, Reject, or Accept All in This
File above the suggestion. We decided to limit Accept All to the
current fle based on our formative study, where participants were
reluctant to accept all changes from a code transformation tool
without inspection (however, “Accept All” is available under the
kebab menu to the lower right of Figure 2 B).

Since the synthesizer is operating in the background in a black-
box manner, the visibility of system status is an important aspect
of reCode. In addition to code difs inline, the Summary View also
conveys the status of the synthesizer by directly highlighting search
results: Green highlights indicate original edits done by the user;
Yellow highlights indicate matches with available suggestions;
Blue highlights show the current selection.
One consideration is when to send the developer-provided code

transformation to the synthesizer: they may be typing slowly, paus-
ing to think, or any variety of other activities that may cause the
user interface to prematurely roundtrip to the synthesizer and incor-
rectly update the suggestions to the developer. Our unsophisticated
solution to this problem was to add a short debounce—delaying
sending examples to the synthesizer until the developer pauses for
a few seconds—which worked reasonably well.

Another consideration is what happens when the developer
edits a line that does not match the original search. For example,
consider when a developer searches for a comment like // TODO,
but makes all of their actual edits to the line below. Again, we
implemented a simple approach that constructs a window around
the search location overlaps the edit location (in the above example,
the window size is ±1). This heuristic also worked reasonably well,
with the caveat that ReFazer* becomes sluggish if the window-size
becomes too large.

Any suggestions the developer chooses to accept becomes an ad-
ditional positive input-output example. To avoid infnite recursion,
once a region of code is accepted, it will not be considered again as
a candidate location for synthesis. Any suggestion that a developer
chooses to reject becomes a negative input-output example, or flter.
Finally, accept all changes in the current fle works essentially the
same as accept, but sends all of the accepted suggestions at once.

These iterations continue until the user closes the fnd UI.

5.2 Overview of ReFazer*
ReFazer* [16] is a robust, general-purpose synthesizer that reasons
about diferences in abstract syntax trees to learn code transforma-
tions. Although ReFazer* is not specifcally designed to support
a fnd-and-replace user experience, the engine has several proper-
ties that reCode is able to usefully exploit. This section presents a
high-level overview of these properties; detailed formal semantics

highlights show the current selection.
One consideration is when to send the developer-provided code

transformation to the synthesizer: they may be typing slowly, paus-
ing to think, or any variety of other activities that may cause the
user interface to prematurely roundtrip to the synthesizer and incor-
rectly update the suggestions to the developer. Our unsophisticated
solution to this problem was to add a short debounce—delaying
sending examples to the synthesizer until the developer pauses for
a few seconds—which worked reasonably well.

Another consideration is what happens when the developer
edits a line that does not match the original search. For example,
consider when a developer searches for a comment like // TODO,
but makes all of their actual edits to the line below. Again, we
implemented a simple approach that constructs a window around
the search location overlaps the edit location (in the above example,
the window size is ±1). This heuristic also worked reasonably well,
with the caveat that ReFazer* becomes sluggish if the window-size
becomes too large.

Any suggestions the developer chooses to accept becomes an ad-
ditional positive input-output example. To avoid infinite recursion,
once a region of code is accepted, it will not be considered again as
a candidate location for synthesis. Any suggestion that a developer
chooses to reject becomes a negative input-output example, or filter.
Finally, accept all changes in the current file works essentially the
same as accept, but sends all of the accepted suggestions at once.

These iterations continue until the user closes the find UI.

5.2 Overview of ReFazer*
ReFazer* [16] is a robust, general-purpose synthesizer that reasons
about differences in abstract syntax trees to learn code transforma-
tions. Although ReFazer* is not specifically designed to support
a find-and-replace user experience, the engine has several proper-
ties that reCode is able to usefully exploit. This section presents a
high-level overview of these properties; detailed formal semantics

https://code.visualstudio.com/blogs/2017/02/12/code-lens-roundup

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

of ReFazer* and its full performance benchmarks can be found in
Gao et al. [16].

Gao et al. [16] report that with only one input-output exam-
ple, ReFazer* can learn a correct program transformation with
96% precision (through a benchmark of 12,642 test cases ranging
from single-statement to multi-line edits). With two examples, the
precision increases to 98%, and with three examples, 99%. For all
three cases, recall is above 99%. Because we rely on ReFazer* for
program synthesis, we expect reCode to have similar performance
for comparable tasks.

ReFazer* frames code transformation as a semi-supervised learn-
ing problem. In addition to the concrete edits (input-output pairs)
that the technique uses as instances, the learning process also ex-
ploits access to additional inputs—that is, program subtrees—if they
are provided to the synthesizer. Conveniently, this interface for Re-
Fazer* maps closely with the user experience needs for reCode’s
find-and-replace: the developer’s initial search results become the
additional inputs, and the developer’s subsequent code transfor-
mations correspond to input-output subtrees. ReFazer* applies a
strategy of anti-unification that discards incompatible additional lo-
cations. From reCode’s perspective, this means that we do not need
special handling to support developers who apply simple keywords,
resulting in a superset of the actual locations required.

ReFazer* requires the developer to enter a special mode to pro-
vide examples and feedback to the system. While this can be a
limitation for modeless user interfaces, it is precisely the interac-
tion model for find-and-replace because developers enter an explicit
mode.

Because ReFazer* works on abstract syntax trees, we built a shim
layer that sits between the front-end and ReFazer*; this shim takes
lines of text and rewrites them them into trees and vice versa. Mod-
ern compilers offer built-in APIs to facilitate this, so our integration
work more or less involves invoking the appropriate facilities.

5.3 Limitations and Future Work

User interface. When the number of search results are large, devel-
opers are likely to hit perceptual and cognitive scalability limits that
make it overwhelming to make sense of and navigate the search re-
sults. One solution to push these scalability limits outwards would
be to apply an intelligent clustering algorithm that groups “related”
changes together, and only present one exemplar search result from
that group. For instance, one type of relation might be to might
cluster matches by their relative location in the program, such as
“all bind calls in constructors.” Existing research on detecting code
clones [10, 20, 24] can serve as inspiration for how to group code
transformations in the Summary View.

Although we implemented an inline diff within the editor, our
approach was less-than-ideal due to limitations in the Visual Studio
Code extension API. Specifically, Visual Studio code already pro-
vides a high-fidelity inline diff experience for comparing version
control changes, but this facility is not exposed in a way that ex-
tension authors can use. Although our inline diff is conceptually
similar, it lacks some of the niceties like syntax highlighting, theme
support, and support for diffing long lines.

In our design, we made an assumption that developers in the
find-and-replace will only make relevant edits. That is, only edits
are intended to be used as part of the ReFazer* synthesis process.
However, it is possible that developers might make unrelated, in-
terleaving edits (for example, they might fix a typo while making
a code transformation). A future implementation should consider
options for addressing this scenario. One possibility is to allow
the developer to explicitly pause the mixed-initiative loop when
making an unrelated edit. Another option would to be incorporate
the concept of noisy edits within the ReFazer* engine itself.

Developersmay unintentionally provide ambiguous or conflicting
code transformation examples. For instance, f(a, b) to g(b, a)
is ambiguous if the developer provides an example f(c, c) to g(c,
c) demonstrate renaming and swapping the arguments. Similarly,
code transformations can also be conflicting: a to b and also a to c.
For ambiguous code transformations, the developer must inspect
the transformation closely. For conflicting code transformations,
we surface a generic error message to the developer. However,
an improvement to this user experience would be to provide an
explanation for why one or more code transformations conflict.

Program synthesis engine. ReFazer* is useful for a variety of
code transformation tasks, but currently has some known limita-
tions. Because ReFazer* is tree-based, it works at the node level
and does not perform substring-to-substring transformations. For
example, translate to tranform works, but translateObject to
transformObject would not. To support this scenario, ReFazer*
could be extended by adding FlashFill-style string transforma-
tions [17].

One scenario that is not handled by ReFazer* are code trans-
formations that require reasoning about a countable but arbitrary
number of nodes in the tree. For example, consider the program:

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

of ReFazer* and its full performance benchmarks can be found in
Gao et al. [16].

Gao et al. [16] report that with only one input-output exam-
ple, ReFazer* can learn a correct program transformation with
96% precision (through a benchmark of 12,642 test cases ranging
from single-statement to multi-line edits). With two examples, the
precision increases to 98%, and with three examples, 99%. For all
three cases, recall is above 99%. Because we rely on ReFazer* for
program synthesis, we expect reCode to have similar performance
for comparable tasks.

ReFazer* frames code transformation as a semi-supervised learn-
ing problem. In addition to the concrete edits (input-output pairs)
that the technique uses as instances, the learning process also ex-
ploits access to additional inputs—that is, program subtrees—if they
are provided to the synthesizer. Conveniently, this interface for Re-
Fazer* maps closely with the user experience needs for reCode’s
fnd-and-replace: the developer’s initial search results become the
additional inputs, and the developer’s subsequent code transfor-
mations correspond to input-output subtrees. ReFazer* applies a
strategy of anti-unifcation that discards incompatible additional lo-
cations. From reCode’s perspective, this means that we do not need
special handling to support developers who apply simple keywords,
resulting in a superset of the actual locations required.

ReFazer* requires the developer to enter a special mode to pro-
vide examples and feedback to the system. While this can be a
limitation for modeless user interfaces, it is precisely the interac-
tion model for fnd-and-replace because developers enter an explicit
mode.

Because ReFazer* works on abstract syntax trees, we built a shim
layer that sits between the front-end and ReFazer*; this shim takes
lines of text and rewrites them them into trees and vice versa. Mod-
ern compilers ofer built-in APIs to facilitate this, so our integration
work more or less involves invoking the appropriate facilities.

5.3 Limitations and Future Work

User interface. When the number of search results are large, devel-
opers are likely to hit perceptual and cognitive scalability limits that
make it overwhelming to make sense of and navigate the search re-
sults. One solution to push these scalability limits outwards would
be to apply an intelligent clustering algorithm that groups “related”
changes together, and only present one exemplar search result from
that group. For instance, one type of relation might be to might
cluster matches by their relative location in the program, such as
“all bind calls in constructors.” Existing research on detecting code
clones [10, 20, 24] can serve as inspiration for how to group code
transformations in the Summary View.

Although we implemented an inline dif within the editor, our
approach was less-than-ideal due to limitations in the Visual Studio
Code extension API. Specifcally, Visual Studio code already pro-
vides a high-fdelity inline dif experience for comparing version
control changes, but this facility is not exposed in a way that ex-
tension authors can use. Although our inline dif is conceptually
similar, it lacks some of the niceties like syntax highlighting, theme
support, and support for difng long lines.

In our design, we made an assumption that developers in the
fnd-and-replace will only make relevant edits. That is, only edits
are intended to be used as part of the ReFazer* synthesis process.
However, it is possible that developers might make unrelated, in-
terleaving edits (for example, they might fx a typo while making
a code transformation). A future implementation should consider
options for addressing this scenario. One possibility is to allow
the developer to explicitly pause the mixed-initiative loop when
making an unrelated edit. Another option would to be incorporate
the concept of noisy edits within the ReFazer* engine itself.

Developers may unintentionally provide ambiguous or conficting
code transformation examples. For instance, f(a, b) to g(b, a)
is ambiguous if the developer provides an example f(c, c) to g(c,
c) demonstrate renaming and swapping the arguments. Similarly,
code transformations can also be conficting: a to b and also a to c.
For ambiguous code transformations, the developer must inspect
the transformation closely. For conficting code transformations,
we surface a generic error message to the developer. However,
an improvement to this user experience would be to provide an
explanation for why one or more code transformations confict.

Program synthesis engine. ReFazer* is useful for a variety of
code transformation tasks, but currently has some known limita-
tions. Because ReFazer* is tree-based, it works at the node level
and does not perform substring-to-substring transformations. For
example, translate to tranform works, but translateObject to
transformObject would not. To support this scenario, ReFazer*
could be extended by adding FlashFill-style string transformations [17].

One scenario that is not handled by ReFazer* are code trans-
formations that require reasoning about a countable but arbitrary
number of nodes in the tree. For example, consider the program:
new string[] {

a.ToString(),
b.ToString(),
c.ToString() }

which the developer wants to transform to:
new int[] { a, b, c }.Select(x => x.ToString())

The problem is that this code transformation requires general-
izing to an arbitrary number of elements in the array—this is not
supported in ReFazer*. The current workaround is for the devel-
oper to do repeated fnd-and-replace tasks for arguments of length
one, length two, length three, and so on up to the largest number
of arguments.

ReFazer* does not understand the concept of associated edits.
For example, the Multiloc in our usability evaluation requires
the developer to delete the line with bind, as well as modify the
corresponding function having the same function name. To allow
this, an extension to ReFazer* implements a heuristic that treats
this task as two independent synthesis tasks: one for deleting bind,
and another for the function modifcation. The consequence of this
is that a developer might accidentally delete a bind and forgot to
modify the corresponding function, and ReFazer* would be unable
to detect this error.

ReFazer* is resilient to variations in program text (for example,
whitespace, newlines, and other formatting trivia) and tries to mimic
the formatting that developers do as best-efort. However, there is

which the developer wants to transform to:

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

of ReFazer* and its full performance benchmarks can be found in
Gao et al. [16].

Gao et al. [16] report that with only one input-output exam-
ple, ReFazer* can learn a correct program transformation with
96% precision (through a benchmark of 12,642 test cases ranging
from single-statement to multi-line edits). With two examples, the
precision increases to 98%, and with three examples, 99%. For all
three cases, recall is above 99%. Because we rely on ReFazer* for
program synthesis, we expect reCode to have similar performance
for comparable tasks.

ReFazer* frames code transformation as a semi-supervised learn-
ing problem. In addition to the concrete edits (input-output pairs)
that the technique uses as instances, the learning process also ex-
ploits access to additional inputs—that is, program subtrees—if they
are provided to the synthesizer. Conveniently, this interface for Re-
Fazer* maps closely with the user experience needs for reCode’s
fnd-and-replace: the developer’s initial search results become the
additional inputs, and the developer’s subsequent code transfor-
mations correspond to input-output subtrees. ReFazer* applies a
strategy of anti-unifcation that discards incompatible additional lo-
cations. From reCode’s perspective, this means that we do not need
special handling to support developers who apply simple keywords,
resulting in a superset of the actual locations required.

ReFazer* requires the developer to enter a special mode to pro-
vide examples and feedback to the system. While this can be a
limitation for modeless user interfaces, it is precisely the interac-
tion model for fnd-and-replace because developers enter an explicit
mode.

Because ReFazer* works on abstract syntax trees, we built a shim
layer that sits between the front-end and ReFazer*; this shim takes
lines of text and rewrites them them into trees and vice versa. Mod-
ern compilers ofer built-in APIs to facilitate this, so our integration
work more or less involves invoking the appropriate facilities.

5.3 Limitations and Future Work

User interface. When the number of search results are large, devel-
opers are likely to hit perceptual and cognitive scalability limits that
make it overwhelming to make sense of and navigate the search re-
sults. One solution to push these scalability limits outwards would
be to apply an intelligent clustering algorithm that groups “related”
changes together, and only present one exemplar search result from
that group. For instance, one type of relation might be to might
cluster matches by their relative location in the program, such as
“all bind calls in constructors.” Existing research on detecting code
clones [10, 20, 24] can serve as inspiration for how to group code
transformations in the Summary View.

Although we implemented an inline dif within the editor, our
approach was less-than-ideal due to limitations in the Visual Studio
Code extension API. Specifcally, Visual Studio code already pro-
vides a high-fdelity inline dif experience for comparing version
control changes, but this facility is not exposed in a way that ex-
tension authors can use. Although our inline dif is conceptually
similar, it lacks some of the niceties like syntax highlighting, theme
support, and support for difng long lines.

In our design, we made an assumption that developers in the
fnd-and-replace will only make relevant edits. That is, only edits
are intended to be used as part of the ReFazer* synthesis process.
However, it is possible that developers might make unrelated, in-
terleaving edits (for example, they might fx a typo while making
a code transformation). A future implementation should consider
options for addressing this scenario. One possibility is to allow
the developer to explicitly pause the mixed-initiative loop when
making an unrelated edit. Another option would to be incorporate
the concept of noisy edits within the ReFazer* engine itself.

Developers may unintentionally provide ambiguous or conficting
code transformation examples. For instance, f(a, b) to g(b, a)
is ambiguous if the developer provides an example f(c, c) to g(c,
c) demonstrate renaming and swapping the arguments. Similarly,
code transformations can also be conficting: a to b and also a to c.
For ambiguous code transformations, the developer must inspect
the transformation closely. For conficting code transformations,
we surface a generic error message to the developer. However,
an improvement to this user experience would be to provide an
explanation for why one or more code transformations confict.

Program synthesis engine. ReFazer* is useful for a variety of
code transformation tasks, but currently has some known limita-
tions. Because ReFazer* is tree-based, it works at the node level
and does not perform substring-to-substring transformations. For
example, translate to tranform works, but translateObject to
transformObject would not. To support this scenario, ReFazer*
could be extended by adding FlashFill-style string transformations [17].

One scenario that is not handled by ReFazer* are code trans-
formations that require reasoning about a countable but arbitrary
number of nodes in the tree. For example, consider the program:
new string[] {

a.ToString(),
b.ToString(),
c.ToString() }

which the developer wants to transform to:
new int[] { a, b, c }.Select(x => x.ToString())

The problem is that this code transformation requires general-
izing to an arbitrary number of elements in the array—this is not
supported in ReFazer*. The current workaround is for the devel-
oper to do repeated fnd-and-replace tasks for arguments of length
one, length two, length three, and so on up to the largest number
of arguments.

ReFazer* does not understand the concept of associated edits.
For example, the Multiloc in our usability evaluation requires
the developer to delete the line with bind, as well as modify the
corresponding function having the same function name. To allow
this, an extension to ReFazer* implements a heuristic that treats
this task as two independent synthesis tasks: one for deleting bind,
and another for the function modifcation. The consequence of this
is that a developer might accidentally delete a bind and forgot to
modify the corresponding function, and ReFazer* would be unable
to detect this error.

ReFazer* is resilient to variations in program text (for example,
whitespace, newlines, and other formatting trivia) and tries to mimic
the formatting that developers do as best-efort. However, there is

The problem is that this code transformation requires general-
izing to an arbitrary number of elements in the array—this is not
supported in ReFazer*. The current workaround is for the devel-
oper to do repeated find-and-replace tasks for arguments of length
one, length two, length three, and so on up to the largest number
of arguments.

ReFazer* does not understand the concept of associated edits.
For example, the Multiloc in our usability evaluation requires
the developer to delete the line with bind, as well as modify the
corresponding function having the same function name. To allow
this, an extension to ReFazer* implements a heuristic that treats
this task as two independent synthesis tasks: one for deleting bind,
and another for the function modification. The consequence of this
is that a developer might accidentally delete a bind and forgot to

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

modify the corresponding function, and ReFazer* would be unable
to detect this error.

ReFazer* is resilient to variations in program text (for example,
whitespace, newlines, and other formatting trivia) and tries tomimic
the formatting that developers do as best-effort. However, there is
no guarantee that the suggested code transformation will preserve
formatting in same style as the input example, and this annoys
developers.

6 USABILITY EVALUATION OF RECODE
6.1 Participants and Setup
We recruited 12 participants (10 men, 2 women, mean self-reported
experience of 6.8 years) using the same recruitment survey de-
scribed in Section 4. Participants are denoted as P1-P12 in subse-
quent sections. For programming languages, participants in their
day-to-day tasks report using TypeScript (4), Python (2), C# (8),
C++ (4), with some reporting more than one language. On a 5-
point Likert-type scale, participants reported the frequency of code
transformation tasks to be: very frequently (2), frequently (5), occa-
sionally (3), rarely (2). Participants also reported their familiarity
with VSCode: extremely familiar (2), moderately familiar (8), some-
what familiar (2).

Each session took 45-60 minutes and was conducted remotely
on Microsoft Teams. Developers connected to a remote desktop
environment pre-configured with reCode. All sessions were audio
and video recorded, including participants’ screens.

6.2 Tasks
In the formative study, participants discussed the challenges they
had endured when transforming code and several participants
shared recent transformation tasks. Through the formative study,
we designed four tasks (Table 1) that represent increasingly com-
plicated code transformations. We identified an applicable public
GitHub repository for each task. We then selected a subset of the
files so that the size of each task (“Required changes” in Table 1)
reflects the “murky middle“ (15-50 lines-of-code changes), in which
we expected the participants to make an deliberate decision on
whether to use a tool or perform the task manually.

(1) Constant-string3 replaces a constant string in an entire
program. This transformation is supported by almost all ed-
itors through find-and-replace or rename refactoring. All
participants in the formative study reported frequently mak-
ing this kind of change.

(2) Gather-args4 gathers arguments from chained function
calls into a single call. This transformation requires more
effort since the arguments from the found code needs to be
reused in the replacement. This transformation might be
accomplished by using regex-based find-and-replace with
capture groups. Formative study participants reported that
refactoring function calls is common, but also demand sig-
nificant effort. For example, F2 reported “copy-pasting and
editing lots of function calls in a test suite”.

3The code for Constant-string is adapted from a test file of the svgpath library:
https://github.com/fontello/svgpath.
4The code participants received for Gather-args is one of the transformations required
to migrate from Jest to AVA.js: https://jestjs.io/docs/migration-guide.

(3) Multiline-add5 finds one existing line of code, changes
this line, and appends additional code. The task repre-
sents changes involving a single-line match and multi-line
changes, such as adding a null-pointer check around a line
of code, or breaking up a line of code into multiple lines.
The task requires developers to take extra care to handle
formatting and newlines, and might be accomplished using
a keyboard macro or a multi-line regular expression.

(4) Multiloc6 changes two separate locations that are con-
nected by a common method name (e.g.,

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

no guarantee that the suggested code transformation will preserve
formatting in same style as the input example, and this annoys
developers.

6 USABILITY EVALUATION OF RECODE

6.1 Participants and Setup
We recruited 12 participants (10 men, 2 women, mean self-reported
experience of 6.8 years) using the same recruitment survey de
scribed in Section 4. Participants are denoted as P1-P12 in subse
quent sections. For programming languages, participants in their
day-to-day tasks report using TypeScript (4), Python (2), C# (8),
C++ (4), with some reporting more than one language. On a 5
point Likert-type scale, participants reported the frequency of code
transformation tasks to be: very frequently (2), frequently (5), occa
sionally (3), rarely (2). Participants also reported their familiarity
with VSCode: extremely familiar (2), moderately familiar (8), some
what familiar (2).

Each session took 45-60 minutes and was conducted remotely
on Microsoft Teams. Developers connected to a remote desktop
environment pre-confgured with reCode. All sessions were audio
and video recorded, including participants’ screens.

-
-

-

-

-

6.2 Tasks
In the formative study, participants discussed the challenges they
had endured when transforming code and several participants
shared recent transformation tasks. Through the formative study,
we designed four tasks (Table 1) that represent increasingly com-
plicated code transformations. We identifed an applicable public
GitHub repository for each task. We then selected a subset of the
fles so that the size of each task (“Required changes” in Table 1)
refects the “murky middle“ (15-50 lines-of-code changes), in which
we expected the participants to make an deliberate decision on
whether to use a tool or perform the task manually.

(1) Constant-string replaces a constant string in an entire
program. This transformation is supported by almost all ed-
itors through fnd-and-replace or rename refactoring. All
participants in the formative study reported frequently mak-
ing this kind of change.

(2) Gather-args4 gathers arguments from chained function
calls into a single call. This transformation requires more
efort since the arguments from the found code needs to be
reused in the replacement. This transformation might be
accomplished by using regex-based fnd-and-replace with
capture groups. Formative study participants reported that
refactoring function calls is common, but also demand sig-
nifcant efort. For example, F2 reported “copy-pasting and
editing lots of function calls in a test suite”.

(3) Multiline-add5 fnds one existing line of code, changes
this line, and appends additional code. The task represents
changes involving a single-line match and multi-line changes,

3

such as adding a null-pointer check around a line of code,
or breaking up a line of code into multiple lines. The task
requires developers to take extra care to handle formatting
and newlines, and might be accomplished using a keyboard
macro or a multi-line regular expression.

(4) Multiloc6 changes two separate locations that are con-
nected by a common method name (e.g., func in Table 1).
This transformation involves multiple matches and changes,
which is common in language migration and design-pattern
changes [11]. Specifying such transformations in one regex
or macro is challenging since they depend heavily on syntax
and formatting. Therefore, this task is often accomplished
with more complex tools that manipulate programming lan-
guage structure like Comby [50] or AST transformers such
as jscodeshift.

Since we did not require our participants to have experience with
a specifc programming language, we provided them with a before-
and-after example to illustrate the kind of code transformation they
would need to perform for each task.

3The code for Constant-string is adapted from a test fle of the svgpath library:
https://github.com/fontello/svgpath.
4The code participants received for Gather-args is one of the transformations required
to migrate from Jest to AVA.js: https://jestjs.io/docs/migration-guide.
5The code for Multiline-add is one of the breaking changes introduced by v9 of
next.js. The authors of the library provided a script to automate this complex change:
https://nextjs.org/docs/upgrading.

6.3 Protocol
To reacquaint participants with code transformation tasks, partic-
ipants started by performing a warm-up exercise using VSCode
without reCode. In this exercise, we asked participants to change
from t.is(a, b) to expect(a).toEqual(b) (17 lines in 5 fles). We
then showed participants a short reCode tutorial. Afterwards, they
performed the remaining tasks in random order using VSCode
with reCode (Section 5). Participants were free to access online
resources during all tasks.

After completing the transformation tasks, participants were
given a questionnaire. The questionnaire asked them to self-evaluate
the difculty and tediousness of each task on a 5-point Likert scale
(Strongly disagree–Strongly agree). To validate the relevance of the
tasks, we also included a question asking how frequently partici-
pants encountered similar tasks in their work. The questionnaire
also asked if the participant would use a production version of
reCode. At the end of the evaluation, we conducted a retrospective
interview to gather feedback about reCode.

7 RESULTS
In this section, we describe our participants’ task performance, their
responses to the follow-up questionnaire, and feedback from the
retrospective interview.

7.1 Efciency and Efectiveness
Table 2 shows the average time taken and number of participants
that successfully completed each task. After each task, participants
were asked to rate the frequency of which they encounter similar
tasks, the difculty of the task, and the tediousness of the task. All
participants were able to complete Constant-string, Gather-
args, and Multiline-add using reCode. The average completion
time was less than than fve minutes. Finally, two participants failed
to complete (P1, P2) Multiloc because of an unexpected failure

6Multiloc is a structural change for using a new language feature of JavaScript
ES6. An implementation for this particular task can be found in react-codemod:
https://github.com/reactjs/react-codemod.

in Table 1).
This transformation involves multiple matches and changes,
which is common in language migration and design-pattern
changes [11]. Specifying such transformations in one regex
or macro is challenging since they depend heavily on syntax
and formatting. Therefore, this task is often accomplished
with more complex tools that manipulate programming lan-
guage structure like Comby [50] or AST transformers such
as jscodeshift.

Since we did not require our participants to have experience with
a specific programming language, we provided them with a before-
and-after example to illustrate the kind of code transformation they
would need to perform for each task.

6.3 Protocol
To reacquaint participants with code transformation tasks, partic-
ipants started by performing a warm-up exercise using VSCode
without reCode. In this exercise, we asked participants to change
from

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

no guarantee that the suggested code transformation will preserve
formatting in same style as the input example, and this annoys
developers.

6 USABILITY EVALUATION OF RECODE

6.1 Participants and Setup
We recruited 12 participants (10 men, 2 women, mean self-reported
experience of 6.8 years) using the same recruitment survey de
scribed in Section 4. Participants are denoted as P1-P12 in subse
quent sections. For programming languages, participants in their
day-to-day tasks report using TypeScript (4), Python (2), C# (8),
C++ (4), with some reporting more than one language. On a 5
point Likert-type scale, participants reported the frequency of code
transformation tasks to be: very frequently (2), frequently (5), occa
sionally (3), rarely (2). Participants also reported their familiarity
with VSCode: extremely familiar (2), moderately familiar (8), some
what familiar (2).

Each session took 45-60 minutes and was conducted remotely
on Microsoft Teams. Developers connected to a remote desktop
environment pre-confgured with reCode. All sessions were audio
and video recorded, including participants’ screens.

-
-

-

-

-

6.2 Tasks
In the formative study, participants discussed the challenges they
had endured when transforming code and several participants
shared recent transformation tasks. Through the formative study,
we designed four tasks (Table 1) that represent increasingly com-
plicated code transformations. We identifed an applicable public
GitHub repository for each task. We then selected a subset of the
fles so that the size of each task (“Required changes” in Table 1)
refects the “murky middle“ (15-50 lines-of-code changes), in which
we expected the participants to make an deliberate decision on
whether to use a tool or perform the task manually.

(1) Constant-string replaces a constant string in an entire
program. This transformation is supported by almost all ed-
itors through fnd-and-replace or rename refactoring. All
participants in the formative study reported frequently mak-
ing this kind of change.

(2) Gather-args4 gathers arguments from chained function
calls into a single call. This transformation requires more
efort since the arguments from the found code needs to be
reused in the replacement. This transformation might be
accomplished by using regex-based fnd-and-replace with
capture groups. Formative study participants reported that
refactoring function calls is common, but also demand sig-
nifcant efort. For example, F2 reported “copy-pasting and
editing lots of function calls in a test suite”.

(3) Multiline-add5 fnds one existing line of code, changes
this line, and appends additional code. The task represents
changes involving a single-line match and multi-line changes,

3

such as adding a null-pointer check around a line of code,
or breaking up a line of code into multiple lines. The task
requires developers to take extra care to handle formatting
and newlines, and might be accomplished using a keyboard
macro or a multi-line regular expression.

(4) Multiloc6 changes two separate locations that are con-
nected by a common method name (e.g., func in Table 1).
This transformation involves multiple matches and changes,
which is common in language migration and design-pattern
changes [11]. Specifying such transformations in one regex
or macro is challenging since they depend heavily on syntax
and formatting. Therefore, this task is often accomplished
with more complex tools that manipulate programming lan-
guage structure like Comby [50] or AST transformers such
as jscodeshift.

Since we did not require our participants to have experience with
a specifc programming language, we provided them with a before-
and-after example to illustrate the kind of code transformation they
would need to perform for each task.

3The code for Constant-string is adapted from a test fle of the svgpath library:
https://github.com/fontello/svgpath.
4The code participants received for Gather-args is one of the transformations required
to migrate from Jest to AVA.js: https://jestjs.io/docs/migration-guide.
5The code for Multiline-add is one of the breaking changes introduced by v9 of
next.js. The authors of the library provided a script to automate this complex change:
https://nextjs.org/docs/upgrading.

6.3 Protocol
To reacquaint participants with code transformation tasks, partic-
ipants started by performing a warm-up exercise using VSCode
without reCode. In this exercise, we asked participants to change
from t.is(a, b) to expect(a).toEqual(b) (17 lines in 5 fles). We
then showed participants a short reCode tutorial. Afterwards, they
performed the remaining tasks in random order using VSCode
with reCode (Section 5). Participants were free to access online
resources during all tasks.

After completing the transformation tasks, participants were
given a questionnaire. The questionnaire asked them to self-evaluate
the difculty and tediousness of each task on a 5-point Likert scale
(Strongly disagree–Strongly agree). To validate the relevance of the
tasks, we also included a question asking how frequently partici-
pants encountered similar tasks in their work. The questionnaire
also asked if the participant would use a production version of
reCode. At the end of the evaluation, we conducted a retrospective
interview to gather feedback about reCode.

7 RESULTS
In this section, we describe our participants’ task performance, their
responses to the follow-up questionnaire, and feedback from the
retrospective interview.

7.1 Efciency and Efectiveness
Table 2 shows the average time taken and number of participants
that successfully completed each task. After each task, participants
were asked to rate the frequency of which they encounter similar
tasks, the difculty of the task, and the tediousness of the task. All
participants were able to complete Constant-string, Gather-
args, and Multiline-add using reCode. The average completion
time was less than than fve minutes. Finally, two participants failed
to complete (P1, P2) Multiloc because of an unexpected failure

6Multiloc is a structural change for using a new language feature of JavaScript
ES6. An implementation for this particular task can be found in react-codemod:
https://github.com/reactjs/react-codemod.

to

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

no guarantee that the suggested code transformation will preserve
formatting in same style as the input example, and this annoys
developers.

6 USABILITY EVALUATION OF RECODE

6.1 Participants and Setup
We recruited 12 participants (10 men, 2 women, mean self-reported
experience of 6.8 years) using the same recruitment survey de
scribed in Section 4. Participants are denoted as P1-P12 in subse
quent sections. For programming languages, participants in their
day-to-day tasks report using TypeScript (4), Python (2), C# (8),
C++ (4), with some reporting more than one language. On a 5
point Likert-type scale, participants reported the frequency of code
transformation tasks to be: very frequently (2), frequently (5), occa
sionally (3), rarely (2). Participants also reported their familiarity
with VSCode: extremely familiar (2), moderately familiar (8), some
what familiar (2).

Each session took 45-60 minutes and was conducted remotely
on Microsoft Teams. Developers connected to a remote desktop
environment pre-confgured with reCode. All sessions were audio
and video recorded, including participants’ screens.

-
-

-

-

-

6.2 Tasks
In the formative study, participants discussed the challenges they
had endured when transforming code and several participants
shared recent transformation tasks. Through the formative study,
we designed four tasks (Table 1) that represent increasingly com-
plicated code transformations. We identifed an applicable public
GitHub repository for each task. We then selected a subset of the
fles so that the size of each task (“Required changes” in Table 1)
refects the “murky middle“ (15-50 lines-of-code changes), in which
we expected the participants to make an deliberate decision on
whether to use a tool or perform the task manually.

(1) Constant-string replaces a constant string in an entire
program. This transformation is supported by almost all ed-
itors through fnd-and-replace or rename refactoring. All
participants in the formative study reported frequently mak-
ing this kind of change.

(2) Gather-args4 gathers arguments from chained function
calls into a single call. This transformation requires more
efort since the arguments from the found code needs to be
reused in the replacement. This transformation might be
accomplished by using regex-based fnd-and-replace with
capture groups. Formative study participants reported that
refactoring function calls is common, but also demand sig-
nifcant efort. For example, F2 reported “copy-pasting and
editing lots of function calls in a test suite”.

(3) Multiline-add5 fnds one existing line of code, changes
this line, and appends additional code. The task represents
changes involving a single-line match and multi-line changes,

3

such as adding a null-pointer check around a line of code,
or breaking up a line of code into multiple lines. The task
requires developers to take extra care to handle formatting
and newlines, and might be accomplished using a keyboard
macro or a multi-line regular expression.

(4) Multiloc6 changes two separate locations that are con-
nected by a common method name (e.g., func in Table 1).
This transformation involves multiple matches and changes,
which is common in language migration and design-pattern
changes [11]. Specifying such transformations in one regex
or macro is challenging since they depend heavily on syntax
and formatting. Therefore, this task is often accomplished
with more complex tools that manipulate programming lan-
guage structure like Comby [50] or AST transformers such
as jscodeshift.

Since we did not require our participants to have experience with
a specifc programming language, we provided them with a before-
and-after example to illustrate the kind of code transformation they
would need to perform for each task.

3The code for Constant-string is adapted from a test fle of the svgpath library:
https://github.com/fontello/svgpath.
4The code participants received for Gather-args is one of the transformations required
to migrate from Jest to AVA.js: https://jestjs.io/docs/migration-guide.
5The code for Multiline-add is one of the breaking changes introduced by v9 of
next.js. The authors of the library provided a script to automate this complex change:
https://nextjs.org/docs/upgrading.

6.3 Protocol
To reacquaint participants with code transformation tasks, partic-
ipants started by performing a warm-up exercise using VSCode
without reCode. In this exercise, we asked participants to change
from t.is(a, b) to expect(a).toEqual(b) (17 lines in 5 fles). We
then showed participants a short reCode tutorial. Afterwards, they
performed the remaining tasks in random order using VSCode
with reCode (Section 5). Participants were free to access online
resources during all tasks.

After completing the transformation tasks, participants were
given a questionnaire. The questionnaire asked them to self-evaluate
the difculty and tediousness of each task on a 5-point Likert scale
(Strongly disagree–Strongly agree). To validate the relevance of the
tasks, we also included a question asking how frequently partici-
pants encountered similar tasks in their work. The questionnaire
also asked if the participant would use a production version of
reCode. At the end of the evaluation, we conducted a retrospective
interview to gather feedback about reCode.

7 RESULTS
In this section, we describe our participants’ task performance, their
responses to the follow-up questionnaire, and feedback from the
retrospective interview.

7.1 Efciency and Efectiveness
Table 2 shows the average time taken and number of participants
that successfully completed each task. After each task, participants
were asked to rate the frequency of which they encounter similar
tasks, the difculty of the task, and the tediousness of the task. All
participants were able to complete Constant-string, Gather-
args, and Multiline-add using reCode. The average completion
time was less than than fve minutes. Finally, two participants failed
to complete (P1, P2) Multiloc because of an unexpected failure

6Multiloc is a structural change for using a new language feature of JavaScript
ES6. An implementation for this particular task can be found in react-codemod:
https://github.com/reactjs/react-codemod.

(17 lines in 5 files). We
then showed participants a short reCode tutorial. Afterwards, they
performed the remaining tasks in random order using VSCode
with reCode (Section 5). Participants were free to access online
resources during all tasks.

After completing the transformation tasks, participants were
given a questionnaire. The questionnaire asked them to self-
evaluate the difficulty and tediousness of each task on a 5-point
Likert scale (Strongly disagree–Strongly agree). To validate the
relevance of the tasks, we also included a question asking how fre-
quently participants encountered similar tasks in their work. The
questionnaire also asked if the participant would use a production
version of reCode. At the end of the evaluation, we conducted a
retrospective interview to gather feedback about reCode.

7 RESULTS
In this section, we describe our participants’ task performance, their
responses to the follow-up questionnaire, and feedback from the
retrospective interview.

7.1 Efficiency and Effectiveness
Table 2 shows the average time taken and number of participants
that successfully completed each task. After each task, participants
were asked to rate the frequency of which they encounter similar
5The code for Multiline-add is one of the breaking changes introduced by v9 of
next.js. The authors of the library provided a script to automate this complex change:
https://nextjs.org/docs/upgrading.
6Multiloc is a structural change for using a new language feature of JavaScript
ES6. An implementation for this particular task can be found in react-codemod:
https://github.com/reactjs/react-codemod.

https://github.com/fontello/svgpath
https://jestjs.io/docs/migration-guide
https://nextjs.org/docs/upgrading
https://github.com/reactjs/react-codemod

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

Table 1: Tasks for the usability evaluation. The tasks reflect the range of scenarios identified in the formative interviews: from constant
strings to tree transformations. Each task represents a type of code edits developers often encounter.reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

Task Code to fnd Replacement code Task type Required changes
Constant-
string

translate transform Plain text replacement 14 lines in 2 fles

Gather-args expect(a).toEqual(b); same(a, b); Function refactoring 17 lines in 5 fles

Multiline- export default Box
export default withAmp(Box) export const config API migration 28 lines in 13 fles add = { withAmp: true }

class Example {
constructor() {

class Example {
this.func =

constructor() {}Multiloc this.func.bind(this); AST transformation 50 lines in 10 fles
func = () => {}

}
}

func() {}
}

Table 1: Tasks for the usability evaluation. The tasks refect the range of scenarios identifed in the formative interviews: from constant
strings to tree transformations. Each task represents a type of code edits developers often encounter.

Frequency of task Difculty rating Tediousness rating

Task Avg. time taken # completed Med. Dist. Med. Dist. Med. Dist.

Constant-string 1:35 12 5 1.5 2

Gather-args 3:09 12 4 2 2

Multiline-add 4:34 12 4 1.5 1.5

Multiloc 3:22 10 3 2 2

Table 2: Summary results for each task. The number of participants that completed each task and the average task time are shown. After
each task, they were asked to rate (1) “this task was difcult to complete;” (2) “this task was tedius;” and (3) “I encounter similar tasks in my
work.” The rating scale as from left-to-right was: Strongly disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4),
Strongly Agree (5). Median values precede each distribution.

in the reCode synthesizer. The most complicated task, Multiloc,
also appeared least frequently in participants daily work. Most
participants encounter all other tasks frequently.

7.2 Participant Feedback
We group participants’ feedback using the steps from the reCode
user experience: Find, Edit, and Generalize. Finally, we report par-
ticipants’ feedback on the overall user experience.

Find. All participants initiated the reCode experience using the
“Find” feature very early on: participants either immediately started
using “Find,” or they poked around a few fles frst, made a guess
about a keyword, and then used “Find” to search for that keyword.

Most participants (P1, P2, P3, P5, P7, P8, P9, P10, P11, P12) used
an overly broad keyword rather than an elaborate but precise ex-
pression (P4, P6). For instance, when performing Gather-args,
P4 and P6 searched for expect\((.*)\).toEqual\((.*)\) , whereas all
other participants searched for toEqual initially. Participants later
added punctuation around the keyword as an ad hoc solution to
narrow down the scope (for example,).toEqual(), because they
“usually search for something very generic and see if I need to nar-
row down my search later” (P9). Some participants reported that

this is “what [they] would have done anyway” (P2), with or without
reCode.

Some participants expressed a desire for “structural search to
prevent over-matching, because bind can appear anywhere and
what I really want to fnd is all function calls of bind ” (P1, P4).
However, these participants struggled to achieve this because they
“don’t know how [they] would say it” (P1) and resorted to adding
simple punctuation around the search term because it was “the best
they could do” (P1).

After performing the fnd, all participants (P1-P12) manually
inspected more than one results before performing any changes
because they “wanted to see all the possible cases to see if [they’re]
overmatching” (P3). When navigating through the fnd results, they
liked the “holistic view of all the results” (P1) in the Summary View
Figure 2 A .

Change. After reCode displayed the fnd results, all participants
(P1-12) proceeded to directly edit one of the found code locations.

Direct edits helped participants make sense of the transformation
and estimate “if it’s easy enough to go through things manually. If
it takes more than 5 minutes, [they’ll] go for other tools” (P7). After
editing one or more fnd results, participants noticed reCode’s
suggestions inline and noted that reCode “fgured out what [they]

Table 2: Summary results for each task. The number of participants that completed each task and the average task time are shown. After
each task, they were asked to rate (1) “this task was difficult to complete;” (2) “this task was tedius;” and (3) “I encounter similar tasks in my
work.” The rating scale as from left-to-right was:

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

Task Code to fnd Replacement code Task type Required changes
Constant-
string

translate transform Plain text replacement 14 lines in 2 fles

Gather-args expect(a).toEqual(b); same(a, b); Function refactoring 17 lines in 5 fles

Multiline- export default Box
export default withAmp(Box) export const config API migration 28 lines in 13 fles add = { withAmp: true }

class Example {
constructor() {

class Example {
this.func =

constructor() {}Multiloc this.func.bind(this); AST transformation 50 lines in 10 fles
func = () => {}

}
}

func() {}
}

Table 1: Tasks for the usability evaluation. The tasks refect the range of scenarios identifed in the formative interviews: from constant
strings to tree transformations. Each task represents a type of code edits developers often encounter.

Frequency of task Difculty rating Tediousness rating

Task Avg. time taken # completed Med. Dist. Med. Dist. Med. Dist.

Constant-string 1:35 12 5 1.5 2

Gather-args 3:09 12 4 2 2

Multiline-add 4:34 12 4 1.5 1.5

Multiloc 3:22 10 3 2 2

Table 2: Summary results for each task. The number of participants that completed each task and the average task time are shown. After
each task, they were asked to rate (1) “this task was difcult to complete;” (2) “this task was tedius;” and (3) “I encounter similar tasks in my
work.” The rating scale as from left-to-right was: Strongly disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4),
Strongly Agree (5). Median values precede each distribution.

in the reCode synthesizer. The most complicated task, Multiloc,
also appeared least frequently in participants daily work. Most
participants encounter all other tasks frequently.

7.2 Participant Feedback
We group participants’ feedback using the steps from the reCode
user experience: Find, Edit, and Generalize. Finally, we report par-
ticipants’ feedback on the overall user experience.

Find. All participants initiated the reCode experience using the
“Find” feature very early on: participants either immediately started
using “Find,” or they poked around a few fles frst, made a guess
about a keyword, and then used “Find” to search for that keyword.

Most participants (P1, P2, P3, P5, P7, P8, P9, P10, P11, P12) used
an overly broad keyword rather than an elaborate but precise ex-
pression (P4, P6). For instance, when performing Gather-args,
P4 and P6 searched for expect\((.*)\).toEqual\((.*)\) , whereas all
other participants searched for toEqual initially. Participants later
added punctuation around the keyword as an ad hoc solution to
narrow down the scope (for example,).toEqual(), because they
“usually search for something very generic and see if I need to nar-
row down my search later” (P9). Some participants reported that

this is “what [they] would have done anyway” (P2), with or without
reCode.

Some participants expressed a desire for “structural search to
prevent over-matching, because bind can appear anywhere and
what I really want to fnd is all function calls of bind ” (P1, P4).
However, these participants struggled to achieve this because they
“don’t know how [they] would say it” (P1) and resorted to adding
simple punctuation around the search term because it was “the best
they could do” (P1).

After performing the fnd, all participants (P1-P12) manually
inspected more than one results before performing any changes
because they “wanted to see all the possible cases to see if [they’re]
overmatching” (P3). When navigating through the fnd results, they
liked the “holistic view of all the results” (P1) in the Summary View
Figure 2 A .

Change. After reCode displayed the fnd results, all participants
(P1-12) proceeded to directly edit one of the found code locations.

Direct edits helped participants make sense of the transformation
and estimate “if it’s easy enough to go through things manually. If
it takes more than 5 minutes, [they’ll] go for other tools” (P7). After
editing one or more fnd results, participants noticed reCode’s
suggestions inline and noted that reCode “fgured out what [they]

disagree (1),

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

Task Code to fnd Replacement code Task type Required changes
Constant-
string

translate transform Plain text replacement 14 lines in 2 fles

Gather-args expect(a).toEqual(b); same(a, b); Function refactoring 17 lines in 5 fles

Multiline- export default Box
export default withAmp(Box) export const config API migration 28 lines in 13 fles add = { withAmp: true }

class Example {
constructor() {

class Example {
this.func =

constructor() {}Multiloc this.func.bind(this); AST transformation 50 lines in 10 fles
func = () => {}

}
}

func() {}
}

Table 1: Tasks for the usability evaluation. The tasks refect the range of scenarios identifed in the formative interviews: from constant
strings to tree transformations. Each task represents a type of code edits developers often encounter.

Frequency of task Difculty rating Tediousness rating

Task Avg. time taken # completed Med. Dist. Med. Dist. Med. Dist.

Constant-string 1:35 12 5 1.5 2

Gather-args 3:09 12 4 2 2

Multiline-add 4:34 12 4 1.5 1.5

Multiloc 3:22 10 3 2 2

Table 2: Summary results for each task. The number of participants that completed each task and the average task time are shown. After
each task, they were asked to rate (1) “this task was difcult to complete;” (2) “this task was tedius;” and (3) “I encounter similar tasks in my
work.” The rating scale as from left-to-right was: Strongly disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4),
Strongly Agree (5). Median values precede each distribution.

in the reCode synthesizer. The most complicated task, Multiloc,
also appeared least frequently in participants daily work. Most
participants encounter all other tasks frequently.

7.2 Participant Feedback
We group participants’ feedback using the steps from the reCode
user experience: Find, Edit, and Generalize. Finally, we report par-
ticipants’ feedback on the overall user experience.

Find. All participants initiated the reCode experience using the
“Find” feature very early on: participants either immediately started
using “Find,” or they poked around a few fles frst, made a guess
about a keyword, and then used “Find” to search for that keyword.

Most participants (P1, P2, P3, P5, P7, P8, P9, P10, P11, P12) used
an overly broad keyword rather than an elaborate but precise ex-
pression (P4, P6). For instance, when performing Gather-args,
P4 and P6 searched for expect\((.*)\).toEqual\((.*)\) , whereas all
other participants searched for toEqual initially. Participants later
added punctuation around the keyword as an ad hoc solution to
narrow down the scope (for example,).toEqual(), because they
“usually search for something very generic and see if I need to nar-
row down my search later” (P9). Some participants reported that

this is “what [they] would have done anyway” (P2), with or without
reCode.

Some participants expressed a desire for “structural search to
prevent over-matching, because bind can appear anywhere and
what I really want to fnd is all function calls of bind ” (P1, P4).
However, these participants struggled to achieve this because they
“don’t know how [they] would say it” (P1) and resorted to adding
simple punctuation around the search term because it was “the best
they could do” (P1).

After performing the fnd, all participants (P1-P12) manually
inspected more than one results before performing any changes
because they “wanted to see all the possible cases to see if [they’re]
overmatching” (P3). When navigating through the fnd results, they
liked the “holistic view of all the results” (P1) in the Summary View
Figure 2 A .

Change. After reCode displayed the fnd results, all participants
(P1-12) proceeded to directly edit one of the found code locations.

Direct edits helped participants make sense of the transformation
and estimate “if it’s easy enough to go through things manually. If
it takes more than 5 minutes, [they’ll] go for other tools” (P7). After
editing one or more fnd results, participants noticed reCode’s
suggestions inline and noted that reCode “fgured out what [they]

Disagree (2),

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

Task Code to fnd Replacement code Task type Required changes
Constant-
string

translate transform Plain text replacement 14 lines in 2 fles

Gather-args expect(a).toEqual(b); same(a, b); Function refactoring 17 lines in 5 fles

Multiline- export default Box
export default withAmp(Box) export const config API migration 28 lines in 13 fles add = { withAmp: true }

class Example {
constructor() {

class Example {
this.func =

constructor() {}Multiloc this.func.bind(this); AST transformation 50 lines in 10 fles
func = () => {}

}
}

func() {}
}

Table 1: Tasks for the usability evaluation. The tasks refect the range of scenarios identifed in the formative interviews: from constant
strings to tree transformations. Each task represents a type of code edits developers often encounter.

Frequency of task Difculty rating Tediousness rating

Task Avg. time taken # completed Med. Dist. Med. Dist. Med. Dist.

Constant-string 1:35 12 5 1.5 2

Gather-args 3:09 12 4 2 2

Multiline-add 4:34 12 4 1.5 1.5

Multiloc 3:22 10 3 2 2

Table 2: Summary results for each task. The number of participants that completed each task and the average task time are shown. After
each task, they were asked to rate (1) “this task was difcult to complete;” (2) “this task was tedius;” and (3) “I encounter similar tasks in my
work.” The rating scale as from left-to-right was: Strongly disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4),
Strongly Agree (5). Median values precede each distribution.

in the reCode synthesizer. The most complicated task, Multiloc,
also appeared least frequently in participants daily work. Most
participants encounter all other tasks frequently.

7.2 Participant Feedback
We group participants’ feedback using the steps from the reCode
user experience: Find, Edit, and Generalize. Finally, we report par-
ticipants’ feedback on the overall user experience.

Find. All participants initiated the reCode experience using the
“Find” feature very early on: participants either immediately started
using “Find,” or they poked around a few fles frst, made a guess
about a keyword, and then used “Find” to search for that keyword.

Most participants (P1, P2, P3, P5, P7, P8, P9, P10, P11, P12) used
an overly broad keyword rather than an elaborate but precise ex-
pression (P4, P6). For instance, when performing Gather-args,
P4 and P6 searched for expect\((.*)\).toEqual\((.*)\) , whereas all
other participants searched for toEqual initially. Participants later
added punctuation around the keyword as an ad hoc solution to
narrow down the scope (for example,).toEqual(), because they
“usually search for something very generic and see if I need to nar-
row down my search later” (P9). Some participants reported that

this is “what [they] would have done anyway” (P2), with or without
reCode.

Some participants expressed a desire for “structural search to
prevent over-matching, because bind can appear anywhere and
what I really want to fnd is all function calls of bind ” (P1, P4).
However, these participants struggled to achieve this because they
“don’t know how [they] would say it” (P1) and resorted to adding
simple punctuation around the search term because it was “the best
they could do” (P1).

After performing the fnd, all participants (P1-P12) manually
inspected more than one results before performing any changes
because they “wanted to see all the possible cases to see if [they’re]
overmatching” (P3). When navigating through the fnd results, they
liked the “holistic view of all the results” (P1) in the Summary View
Figure 2 A .

Change. After reCode displayed the fnd results, all participants
(P1-12) proceeded to directly edit one of the found code locations.

Direct edits helped participants make sense of the transformation
and estimate “if it’s easy enough to go through things manually. If
it takes more than 5 minutes, [they’ll] go for other tools” (P7). After
editing one or more fnd results, participants noticed reCode’s
suggestions inline and noted that reCode “fgured out what [they]

Neither agree nor disagree (3),

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

Task Code to fnd Replacement code Task type Required changes
Constant-
string

translate transform Plain text replacement 14 lines in 2 fles

Gather-args expect(a).toEqual(b); same(a, b); Function refactoring 17 lines in 5 fles

Multiline- export default Box
export default withAmp(Box) export const config API migration 28 lines in 13 fles add = { withAmp: true }

class Example {
constructor() {

class Example {
this.func =

constructor() {}Multiloc this.func.bind(this); AST transformation 50 lines in 10 fles
func = () => {}

}
}

func() {}
}

Table 1: Tasks for the usability evaluation. The tasks refect the range of scenarios identifed in the formative interviews: from constant
strings to tree transformations. Each task represents a type of code edits developers often encounter.

Frequency of task Difculty rating Tediousness rating

Task Avg. time taken # completed Med. Dist. Med. Dist. Med. Dist.

Constant-string 1:35 12 5 1.5 2

Gather-args 3:09 12 4 2 2

Multiline-add 4:34 12 4 1.5 1.5

Multiloc 3:22 10 3 2 2

Table 2: Summary results for each task. The number of participants that completed each task and the average task time are shown. After
each task, they were asked to rate (1) “this task was difcult to complete;” (2) “this task was tedius;” and (3) “I encounter similar tasks in my
work.” The rating scale as from left-to-right was: Strongly disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4),
Strongly Agree (5). Median values precede each distribution.

in the reCode synthesizer. The most complicated task, Multiloc,
also appeared least frequently in participants daily work. Most
participants encounter all other tasks frequently.

7.2 Participant Feedback
We group participants’ feedback using the steps from the reCode
user experience: Find, Edit, and Generalize. Finally, we report par-
ticipants’ feedback on the overall user experience.

Find. All participants initiated the reCode experience using the
“Find” feature very early on: participants either immediately started
using “Find,” or they poked around a few fles frst, made a guess
about a keyword, and then used “Find” to search for that keyword.

Most participants (P1, P2, P3, P5, P7, P8, P9, P10, P11, P12) used
an overly broad keyword rather than an elaborate but precise ex-
pression (P4, P6). For instance, when performing Gather-args,
P4 and P6 searched for expect\((.*)\).toEqual\((.*)\) , whereas all
other participants searched for toEqual initially. Participants later
added punctuation around the keyword as an ad hoc solution to
narrow down the scope (for example,).toEqual(), because they
“usually search for something very generic and see if I need to nar-
row down my search later” (P9). Some participants reported that

this is “what [they] would have done anyway” (P2), with or without
reCode.

Some participants expressed a desire for “structural search to
prevent over-matching, because bind can appear anywhere and
what I really want to fnd is all function calls of bind ” (P1, P4).
However, these participants struggled to achieve this because they
“don’t know how [they] would say it” (P1) and resorted to adding
simple punctuation around the search term because it was “the best
they could do” (P1).

After performing the fnd, all participants (P1-P12) manually
inspected more than one results before performing any changes
because they “wanted to see all the possible cases to see if [they’re]
overmatching” (P3). When navigating through the fnd results, they
liked the “holistic view of all the results” (P1) in the Summary View
Figure 2 A .

Change. After reCode displayed the fnd results, all participants
(P1-12) proceeded to directly edit one of the found code locations.

Direct edits helped participants make sense of the transformation
and estimate “if it’s easy enough to go through things manually. If
it takes more than 5 minutes, [they’ll] go for other tools” (P7). After
editing one or more fnd results, participants noticed reCode’s
suggestions inline and noted that reCode “fgured out what [they]

Agree (4),

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

Task Code to fnd Replacement code Task type Required changes
Constant-
string

translate transform Plain text replacement 14 lines in 2 fles

Gather-args expect(a).toEqual(b); same(a, b); Function refactoring 17 lines in 5 fles

Multiline- export default Box
export default withAmp(Box) export const config API migration 28 lines in 13 fles add = { withAmp: true }

class Example {
constructor() {

class Example {
this.func =

constructor() {}Multiloc this.func.bind(this); AST transformation 50 lines in 10 fles
func = () => {}

}
}

func() {}
}

Table 1: Tasks for the usability evaluation. The tasks refect the range of scenarios identifed in the formative interviews: from constant
strings to tree transformations. Each task represents a type of code edits developers often encounter.

Frequency of task Difculty rating Tediousness rating

Task Avg. time taken # completed Med. Dist. Med. Dist. Med. Dist.

Constant-string 1:35 12 5 1.5 2

Gather-args 3:09 12 4 2 2

Multiline-add 4:34 12 4 1.5 1.5

Multiloc 3:22 10 3 2 2

Table 2: Summary results for each task. The number of participants that completed each task and the average task time are shown. After
each task, they were asked to rate (1) “this task was difcult to complete;” (2) “this task was tedius;” and (3) “I encounter similar tasks in my
work.” The rating scale as from left-to-right was: Strongly disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4),
Strongly Agree (5). Median values precede each distribution.

in the reCode synthesizer. The most complicated task, Multiloc,
also appeared least frequently in participants daily work. Most
participants encounter all other tasks frequently.

7.2 Participant Feedback
We group participants’ feedback using the steps from the reCode
user experience: Find, Edit, and Generalize. Finally, we report par-
ticipants’ feedback on the overall user experience.

Find. All participants initiated the reCode experience using the
“Find” feature very early on: participants either immediately started
using “Find,” or they poked around a few fles frst, made a guess
about a keyword, and then used “Find” to search for that keyword.

Most participants (P1, P2, P3, P5, P7, P8, P9, P10, P11, P12) used
an overly broad keyword rather than an elaborate but precise ex-
pression (P4, P6). For instance, when performing Gather-args,
P4 and P6 searched for expect\((.*)\).toEqual\((.*)\) , whereas all
other participants searched for toEqual initially. Participants later
added punctuation around the keyword as an ad hoc solution to
narrow down the scope (for example,).toEqual(), because they
“usually search for something very generic and see if I need to nar-
row down my search later” (P9). Some participants reported that

this is “what [they] would have done anyway” (P2), with or without
reCode.

Some participants expressed a desire for “structural search to
prevent over-matching, because bind can appear anywhere and
what I really want to fnd is all function calls of bind ” (P1, P4).
However, these participants struggled to achieve this because they
“don’t know how [they] would say it” (P1) and resorted to adding
simple punctuation around the search term because it was “the best
they could do” (P1).

After performing the fnd, all participants (P1-P12) manually
inspected more than one results before performing any changes
because they “wanted to see all the possible cases to see if [they’re]
overmatching” (P3). When navigating through the fnd results, they
liked the “holistic view of all the results” (P1) in the Summary View
Figure 2 A .

Change. After reCode displayed the fnd results, all participants
(P1-12) proceeded to directly edit one of the found code locations.

Direct edits helped participants make sense of the transformation
and estimate “if it’s easy enough to go through things manually. If
it takes more than 5 minutes, [they’ll] go for other tools” (P7). After
editing one or more fnd results, participants noticed reCode’s
suggestions inline and noted that reCode “fgured out what [they]

Strongly
Agree (5). Median values precede each distribution.

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

Task Code to fnd Replacement code Task type Required changes
Constant-
string

translate transform Plain text replacement 14 lines in 2 fles

Gather-args expect(a).toEqual(b); same(a, b); Function refactoring 17 lines in 5 fles

Multiline- export default Box
export default withAmp(Box) export const config API migration 28 lines in 13 fles add = { withAmp: true }

class Example {
constructor() {

class Example {
this.func =

constructor() {}Multiloc this.func.bind(this); AST transformation 50 lines in 10 fles
func = () => {}

}
}

func() {}
}

Table 1: Tasks for the usability evaluation. The tasks refect the range of scenarios identifed in the formative interviews: from constant
strings to tree transformations. Each task represents a type of code edits developers often encounter.

Frequency of task Difculty rating Tediousness rating

Task Avg. time taken # completed Med. Dist. Med. Dist. Med. Dist.

Constant-string 1:35 12 5 1.5 2

Gather-args 3:09 12 4 2 2

Multiline-add 4:34 12 4 1.5 1.5

Multiloc 3:22 10 3 2 2

Table 2: Summary results for each task. The number of participants that completed each task and the average task time are shown. After
each task, they were asked to rate (1) “this task was difcult to complete;” (2) “this task was tedius;” and (3) “I encounter similar tasks in my
work.” The rating scale as from left-to-right was: Strongly disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4),
Strongly Agree (5). Median values precede each distribution.

in the reCode synthesizer. The most complicated task, Multiloc,
also appeared least frequently in participants daily work. Most
participants encounter all other tasks frequently.

7.2 Participant Feedback
We group participants’ feedback using the steps from the reCode
user experience: Find, Edit, and Generalize. Finally, we report par-
ticipants’ feedback on the overall user experience.

Find. All participants initiated the reCode experience using the
“Find” feature very early on: participants either immediately started
using “Find,” or they poked around a few fles frst, made a guess
about a keyword, and then used “Find” to search for that keyword.

Most participants (P1, P2, P3, P5, P7, P8, P9, P10, P11, P12) used
an overly broad keyword rather than an elaborate but precise ex-
pression (P4, P6). For instance, when performing Gather-args,
P4 and P6 searched for expect\((.*)\).toEqual\((.*)\) , whereas all
other participants searched for toEqual initially. Participants later
added punctuation around the keyword as an ad hoc solution to
narrow down the scope (for example,).toEqual(), because they
“usually search for something very generic and see if I need to nar-
row down my search later” (P9). Some participants reported that

this is “what [they] would have done anyway” (P2), with or without
reCode.

Some participants expressed a desire for “structural search to
prevent over-matching, because bind can appear anywhere and
what I really want to fnd is all function calls of bind ” (P1, P4).
However, these participants struggled to achieve this because they
“don’t know how [they] would say it” (P1) and resorted to adding
simple punctuation around the search term because it was “the best
they could do” (P1).

After performing the fnd, all participants (P1-P12) manually
inspected more than one results before performing any changes
because they “wanted to see all the possible cases to see if [they’re]
overmatching” (P3). When navigating through the fnd results, they
liked the “holistic view of all the results” (P1) in the Summary View
Figure 2 A .

Change. After reCode displayed the fnd results, all participants
(P1-12) proceeded to directly edit one of the found code locations.

Direct edits helped participants make sense of the transformation
and estimate “if it’s easy enough to go through things manually. If
it takes more than 5 minutes, [they’ll] go for other tools” (P7). After
editing one or more fnd results, participants noticed reCode’s
suggestions inline and noted that reCode “fgured out what [they]

tasks, the difficulty of the task, and the tediousness of the task. All
participants were able to complete Constant-string, Gather-
args, and Multiline-add using reCode. The average completion
time was less than than five minutes. Finally, two participants failed
to complete (P1, P2) Multiloc because of an unexpected failure
in the reCode synthesizer. The most complicated task, Multiloc,
also appeared least frequently in participants daily work. Most
participants encounter all other tasks frequently.

7.2 Participant Feedback
We group participants’ feedback using the steps from the reCode
user experience: Find, Edit, and Generalize. Finally, we report par-
ticipants’ feedback on the overall user experience.

Find. All participants initiated the reCode experience using the
“Find” feature very early on: participants either immediately started
using “Find,” or they poked around a few files first, made a guess
about a keyword, and then used “Find” to search for that keyword.

Most participants (P1, P2, P3, P5, P7, P8, P9, P10, P11, P12) used
an overly broad keyword rather than an elaborate but precise ex-
pression (P4, P6). For instance, when performing Gather-args,
P4 and P6 searched for

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

Task Code to fnd Replacement code Task type Required changes
Constant-
string

translate transform Plain text replacement 14 lines in 2 fles

Gather-args expect(a).toEqual(b); same(a, b); Function refactoring 17 lines in 5 fles

Multiline- export default Box
export default withAmp(Box) export const config API migration 28 lines in 13 fles add = { withAmp: true }

class Example {
constructor() {

class Example {
this.func =

constructor() {}Multiloc this.func.bind(this); AST transformation 50 lines in 10 fles
func = () => {}

}
}

func() {}
}

Table 1: Tasks for the usability evaluation. The tasks refect the range of scenarios identifed in the formative interviews: from constant
strings to tree transformations. Each task represents a type of code edits developers often encounter.

Frequency of task Difculty rating Tediousness rating

Task Avg. time taken # completed Med. Dist. Med. Dist. Med. Dist.

Constant-string 1:35 12 5 1.5 2

Gather-args 3:09 12 4 2 2

Multiline-add 4:34 12 4 1.5 1.5

Multiloc 3:22 10 3 2 2

Table 2: Summary results for each task. The number of participants that completed each task and the average task time are shown. After
each task, they were asked to rate (1) “this task was difcult to complete;” (2) “this task was tedius;” and (3) “I encounter similar tasks in my
work.” The rating scale as from left-to-right was: Strongly disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4),
Strongly Agree (5). Median values precede each distribution.

in the reCode synthesizer. The most complicated task, Multiloc,
also appeared least frequently in participants daily work. Most
participants encounter all other tasks frequently.

7.2 Participant Feedback
We group participants’ feedback using the steps from the reCode
user experience: Find, Edit, and Generalize. Finally, we report par-
ticipants’ feedback on the overall user experience.

Find. All participants initiated the reCode experience using the
“Find” feature very early on: participants either immediately started
using “Find,” or they poked around a few fles frst, made a guess
about a keyword, and then used “Find” to search for that keyword.

Most participants (P1, P2, P3, P5, P7, P8, P9, P10, P11, P12) used
an overly broad keyword rather than an elaborate but precise ex-
pression (P4, P6). For instance, when performing Gather-args,
P4 and P6 searched for expect\((.*)\).toEqual\((.*)\) , whereas all
other participants searched for toEqual initially. Participants later
added punctuation around the keyword as an ad hoc solution to
narrow down the scope (for example,).toEqual(), because they
“usually search for something very generic and see if I need to nar-
row down my search later” (P9). Some participants reported that

this is “what [they] would have done anyway” (P2), with or without
reCode.

Some participants expressed a desire for “structural search to
prevent over-matching, because bind can appear anywhere and
what I really want to fnd is all function calls of bind ” (P1, P4).
However, these participants struggled to achieve this because they
“don’t know how [they] would say it” (P1) and resorted to adding
simple punctuation around the search term because it was “the best
they could do” (P1).

After performing the fnd, all participants (P1-P12) manually
inspected more than one results before performing any changes
because they “wanted to see all the possible cases to see if [they’re]
overmatching” (P3). When navigating through the fnd results, they
liked the “holistic view of all the results” (P1) in the Summary View
Figure 2 A .

Change. After reCode displayed the fnd results, all participants
(P1-12) proceeded to directly edit one of the found code locations.

Direct edits helped participants make sense of the transformation
and estimate “if it’s easy enough to go through things manually. If
it takes more than 5 minutes, [they’ll] go for other tools” (P7). After
editing one or more fnd results, participants noticed reCode’s
suggestions inline and noted that reCode “fgured out what [they]

, whereas all

other participants searched for

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

Task Code to fnd Replacement code Task type Required changes
Constant-
string

translate transform Plain text replacement 14 lines in 2 fles

Gather-args expect(a).toEqual(b); same(a, b); Function refactoring 17 lines in 5 fles

Multiline- export default Box
export default withAmp(Box) export const config API migration 28 lines in 13 fles add = { withAmp: true }

class Example {
constructor() {

class Example {
this.func =

constructor() {}Multiloc this.func.bind(this); AST transformation 50 lines in 10 fles
func = () => {}

}
}

func() {}
}

Table 1: Tasks for the usability evaluation. The tasks refect the range of scenarios identifed in the formative interviews: from constant
strings to tree transformations. Each task represents a type of code edits developers often encounter.

Frequency of task Difculty rating Tediousness rating

Task Avg. time taken # completed Med. Dist. Med. Dist. Med. Dist.

Constant-string 1:35 12 5 1.5 2

Gather-args 3:09 12 4 2 2

Multiline-add 4:34 12 4 1.5 1.5

Multiloc 3:22 10 3 2 2

Table 2: Summary results for each task. The number of participants that completed each task and the average task time are shown. After
each task, they were asked to rate (1) “this task was difcult to complete;” (2) “this task was tedius;” and (3) “I encounter similar tasks in my
work.” The rating scale as from left-to-right was: Strongly disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4),
Strongly Agree (5). Median values precede each distribution.

in the reCode synthesizer. The most complicated task, Multiloc,
also appeared least frequently in participants daily work. Most
participants encounter all other tasks frequently.

7.2 Participant Feedback
We group participants’ feedback using the steps from the reCode
user experience: Find, Edit, and Generalize. Finally, we report par-
ticipants’ feedback on the overall user experience.

Find. All participants initiated the reCode experience using the
“Find” feature very early on: participants either immediately started
using “Find,” or they poked around a few fles frst, made a guess
about a keyword, and then used “Find” to search for that keyword.

Most participants (P1, P2, P3, P5, P7, P8, P9, P10, P11, P12) used
an overly broad keyword rather than an elaborate but precise ex-
pression (P4, P6). For instance, when performing Gather-args,
P4 and P6 searched for expect\((.*)\).toEqual\((.*)\) , whereas all
other participants searched for toEqual initially. Participants later
added punctuation around the keyword as an ad hoc solution to
narrow down the scope (for example,).toEqual(), because they
“usually search for something very generic and see if I need to nar-
row down my search later” (P9). Some participants reported that

this is “what [they] would have done anyway” (P2), with or without
reCode.

Some participants expressed a desire for “structural search to
prevent over-matching, because bind can appear anywhere and
what I really want to fnd is all function calls of bind ” (P1, P4).
However, these participants struggled to achieve this because they
“don’t know how [they] would say it” (P1) and resorted to adding
simple punctuation around the search term because it was “the best
they could do” (P1).

After performing the fnd, all participants (P1-P12) manually
inspected more than one results before performing any changes
because they “wanted to see all the possible cases to see if [they’re]
overmatching” (P3). When navigating through the fnd results, they
liked the “holistic view of all the results” (P1) in the Summary View
Figure 2 A .

Change. After reCode displayed the fnd results, all participants
(P1-12) proceeded to directly edit one of the found code locations.

Direct edits helped participants make sense of the transformation
and estimate “if it’s easy enough to go through things manually. If
it takes more than 5 minutes, [they’ll] go for other tools” (P7). After
editing one or more fnd results, participants noticed reCode’s
suggestions inline and noted that reCode “fgured out what [they]

initially. Participants later
added punctuation around the keyword as an ad hoc solution to
narrow down the scope (for example,

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

Task Code to fnd Replacement code Task type Required changes
Constant-
string

translate transform Plain text replacement 14 lines in 2 fles

Gather-args expect(a).toEqual(b); same(a, b); Function refactoring 17 lines in 5 fles

Multiline- export default Box
export default withAmp(Box) export const config API migration 28 lines in 13 fles add = { withAmp: true }

class Example {
constructor() {

class Example {
this.func =

constructor() {}Multiloc this.func.bind(this); AST transformation 50 lines in 10 fles
func = () => {}

}
}

func() {}
}

Table 1: Tasks for the usability evaluation. The tasks refect the range of scenarios identifed in the formative interviews: from constant
strings to tree transformations. Each task represents a type of code edits developers often encounter.

Frequency of task Difculty rating Tediousness rating

Task Avg. time taken # completed Med. Dist. Med. Dist. Med. Dist.

Constant-string 1:35 12 5 1.5 2

Gather-args 3:09 12 4 2 2

Multiline-add 4:34 12 4 1.5 1.5

Multiloc 3:22 10 3 2 2

Table 2: Summary results for each task. The number of participants that completed each task and the average task time are shown. After
each task, they were asked to rate (1) “this task was difcult to complete;” (2) “this task was tedius;” and (3) “I encounter similar tasks in my
work.” The rating scale as from left-to-right was: Strongly disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4),
Strongly Agree (5). Median values precede each distribution.

in the reCode synthesizer. The most complicated task, Multiloc,
also appeared least frequently in participants daily work. Most
participants encounter all other tasks frequently.

7.2 Participant Feedback
We group participants’ feedback using the steps from the reCode
user experience: Find, Edit, and Generalize. Finally, we report par-
ticipants’ feedback on the overall user experience.

Find. All participants initiated the reCode experience using the
“Find” feature very early on: participants either immediately started
using “Find,” or they poked around a few fles frst, made a guess
about a keyword, and then used “Find” to search for that keyword.

Most participants (P1, P2, P3, P5, P7, P8, P9, P10, P11, P12) used
an overly broad keyword rather than an elaborate but precise ex-
pression (P4, P6). For instance, when performing Gather-args,
P4 and P6 searched for expect\((.*)\).toEqual\((.*)\) , whereas all
other participants searched for toEqual initially. Participants later
added punctuation around the keyword as an ad hoc solution to
narrow down the scope (for example,).toEqual(), because they
“usually search for something very generic and see if I need to nar-
row down my search later” (P9). Some participants reported that

this is “what [they] would have done anyway” (P2), with or without
reCode.

Some participants expressed a desire for “structural search to
prevent over-matching, because bind can appear anywhere and
what I really want to fnd is all function calls of bind ” (P1, P4).
However, these participants struggled to achieve this because they
“don’t know how [they] would say it” (P1) and resorted to adding
simple punctuation around the search term because it was “the best
they could do” (P1).

After performing the fnd, all participants (P1-P12) manually
inspected more than one results before performing any changes
because they “wanted to see all the possible cases to see if [they’re]
overmatching” (P3). When navigating through the fnd results, they
liked the “holistic view of all the results” (P1) in the Summary View
Figure 2 A .

Change. After reCode displayed the fnd results, all participants
(P1-12) proceeded to directly edit one of the found code locations.

Direct edits helped participants make sense of the transformation
and estimate “if it’s easy enough to go through things manually. If
it takes more than 5 minutes, [they’ll] go for other tools” (P7). After
editing one or more fnd results, participants noticed reCode’s
suggestions inline and noted that reCode “fgured out what [they]

), because they
“usually search for something very generic and see if I need to nar-
row down my search later” (P9). Some participants reported that
this is “what [they] would have done anyway” (P2), with or without
reCode.

Some participants expressed a desire for “structural search to
prevent over-matching, because

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

can appear anywhere and
what I really want to find is all function calls of

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

” (P1, P4).
However, these participants struggled to achieve this because they
“don’t know how [they] would say it” (P1) and resorted to adding
simple punctuation around the search term because it was “the best
they could do” (P1).

After performing the find, all participants (P1-P12) manually
inspected more than one results before performing any changes
because they “wanted to see all the possible cases to see if [they’re]
overmatching” (P3). When navigating through the find results, they
liked the “holistic view of all the results” (P1) in the Summary View
Figure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

.

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

Change. After reCode displayed the find results, all participants
(P1-12) proceeded to directly edit one of the found code locations.

Direct edits helped participants make sense of the transformation
and estimate “if it’s easy enough to go through things manually. If
it takes more than 5 minutes, [they’ll] go for other tools” (P7). After
editing one or more find results, participants noticed reCode’s
suggestions inline and noted that reCode “figured out what [they]
did” (P3) and “picked up on the pattern now that [they] did it a
couple of times” (P5).

Participants appreciated that direct editing is “way faster and
much easier than writing regexes” (P10) and the fact that reCode
“analyzes what you are doing and you don’t have to write scripts
by hand” (P1). But for trivial tasks like constant string replacement
(Constant-string), some participants (P4, P5) were fine with using
the replace box in find-and-replace: “I was equally satisfied here
[directly editing using reCode], but I might fall back to regular
find-and-replace since this is not a challenging task” (P4).

Some participants (P2, P4, P6, P7) requested better visibility of
the system’s status. For instance, in the first task, P7 asked, “Is this
running? I guess I’ll just keep doing thing manually” until reCode
displayed the first inline diff in their editor pane. P7 wanted to
“know it’s there in the first place” and “know if it starts working or
not.” P2 needed “more confirmation in the UI that it’s searching” and
P6 proposed adding “an indicator that say ‘suggestion in progress’
in the editor pane.” P4 speculated that “exposure might be key,
because after getting used to it I understand the green bar is telling
me if it’s active.”

Generalize. All participants (P1-12) understood reCode’s sugges-
tions after seeing inline diffs and inline actions (Figure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

)
in the same file or yellow highlights in the Summary View (Fig-
ure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

).
P5 thought the inline diffs were “really cool because [they]

wanted to see what things were before replacement and this way
[via inline diffs] [they] can verify if everything’s right.” P12 said
the inline diff and actions were “pretty intuitive, and just like git
in VSCode. I can see the diffs inline and choose to accept or not.
Very familiar.” P9 preferred our inline diffs to a separate window for
find-and-replace; in their editors “screen real estate is important,
and [a separate diff view] is too distracting.”

After viewing a few of the suggestions by scrolling around and/or
clicking through search results, participants felt that “it’s doing the
right thing” (P12) and “trusted it like [they] trust ‘Rename Variable’
in VSCode” (P11). When performing Multiline-add, P6 deliber-
ately looked for “the trickiest case” and found out “it’s reusing the
component names correctly, now I think it works.” Some partici-
pants (P4, P6, P10) directly edited the suggestion to test if reCode
would update the rest of the suggestions as well, and found that
“every string gets updated after I changed one of them, great!” (P6).

After participants expressed some confidence in reCode’s sug-
gestions, all of them (P1-P12) interacted with the inline actions
(Figure 2

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Figure 2: The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and
previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted
in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized transformation.
In the Inline Dif, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. (E). The developer can

accept or reject the suggestions via Inline Actions (F).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now high-
lighted in green and she understands that reCode is generalizing
her edits. Immediately after, other results light up in yellow, indi-
cating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two sug-
gestions related to removeNoti . The frst one seems correct: reCode
proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct,
too: the line with the bind call is removed, and reCode correctly
kept the argument id for the function declaration (but if it hadn’t
been, Maria could have clicked “Reject Changes” to revert to the
original or changed the code manually—reCode would learn from
this correction and update its suggestions).

Maria clicks “Accept Changes” for both suggestions. She then
clicks on several other results in the Summary View (Figure 2 A)
to review the changes proposed by reCode. In the frst three fles,
she clicks “Accept Changes” for each suggestion that she is con-
fdent about. To speed things up, she then goes to the rest of the
fles, review all of the changes, and clicks “Accept All in This File”
once she determines everything is correct. Using this workfow,
inspecting each fle takes about 10 to 20 seconds, and she fnishes
changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would
have faced the same challenge of the “murky middle” described
in Section 1. On the one hand, changing all 80 instances manually
can easily take an hour and is error prone. On the other hand, it
might not be worth the investment to write a custom script or
complex regular expression to feed to a fnd-and-replace tool. For
these reasons, Maria prefers the convenience of reCode to help
her accomplish a variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATED WORK
The design of reCode is inspired by BluePencil [35], which imple-
ments a comparable underlying synthesis technology to reCode’s
engine [16], but surfaces the interaction through a diferent work-
fow: BluePencil passively detects and presents code transforma-
tion suggestions as “quick fx” lightbulbs to the developer as they
edit their code, which the developer can either accept or ignore.

). For instance, P3 was “comfortable accepting all after
reviewing a few items” but requested an “an ’Accept All in Project’
button to finish the whole thing.” However, after making the same

request as P3, P2 commented that “the engineer in me says be care-
ful. I would compile and see if anything breaks. The diligent person
in me says there shouldn’t be this [Accept All in Project] button to
allow me to do it.”

As noted in Section 5.3, reCode sometimes does not preserve the
exact formatting of the developer’s original edit. For instance, P4
noticed an extra new line in the suggestion and said: “Boo, it added
this new line. I deleted the new line character, so should you!” For
the most complicated task (Multiloc), a few participants requested
the ability “to link two related edits and if I click on accept changes
for
raisebox-4pt

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

To estimate the scope of this task, Maria invokes the fnd interface
in her IDE and searches for props.theme. The interface returns
around 30 results, scattered across multiple fles. How should Maria
complete the task?

Developers like Maria frequently run into these kinds of sys-
tematic, repetitive code transformations—similar but not entirely
identical code changes in many places [23, 41, 42]. If it turns out
there are only a few lines of code to edit, Maria could simply make
the replacements manually in her IDE. If there are thousands of
lines to edit, however, manual approaches become intractable. Then,
there are a bewildering array of tools for developers to turn to
for automation. A common option is to write regular expressions,
which are essentially sequences of characters that specify search
patterns. More elaborate approaches include text-based fnd-and-
replace tools like sed [28] or ripgrep [6], or language-aware tools
like structural fnd-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky
middle” that is somewhere between these two extremes. In this
murky middle, manually making the changes is both time consum-
ing and error prone, yet the investment required to automate with
a regular expression or script is also unappealing and difcult even
for seasoned developers [32]—it is possible that automating would
take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identifed
limitations in current code transformation tools that were barriers
to developers. First, developers struggled to decide between trans-
forming code manually versus investing in using a tool to automate
the task, particularly when there are a murky middle number of
edits to make. Second, developers reported that writing code trans-
formation scripts was complicated because of the many edge cases
that arise. Third, scripting approaches were often too monolithic,
requiring developers to make code transformations in bulk across
their entire project. This made it difcult for developers to reason
about how the code transformation impacts their code. In short,
developers desired a more incremental and interactive approach
that allowed for automation while still allowing for oversight and
occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,
called reCode, that ofers developers a lightweight interaction
for transforming code while balancing automation and inspection.
reCode is implemented as a Visual Studio Code extension, and en-
hances the familiar fnd-and-replace experience. reCode users frst
specify a straightforward search term to identify relevant locations
of interest for the code transformation. To remove the burden of
having to write a complicated regular expressions or script, devel-
opers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode
leverages programming-by-example to automatically learn a more
general code transformation, across a variety of transformation
scenarios. reCode displays these additional transformations as
before-and-after diferences inline, and ofers the developer click-
able actions through which they can interactively accept, reject, or
refne the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that
improves the familiar fnd-and-replace experience through
programming-by-example. This interaction removes the need
to need write regular expressions or other complicated scripts
for a variety of code transformations. We implement this
interaction as an extension, called reCode, for Visual Studio
Code.

• reCode implements a feedback-driven, semi-supervised pro-
gram synthesis technique, called ReFazer* [16]. ReFazer*
accepts tree-based input and output examples to learn pro-
gram transformations. reCode surfaces this technique as a
usable system.

• Through a usability evaluation with 12 developers, we demon-
strate that the reCode example-driven experience is intu-
itive, complements their existing workfow, and ofers a uni-
fed approach to conveniently tackle a variety of common
yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE
Maria used reCode to rewrite her visual styles based on a col-
league’s recommendation: “it’s like fnd and replace. Just start edit-
ing after you fnd things and it’ll do the rest.” The next day, she
decides to tackle a more complex clean-up task. Her application
uses React and was originally written in JavaScript ES5. The appli-
cation had many bind calls in class constructors. These bind calls
were needed in ES5 to allow methods to work as they do in other
languages. With the new version of JavaScript, these calls are no
longer required1. Maria simplifes her code by: (1) deleting all lines
that look like this.func = this.func.bind(this) and (2) rewriting the
corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types bind

in the Search Box (Figure 2 B) to search in the repository. Maria
thinks, “it’s 4 PM now and I want to get this done soon. If there are
only three of these functions, I’ll just do them manually.” Unfortu-
nately, the Summary View (Figure 2 A) shows 80 matches spread
across 32 fles!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with fnd-and-
replace has already activated the reCode tool. She clicks on the
frst result in App.jsx and starts to edit the relevant lines for the
changeTab function. She removed the this.changeTab.bind(this) call
from line 25 and added = before (tabName) and => after on line
29:

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

, the function below should change, too” (P10).
P9 mentioned the same feature because “in [their] head, these two
changes are grouped together and [they] wished the tool could
show [them] how they are related.”
End-to-end feedback. Participants liked the overall reCode expe-
rience because it “was really fast” (P1, P2, P10), “worked naturally”
(P2, P5, P6, P12), “was easy to use” (P4, P7, P9, P12), and “saved time”
(P2, P3, P4, P6, P8, P9, P10, P11). P9 noted that they “spent too much
time battling things like regular expressions and this will be a huge
productivity multiplier.” P2 appreciated how well reCode fits into
their workflow because “it’s basically how I would do it normally.”
P11 shared their experience with auto-completion tools and said,
“it’s always trying to give me suggestions and I don’t need them
most of the time and after a while I just turned it off.” Instead, P11
preferred reCode’s workflow because “it’s more selective. Instead
of listening passively and trying to come up a plan for me, it only
works when I have a plan to actively change things.”

When asked whether they will use a production version of re-
Code in the questionnaire after the study, participants responded
either “Would use” (9/12) or “Probably use” (3/12). All participants
asked when reCode would be shipped officially so they can start
using it. They were excited to use reCode to automate a vari-
ety of their daily tasks such as “writing repetitive tests” (P2) and
“refactoring my Powershell scripts” (P4). Automatic synthesis of
code transformations enabled them to have ways to perform a task
“when the editor doesn’t have refactoring support” (P9). P4 gave it
“10 out of 10” and said, “I’d use this daily. Sometimes when I get 50
matches and I just thought I’ll just do it manually, but this thing
is like ’do you want me to automate it?’ I love it!” P5 “loved the
granularity of the tool,” and P9 said that because “find-and-replace
is such a common thing, the ability to do this all directly [in my
editor] makes this my favorite tool.”

8 DISCUSSION
The results of our evaluation suggest that reCode addresses the
design goals we formulated in Section 4. Participants found reCode
provides a unified entry point for code transformations (D1), offers
a lightweight way to transform their code (D2), and provides useful
affordances to allow developers to incrementally inspect their code
transformations and compare the before-and-after-results. In this
section, we discuss the benefits of reCode’s unified interaction,
developers’ expectations about code transformation explainability,
and other insights about how developers might leverage reCode.

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

8.1 Example-driven Intent through a
Lightweight, Unified Interaction

We found that developers frequently need to make code trans-
formations, but existing tools require them to make unsatisfying
trade-offs, particularly in the “murky middle.” reCode removes
much of this decision-making dilemma by offering a unified entry-
point for their code transformation task. When using reCode, the
developer does not have to consider the cost of switching out of
their editing workflow or calculate the utility of automation (D1).
Instead, they find and make manual edits as usual, and automat-
ically get non-intrusive suggestions that perform the remaining
edits on their behalf.

Existing code transformation tools also force them to switch out
of their editing workflow to automate these edits. For example, P9
recalled that “they don’t want to switch out of my editors to do find-
and-replace. We really don’t like distractions from our workflows.”

Our participants told us that using tools like regular expressions
and AST transformers required a careful planning and authoring
process. Before using any transformation tool, developers have to
learn their intricacies. The cost of this learning is often a significant
barrier to automating code transformation. As P7 reminded us, “if
you have a problem to solve with regular expressions, now you have
two problems.” reCode enables developers tomake a variety of code
transformations without needing to turn to regular expressions or
another intricate code transformation language (D2).

8.2 Expectations about Explainability
Developers are careful about code transformations, especially when
an automated tool is performing the changes. Our participants ex-
pressed a desire to iteratively and incrementally develop and test
their code transformations. In addition, because code transforma-
tions can have many edge cases, they were wary of transforming
code without directly being able to observe the changes.

In contrast to scripts that typically operate in batch across the
entire project, participants preferred the ability to interactively
inspect the code transformation and verify them inline through
reCode. Instead of requiring developers to make all-in decisions on
the code transformation, reCode iteratively generalize developers’
direct edits and provides the developer with autonomy over accept-
ing, rejecting, or modifying individual suggestions. Importantly, the
mixed-initiative workflow of reCode lets developers progressively
evaluate the effect of their edits through concrete examples, while
balancing automation and inspection (D3).

8.3 Reusable Code Transformations
Developers often make code transformations that are highly con-
textual and tailored to their own projects: while these code trans-
formations are important for this developer, it’s unlikely that they
would be able to find an off-the-shelf tool that already provides the
transformation they need. As a result, developers mostly performed
most edits manually and repeatedly. When working with reCode,
some participants thought the tool could be improved by allowing
them to keep a personal “history” (P1), “export” (P3), or reusable
catalog of their own transformations.

Since the ReFazer* internally learns a code transformation, one
possibility is for reCode to save or serialize this code transforma-
tion so that the developer may reuse it at a later time without having

to reinitiate a find-and-replace interaction from scratch. A more am-
bitious representation would to provide a readable representation
of the code [12], perhaps by presenting the developer with a close-
to-source language like Comby [50], a structural find-and-replace
template, or a codemod script like jscodeshift.

The ability to offer the developer a readable representation of
the code transformation has several benefits. If the developer is
able to read the synthesized program, they may be more comfort-
able accepting code transformations without needing to manually
inspect and verify as many locations (D3). The developer may also
want to use the synthesized program to learn how to use one of
the many code transformation languages (D2). As one example, the
Gather-args task can be written as the following Comby script:

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

Instead, they find and make manual edits as usual, and automat-
ically get non-intrusive suggestions that perform the remaining
edits on their behalf.

Existing code transformation tools also force them to switch out
of their editing workflow to automate these edits. For example, P9
recalled that “they don’t want to switch out of my editors to do find-
and-replace. We really don’t like distractions from our workflows.”

Our participants told us that using tools like regular expressions
and AST transformers required a careful planning and authoring
process. Before using any transformation tool, developers have to
learn their intricacies. The cost of this learning is often a significant
barrier to automating code transformation. As P7 reminded us, “if
you have a problem to solve with regular expressions, now you have
two problems.” reCode enables developers tomake a variety of code
transformations without needing to turn to regular expressions or
another intricate code transformation language (D2).

8.2 Expectations about Explainability
Developers are careful about code transformations, especially when
an automated tool is performing the changes. Our participants ex-
pressed a desire to iteratively and incrementally develop and test
their code transformations. In addition, because code transforma-
tions can have many edge cases, they were wary of transforming
code without directly being able to observe the changes.

In contrast to scripts that typically operate in batch across the
entire project, participants preferred the ability to interactively
inspect the code transformation and verify them inline through
reCode. Instead of requiring developers to make all-in decisions on
the code transformation, reCode iteratively generalize developers’
direct edits and provides the developer with autonomy over accept-
ing, rejecting, or modifying individual suggestions. Importantly, the
mixed-initiative workflow of reCode lets developers progressively
evaluate the effect of their edits through concrete examples, while
balancing automation and inspection (D3).

8.3 Reusable Code Transformations
Developers often make code transformations that are highly con-
textual and tailored to their own projects: while these code trans-
formations are important for this developer, it’s unlikely that they
would be able to find an off-the-shelf tool that already provides the
transformation they need. As a result, developers mostly performed
most edits manually and repeatedly. When working with reCode,
some participants thought the tool could be improved by allowing
them to keep a personal “history” (P1), “export” (P3), or reusable
catalog of their own transformations.

Since the ReFazer* internally learns a code transformation, one
possibility is for reCode to save or serialize this code transforma-
tion so that the developer may reuse it at a later time without having
to reinitiate a find-and-replace interaction from scratch. A more am-
bitious representation would to provide a readable representation
of the code [12], perhaps by presenting the developer with a close-
to-source language like Comby [50], a structural find-and-replace
template, or a codemod script like jscodeshift.

The ability to offer the developer a readable representation of
the code transformation has several benefits. If the developer is

able to read the synthesized program, they may be more comfort
able accepting code transformations without needing to manually
inspect and verify as many locations (D3). The developer may also
want to use the synthesized program to learn how to use one of
the many code transformation languages (D2). As one example, the
Gather-args task can be written as the following Comby script:
match template: 'expect(:[a]).toEqual(:[b])'
rewrite template: 'same(:[a], :[b])'

For large-scale projects, developers might use reCode to syn
thesize a transformation from a smaller project, and then use the
script to “bootstrap” (P3) a more elaborate script for code transfor
mations in a larger project. Alternatively, an interesting possibility
is that the developer may already have a script that they want to
understand, apply, or refine. In this situation, instead of bootstrap
ping find-and-replace with search keywords, they could bootstrap
the reCode experience using their script—and use reCode, just
as before, to understand or refine the script through the unified
reCode interaction (D1).

-

-

-

-

9 CONCLUSION
Our formative study showed that developers struggled to automate
code transformations using existing tools; as result, they abandoned
these tools and often ended up performing the changes manually.
To address their needs, we designed reCode, an example-driven,
mixed-initiative interaction that improves on their familiar find-
and-replace experience. After performing a simple code search,
reCode users can demonstrate their intended changes by directly
editing code, and reCode automatically learns a more general code
transformation to help developers complete the task. Participant
feedback from our usability evaluation suggests that the reCode
example-driven experience is intuitive, complements their existing
workflow, and offers a unified approach to conveniently tackle a
variety of common yet frustrating scenarios for code transforma-
tions. Developers in our evaluation were enthusiastic about using
reCode in their own day-to-day work.

ACKNOWLEDGMENTS
We thank developers at Microsoft for their helpful insights and for
participating in the interviews and studies. This material is based
in part upon work supported by the National Science Foundation
under Grant No. 1910264.

REFERENCES
[1] [n.d.]. codemod. https://github.com/facebook/codemod
[2] [n.d.]. ESLint. https://eslint.org/
[3] [n.d.]. jscodeshift. https://github.com/facebook/jscodeshift
[4] [n.d.]. Pylint. https://www.pylint.org/
[5] [n.d.]. ReSharper. https://www.jetbrains.com/resharper/
[6] [n.d.]. ripgrep. https://github.com/BurntSushi/ripgrep
[7] [n.d.]. Roslyn Analyzers. https://github.com/dotnet/roslyn-analyzers
[8] [n.d.]. Sublime Text. https://www.sublimetext.com/
[9] [n.d.]. Visual Studio Code. https://code.visualstudio.com/
[10] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. 1998. Clone detection

using abstract syntax trees. In Proceedings. International Conference on Software
Maintenance. 368–377. https://doi.org/10.1109/ICSM.1998.738528

[11] Danny Dig and Ralph Johnson. 2006. How do APIs evolve? A story of refactoring.
Journal of Software Maintenance and Evolution: Research and Practice 18, 2 (2006),
83–107. https://doi.org/10.1002/smr.328

[12] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A unified programming-by-example interaction for synthesizing readable
code for data scientists. In Proceedings of the 2020 CHI Conference on Human

For large-scale projects, developers might use reCode to syn-
thesize a transformation from a smaller project, and then use the
script to “bootstrap” (P3) a more elaborate script for code transfor-
mations in a larger project. Alternatively, an interesting possibility
is that the developer may already have a script that they want to
understand, apply, or refine. In this situation, instead of bootstrap-
ping find-and-replace with search keywords, they could bootstrap
the reCode experience using their script—and use reCode, just
as before, to understand or refine the script through the unified
reCode interaction (D1).

9 CONCLUSION
Our formative study showed that developers struggled to automate
code transformations using existing tools; as result, they abandoned
these tools and often ended up performing the changes manually.
To address their needs, we designed reCode, an example-driven,
mixed-initiative interaction that improves on their familiar find-
and-replace experience. After performing a simple code search,
reCode users can demonstrate their intended changes by directly
editing code, and reCode automatically learns a more general code
transformation to help developers complete the task. Participant
feedback from our usability evaluation suggests that the reCode
example-driven experience is intuitive, complements their existing
workflow, and offers a unified approach to conveniently tackle a
variety of common yet frustrating scenarios for code transforma-
tions. Developers in our evaluation were enthusiastic about using
reCode in their own day-to-day work.

ACKNOWLEDGMENTS
We thank developers at Microsoft for their helpful insights and for
participating in the interviews and studies. This material is based
in part upon work supported by the National Science Foundation
under Grant No. 1910264.

REFERENCES
[1] [n.d.]. codemod. https://github.com/facebook/codemod
[2] [n.d.]. ESLint. https://eslint.org/
[3] [n.d.]. jscodeshift. https://github.com/facebook/jscodeshift
[4] [n.d.]. Pylint. https://www.pylint.org/
[5] [n.d.]. ReSharper. https://www.jetbrains.com/resharper/
[6] [n.d.]. ripgrep. https://github.com/BurntSushi/ripgrep
[7] [n.d.]. Roslyn Analyzers. https://github.com/dotnet/roslyn-analyzers
[8] [n.d.]. Sublime Text. https://www.sublimetext.com/

https://github.com/facebook/codemod
https://eslint.org/
https://github.com/facebook/jscodeshift
https://www.pylint.org/
https://www.jetbrains.com/resharper/
https://github.com/BurntSushi/ripgrep
https://github.com/dotnet/roslyn-analyzers
https://www.sublimetext.com/

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

[9] [n.d.]. Visual Studio Code. https://code.visualstudio.com/
[10] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. 1998. Clone detection

using abstract syntax trees. In Proceedings. International Conference on Software
Maintenance. 368–377. https://doi.org/10.1109/ICSM.1998.738528

[11] Danny Dig and Ralph Johnson. 2006. How do APIs evolve? A story of refactoring.
Journal of Software Maintenance and Evolution: Research and Practice 18, 2 (2006),
83–107. https://doi.org/10.1002/smr.328

[12] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A unified programming-by-example interaction for synthesizing readable
code for data scientists. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (CHI ’20). Association for Computing Machinery,
1–12. https://doi.org/10.1145/3313831.3376442

[13] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. 2013. Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories. In 2013
35th International Conference on Software Engineering (ICSE). 422–431. https:
//doi.org/10.1109/ICSE.2013.6606588 ISSN: 1558-1225.

[14] Jeffrey E. F. Friedl. 2006. Mastering Regular Expressions (3rd ed. ed.). O’Reilly.
[15] Yuzo Fujishima. 1998. Demonstrational automation of text editing tasks involving

multiple focus points and conversions. In Proceedings of the 3rd International
Conference on Intelligent User Interfaces (IUI ’98). Association for Computing
Machinery, 101–108. https://doi.org/10.1145/268389.268408

[16] Xiang Gao, Shraddha Barke, Arjun Radhakrishna, Gustavo Soares, Sumit Gulwani,
Alan Leung, Nachiappan Nagappan, and Ashish Tiwari. 2020. Feedback-driven
semi-supervised synthesis of program transformations. Proceedings of the ACM
on Programming Languages 4, OOPSLA (Nov. 2020), 219:1–219:30. https://doi.
org/10.1145/3428287

[17] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL ’11). Association for Com-
puting Machinery, 317–330. https://doi.org/10.1145/1926385.1926423

[18] Sumit Gulwani. 2016. Programming by examples. Dependable Software Systems
Engineering 45, 137 (2016), 3–15.

[19] Eric Horvitz. 1999. Principles of mixed-initiative user interfaces. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems (CHI ’99).
Association for Computing Machinery, 159–166. https://doi.org/10.1145/302979.
303030

[20] T. Kamiya, S. Kusumoto, and K. Inoue. 2002. CCFinder: A multilinguistic token-
based code clone detection system for large scale source code. IEEE Transactions
on Software Engineering 28, 7 (July 2002), 654–670. https://doi.org/10.1109/TSE.
2002.1019480

[21] A. Ketkar, A. Mesbah, D. Mazinanian, D. Dig, and E. Aftandilian. 2019. Type
migration in ultra-large-scale codebases. In Proceedings of the 2019 International
Conference on Software Engineering (ICSE ’19). 1142–1153. https://doi.org/10.
1109/ICSE.2019.00117

[22] Miryung Kim and David Notkin. 2009. Discovering and representing systematic
code changes. In Proceedings of the 31st International Conference on Software
Engineering (ICSE ’09). Association for Computing Machinery, 309–319. https:
//doi.org/10.1109/ICSE.2009.5070531

[23] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005. An empir-
ical study of code clone genealogies. In Proceedings of the 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE ’13).
Association for Computing Machinery, 187–196. https://doi.org/10.1145/1081706.
1081737

[24] P. Kreutzer, G. Dotzler, M. Ring, B. M. Eskofier, andM. Philippsen. 2016. Automatic
clustering of code changes. In 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR). 61–72.

[25] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. 2001. Learn-
ing repetitive text-editing procedures with SMARTedit. In Your Wish is My
Command: Programming by Example. Morgan Kaufmann Publishers Inc., 209–
226.

[26] Toshiyuki Masui and Ken Nakayama. 1994. Repeat and predict: Two keys to
efficient text editing. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’94). Association for Computing Machinery, 118–130.
https://doi.org/10.1145/191666.191722

[27] David Maulsby and Ian H. Witten. 1997. Cima: An interactive concept learning
system for end-user applications. Applied Artificial Intelligence 11, 7-8 (Oct. 1997),
653–671. https://doi.org/10.1080/088395197117975

[28] Lee E. McMahon. 1990. Sed: A non-interactive text editor. In UNIX Vol. II: Research
System (10th ed.). W. B. Saunders Company, 389–397.

[29] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Sydit: Creating and
applying a program transformation from an example. In Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering (ESEC/FSE ’11). Association for Computing Machinery, 440–
443. https://doi.org/10.1145/2025113.2025185

[30] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: Locating and
applying systematic edits by learning from examples. In Proceedings of the 2013
International Conference on Software Engineering (ICSE ’13). 502–511.

[31] T. Mens and T. Tourwe. 2004. A survey of software refactoring. IEEE Transactions
on Software Engineering 30, 2 (Feb. 2004), 126–139. https://doi.org/10.1109/TSE.
2004.1265817

[32] L. G. Michael, J. Donohue, J. C. Davis, D. Lee, and F. Servant. 2019. Regexes are
hard: Decision-making, difficulties, and risks in programming regular expres-
sions. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 415–426. https://doi.org/10.1109/ASE.2019.00047

[33] Robert C. Miller and Alisa M. Marshall. 2004. Cluster-based find and replace. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’04). Association for Computing Machinery, 57–64. https://doi.org/10.1145/
985692.985700

[34] Robert C. Miller and Brad A. Myers. 2001. Interactive simultaneous editing of
multiple text regions. In Proceedings of the General Track: 2001 USENIX Annual
Technical Conference. USENIX Association, 161–174.

[35] Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo
Soares, Ashish Tiwari, and Abhishek Udupa. 2019. On the fly synthesis of edit
suggestions. Proceedings of the ACM on Programming Languages 3, OOPSLA,
Article 143 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360569

[36] Maxim Mossienko. 2004. Structural search and replace: What, why, and how-to.
OnBoard Magazine (2004).

[37] E. Murphy-Hill and A. P. Black. 2008. Refactoring tools: Fitness for purpose. IEEE
Software 25, 5 (Sept. 2008), 38–44. https://doi.org/10.1109/MS.2008.123

[38] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2012. How We
Refactor, and How We Know It. IEEE Transactions on Software Engineering 38, 1
(Jan. 2012), 5–18. https://doi.org/10.1109/TSE.2011.41 Conference Name: IEEE
Transactions on Software Engineering.

[39] B. A. Myers. 1990. Invisible programming. In Proceedings of the 1990 IEEE Work-
shop on Visual Languages. 203–208. https://doi.org/10.1109/WVL.1990.128407

[40] Brad A. Myers and Jeffrey Stylos. 2016. Improving API usability. Commun. ACM
59, 6 (May 2016), 62–69. https://doi.org/10.1145/2896587

[41] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen,
and Hridesh Rajan. 2013. A study of repetitiveness of code changes in soft-
ware evolution. In Proceedings of the 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE’13). IEEE Press, 180–190. https:
//doi.org/10.1109/ASE.2013.6693078

[42] H. A. Nguyen, T. N. Nguyen, D. Dig, S. Nguyen, H. Tran, and M. Hilton. 2019.
Graph-based mining of in-the-wild, fine-grained, semantic code change patterns.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)
(ICSE ’19). 819–830. https://doi.org/10.1109/ICSE.2019.00089

[43] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar Al-Kofahi, and
Tien N. Nguyen. 2010. Recurring bug fixes in object-oriented programs. In
Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering - Volume 1 (ICSE ’10). Association for Computing Machinery, 315–324.
https://doi.org/10.1145/1806799.1806847

[44] Robert P. Nix. 1985. Editing by example. ACM Transactions on Programming
Languages and Systems 7, 4 (Oct. 1985), 600–621. https://doi.org/10.1145/4472.
4476

[45] Andreas J. Pilavakis. 1989. The vi Editor. In UNIX Workshop, Andreas J. Pilavakis
(Ed.). Macmillan Education UK, 59–65. https://doi.org/10.1007/978-1-349-19900-
6_6

[46] Veselin Raychev, Max Schäfer, Manu Sridharan, and Martin Vechev. 2013. Refac-
toring with synthesis. Proceedings of the ACM on Programming Languages, 339–
354. https://doi.org/10.1145/2509136.2509544

[47] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syntactic
program transformations from examples. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). 404–415. https://doi.org/10.1109/
ICSE.2017.44

[48] Richard M Stallman. 1981. EMACS the extensible, customizable self-documenting
display editor. In Proceedings of the ACM SIGPLAN SIGOA Symposium on Text
Manipulation. 147–156.

[49] Atsushi Sugiura and Yoshiyuki Koseki. 1996. Simplifying macro definition in
programming by demonstration. In Proceedings of the 9th Annual ACM Symposium
on User Interface Software and Technology (UIST ’96). Association for Computing
Machinery, 173–182. https://doi.org/10.1145/237091.237118

[50] Rijnard van Tonder and Claire Le Goues. 2019. Lightweight multi-language
syntax transformation with parser parser combinators. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2019). Association for Computing Machinery, 363–378. https://doi.org/10.
1145/3314221.3314589

[51] Louis Wasserman. 2013. Scalable, example-based refactorings with refaster. In
Proceedings of the 2013 ACMWorkshop onWorkshop on Refactoring Tools (WRT ’13).
Association for Computing Machinery, 25–28. https://doi.org/10.1145/2541348.
2541355

[52] Andrew J. Werth and Brad A. Myers. 1993. Tourmaline (abstract): Macrostyles by
example. In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human
Factors in Computing Systems (CHI ’93). Association for Computing Machinery,
532. https://doi.org/10.1145/169059.169532

https://code.visualstudio.com/
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1002/smr.328
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.1145/268389.268408
https://doi.org/10.1145/3428287
https://doi.org/10.1145/3428287
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/ICSE.2019.00117
https://doi.org/10.1109/ICSE.2019.00117
https://doi.org/10.1109/ICSE.2009.5070531
https://doi.org/10.1109/ICSE.2009.5070531
https://doi.org/10.1145/1081706.1081737
https://doi.org/10.1145/1081706.1081737
https://doi.org/10.1145/191666.191722
https://doi.org/10.1080/088395197117975
https://doi.org/10.1145/2025113.2025185
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/ASE.2019.00047
https://doi.org/10.1145/985692.985700
https://doi.org/10.1145/985692.985700
https://doi.org/10.1145/3360569
https://doi.org/10.1109/MS.2008.123
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1109/WVL.1990.128407
https://doi.org/10.1145/2896587
https://doi.org/10.1109/ASE.2013.6693078
https://doi.org/10.1109/ASE.2013.6693078
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1145/1806799.1806847
https://doi.org/10.1145/4472.4476
https://doi.org/10.1145/4472.4476
https://doi.org/10.1007/978-1-349-19900-6_6
https://doi.org/10.1007/978-1-349-19900-6_6
https://doi.org/10.1145/2509136.2509544
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1145/237091.237118
https://doi.org/10.1145/3314221.3314589
https://doi.org/10.1145/3314221.3314589
https://doi.org/10.1145/2541348.2541355
https://doi.org/10.1145/2541348.2541355
https://doi.org/10.1145/169059.169532

	Abstract
	1 Introduction
	2 A Demo of reCode
	3 Background and Related Work
	3.1 Challenges of Making Code Transformations
	3.2 Programmatic Approaches to Code Transformations
	3.3 Editing by Example

	4 Formative Interviews and Design Goals
	5 System Design and Implementation
	5.1 reCode Workflow
	5.2 Overview of ReFazer*
	5.3 Limitations and Future Work

	6 USABILITY EVALUATION OF RECODE
	6.1 Participants and Setup
	6.2 Tasks
	6.3 Protocol

	7 Results
	7.1 Efficiency and Effectiveness
	7.2 Participant Feedback

	8 Discussion
	8.1 Example-driven Intent through a Lightweight, Unified Interaction
	8.2 Expectations about Explainability
	8.3 Reusable Code Transformations

	9 Conclusion
	Acknowledgments
	References

