Expressions on the Nature and Significance of
Programming and Play

Titus Barik
North Carolina State University
Raleigh, North Carolina, USA

Abstract—Play is all around us, an essential and innate pheno-
menon that serves as an important mediator in creativity, interest,
learning, and drive. Though play is thought to be universal,
the way in which it materializes is situationally-dependent and
not well-understood, particularly in software engineering. To
understand how programmers express the concept of play, we
conducted a qualitative study on the online social news website,
Hacker News—a venue for software practitioners. From Hacker
News, we qualitatively analyzed nearly 1,000 user-submitted
comments containing the terms ‘“programming” and ‘“play.”
The contribution of this work is a contemporary synthesis of
how software practitioners interpret programming and play in
experiential terms. Our findings suggest how programming and
play can be understood through rich metaphors, among them,
play as: art, playgrounds, spontaneity, and tinkering. Hacker
News authors reflect about childhood experiences as a catalyst
for learning programming, and contrast play against work.

I. INTRODUCTION

If light were dark and dark were light

The moon a black hole in the blaze of night
A raven’s wing as bright as tin

Then you, my love, would be darker than sin.

Jim Stein
The Invocation

if ((light eq dark) && (dark eq light)
8& ($blaze_of_night{moon} == black_hole)
&& $ravens_wing{bright} == $tin{bright})){
my $love = $you = $sin{darkness} + 1;

1

Angie Winterbottom
Best of Show in Perl Poetry Contest [1]

Play is all around us. The activity of play is thought to be an
essential and innate phenomenon, found in children, adults, and
even animals [2], [3]. Children, for example, need not be taught
how to play, yet are able to do so naturally [4], suggesting
that play may serve an important evolutionary function, a sort
of behavioral phenotype [5], [6]. And animals, even without
the capacity for language, are able to signal to others, “this is
play,” through metacommunicative means [7].

Of course, humans have an expanded range of play activities
over animals, most evident in the hallmark of childhood,
where opportunities for play are abundant [8]. As Pellegrini
notes, childhood play “enables children to learn the skills
necessary for successful functioning in adulthood” [9], and its
significance has been linked to creativity and imagination [10],

978-1-5386-0443-4/17/$31.00 ©2017 IEEE

self-esteem [11], and cognitive development [12]. Notably, even
small children are able to distinguish activities between those
that are play and those that are work [13].

Despite the prevalence of play and its apparent innateness,
the study of play and its role is curiously underrepresented in
adulthood [3]. One possibility to explain this underrepresenta-
tion is that play is primarily a childhood function; the necessity
for play, that is, the “play impulse” [14], diminishes as we
enter our professional careers. Essentially, we do not study
play because play does not exist. Yet another possibility is that
play continues in adulthood, but materializes in unexpected
and ambiguous ways, perhaps because play is perceived as
socially unacceptable, frivolous, or irresponsible [15].!

Indeed, the nature of play is often ambiguous, in part,
because play is both context-dependent and multi-faceted—
embodying a diversity of “metaphoric playfulness” that “takes
on multiple forms” [15]. As Bekoff argues, “the enormity of
the problem of definition is evidenced by the fact that the
word ‘play’ itself often is used in definitions of play” [5].
Consequently, researchers have suggested that, rather than
attempting to provide a comprehensive definition of play, play
may be most readily understood in experiential terms [5], [16],
[17].

In this paper, our interest as software engineering researchers
directs our attention to a specific instance of adulthood play in
professional contexts: programming and play, and to understand
how the activities of programming and play are expressed by
software practitioners as they comment on the nature and
significance of play as a substructure of their broader daily
experiences.

To that end, we conducted a qualitative study in which we
obtained nearly one thousand authored comments from Hacker
News>—a social website for software practitioners focusing on
computer science, software development, and entrepreneurship—
pertaining to the topics of “programming” and “play.” We
framed these comments as small stories [18] and analyzed
them through descriptive and narrative coding [19]. Finally, we
employed metaphors as an analytic technique to characterize
and present the results of our qualitative study.

The contribution of this work is that it offers researchers a
contemporary synthesis on how software practitioners interpret

1Of course, still another possibility, as Bekoff notes, is that “if it was as
much fun to study play as it is to engage in it, more would be known about
the activity” [5].

Zhttps://mews.ycombinator.com

and negotiate the intersection of programming and play as they
work, play, and live the incredible human experience.

II. METHODOLOGY

We felt that a paper on play, especially in light of the special
topic of the conference this year at VL/HCC (“programming
and play”), warranted a playful yet pragmatic approach to
analytic inquiry on the subject.

Research context. We used Hacker News, a social website
for software practitioners, to conduct our investigation. As
a community, Hacker News contains over 1.5 million user-
submitted comments on a variety of cultural and technical
topics of significance to the hacker community (for example,
“Steve Jobs has passed away,” “Announcing the first SHA-1
collision,” and “Be Kind,” to convey a sense of the diversity
of topics). Wu and colleagues, through a survey with software
developers who use GitHub, found that Hacker News serves as
an important venue for software developers to exchange ideas
as part of a broader cultural ecosystem [20].

Barik and colleagues conducted a formative study using
Hacker News to demonstrate that investigations within the
online community can yield insights into qualitative research
topics, with results comparable to and sometimes surpassing
traditional qualitative research techniques, such as interviews
or surveys [21]. We adopt their approach in conducting our
inquiry of programming and play.

Data collection and bean counting. We used the Algolia®
search engine API, which indexes all of Hacker News, to
retrieve JSON-formatted comments containing both the terms
“programming” and “play.” The results are sorted by relevance
according to the internal Algolia search algorithm.* A limitation
of Algolia is that it returns a maximum allowable 1,000 relevant
results out of the approximately 8,300 possible comments
available in the full data.

Retrieved comments from Hacker News spanned the time
period from December 18, 2007 through March 28, 2017.
Authored comments were extracted across 904 topics. Com-
ments were authored by 818 distinct user handles. Hacker
News incorporates a points-based reputation system which
allows certain users to upvote or downvote comments. In our
collected data, points for comments ranged from O to 265
(v = 13, sd = 17), with negative points being indicative of
“troll” or otherwise unacceptable comments by community
standards.

The number of words in a comment averaged 262 words
(sd = 287), roughly equivalent to the length of abstracts in
typical academic papers.

Data cleaning. We conducted an initial pass over the data in
which we marked 199 comments in the data as false positives.
Representative examples of false positives include: URLSs, for
example, in play.google.com; the term playlist, when referring
to music; the term “plays well with,” regarding the compatibility
of two software libraries; “plays a role,” a “hand to play,”

3https://hn.algolia.com/
“https://www.algolia.com/doc/guides/relevance/ranking/

9% <.

“at play,” “to play devil’s advocate,” and similar derivatives,
when used colloquially; “playbook,” as a reference to Ansible
playbooks; “playback,” in reference to video; and so on.

Qualitative analysis. We ported the Algolia JSON results to
a format compatible with the ATLAS.ti data analysis software,
and used the software to qualitatively code the data.> We
conducted coding over multiple iterations. In the first cycle, we
used descriptive coding, and assigned short codes and labels
to capture and summarize the salience of the comments [19]
by framing them as small stories [18]. In the second iteration,
we conducted a systematic metaphor analysis to organize the
comments into clearly structured patterns, and it is through
the identification of these metaphors by which we describe
the results [22], [23]. Together, the first and second iterations
provide both the metaphor for the classified comments and
the necessary contextual details to describe the nature of the
respective metaphor.

Analysis rationale. We briefly provide justification for our
choice of two analytic machineries: 1) comments as small
stories, and 2) metaphor analysis. The first, small stories
research, impacts the way in which we choose to interpret
the comments. The second, metaphor analysis, influences the
organization and presentation of our qualitative findings.

Small stories analysis is both small in the literary sense, in
that it methodologically applies to small vignettes or “messy’
episodes [24], and as an analysis paradigm that contrasts with
“big stories,” or traditional, prototypical narratives—such as
novels or formal autobiographies and participant interviews.
As Bamberg and Georgakopoulou argue, small stories analysis
takes the perspective that there is “worth” in the everyday
stories and experiences, even when such incidents may be
“seemingly uninteresting tidbits,” and even when they fail formal
criteria of narrative, such as temporal ordering of events [18].
For us, small stories research is less a prescription for how to
conduct analysis, but rather, a perspective that places value on
small stories. We argue that the shared expressions from authors
on Hacker News, though casual, offers such a contribution to
the research community.

The second analytic machinery is that of metaphor analysis,
which can be conducted in a variety of ways, among them, as
a rhetorical instrument, to describe the research process itself,
and to describe the results of qualitative research [22]. We
have opted to use metaphor analysis as a means to describe the
results of our research, for two reasons. First, metaphor analysis
is particularly appropriate when there is a need to organize
and abstract multiple, potentially divergent expressions, and
when no expression is particularly privileged or more important
than any other [22]. Second, metaphor analysis can aid in the
reliability of the finding: even if the credibility of the narrative
itself is suspect, Moser argues that the tacit metaphor present
within the narrative remains a reliable and authentic belief of
the explicit expression [25].

Verifiability. To support verification of our findings, we
have placed both the original Hacker News dataset, in JSON

[l

Shttp://atlasti.com/

TABLE I
THE METAPHORS OF PLAY

Section

Section III-A

Play as... Summary

artistry Comparisons to programming as related
to art or playing music, acquisition of

mastery, and performance.

catalyst Section III-B Play as a catalyst activity which leads to
programming, typically expressions and

nostalgic experiences from childhood.

fun Section III-C Play as enjoyment or fun and the charac-

teristics to elicit these positive affects.

playgrounds Section III-D Metaphors and expressions of program-
ming environments as virtual play-
grounds; the sandboxes and toys of
programming.

Section III-E

spontaneity Programming and play as a spontaneous

and undirected activity.

tinkering Section III-F Expressions of programming and play as

dabbling or casual tinkering.

anti-work Section III-G ~ Tensions in negotiating play and work

as dichotomous experiences.

format, as well and our ATLAS.ti analysis file, on our research
site.® We encourage researchers to use this data to present
complementary interpretations on the nature and significance
of programming and play, or use it as a basis for triangulation
with other forms of inquiry.

III. THE NATURE AND SIGNIFICANCE OF PROGRAMMING
AND PLAY

In this section, we present expressions on the nature and
significance of programming and play, organized through
metaphor. The complete list of metaphors of play, situated
through programming, is found in Table 1.7

A. Play as artistry

“Everyone programs differently,” says HNay50199. “Every
artist paints differently, plays differently, or sculpts differently.
Programming is an art. Instead of brushes, we have abstract
data types, instead of paint we have user interfaces. If we
use the right strokes in the right places, we end up with a
masterpiece” (HNgg50199). Indeed, “programming and music,
especially Jazz improvisation, seem to involve very similar
kinds of problem solving,” says HN4189791. They add, “both
of them require thinking about a problem at many different
layers of abstraction simultaneously, and both are fundamentally
about recognizing and manipulating abstract patterns. Both are
passions that, from the outside, might seem like they require a
lot more work than they give back in payoff. But if you enjoy
the process, it doesn’t feel like work at all.”

Shttp://go.barik.net/hnplay

7For traceability, quotations are cited as HN;q, where :id is the unique
identifier of the comment. These comments can be accessed as a JSON docu-
ment at http://hn.algolia.com/api/v1/items/:id. Despite the additional
cognitive processing cost, we also use the gender-inclusive “they” as a singular
pronoun when referring to author expressions [26].

These expressions by HNoy50199 and HNyjg9791 capture
the core experience of the metaphor of play as artistry: how
practitioners interpret the act of programming as an act of
artistry, passion, and performance. HN 44922301 elaborates, “you
know how rare it is to have a passion and talent for something,
and at the same time have that something be valuable and
useful. Think of all the brilliant and passionate people that
are into disciplines where only a few thousand people in the
world get a decent income. Think of all dancers, screenwriters,
directors, painters, [and] poets.”

A noteworthy undercurrent we found within play as artistry
is that expressions of programming are often situated about
mastery within the craft. “While learning piano, no one wants
to sit in a room playing scales over and over,” says HN3gg2494.
They continue, “they want to play Clair de Lune. Programming
is similar in that it can be an art but it is first and foremost a
skill. You need to struggle with boring parts until you figure out
that you can actually make very cool things. But first you need
to learn about loops and variables.” And HNgogg112 similarly
makes the case through Jimi Hendrix, in reference to music and
skill and watching others perform the activity instead being an
active participant: “my take on programming has become that
watching a programming video is like watching Jimi Hendrix
play the guitar. A beginner learns almost nothing applicable
because they don’t have the mechanical technique as a basis for
informing their seeing. A virtuoso will see new techniques and
ways they could do them better.” HN~465770 adds, “it requires
some extended time of immersion to really make significant
progress.”

If code is art, then GitHub is the exhibition halls
through which the art is displayed. For some authors like
HNg290112, their mastery translates to performance for others,
either as publicly-accessible repositories for employment or
more informally to just “show off” for friends (HN3310273,
HNy4133140). However, these expressions are not universally
shared. HN~rg933835, for example, says, “not everyone is putting
all their achievements out for the world to see.” As HNs764004
explains, “a big problem with ‘GitHub-as-a-Resume’ for the
experienced developer is that it destroys the idea of side-projects
as play. I can no longer just fool around with something for
the sake of fooling around with it.”

B. Play as catalyst

“I started off just playing games, but pretty soon I wanted to
write my own games,” says HNggg3gs4. They continue, “thanks
to all the resources already available, I picked up BASIC quite
easily.” Many authors contributed experiences of how play,
particularly through computer and video games, led to pro-
gramming and “sparked their interest” (HNga93058) or “pushed
[them] to take a programming course” (HNg304166). From
“playing around with gorilla in QBASIC to pretending to know
C and trying to make Pac-Man” (HNs2149519), “inserting four
letter words into Tank Battle using a hex editor” (HNggg5495),
“making a shoddy Zelda clone” (HNgr41327), or otherwise “re-
verse engineering games” (HNgg24501), these authors describe
play as a catalyst for intermingling programming and play

AU

function
t

b el
turtle, upcs

Fig. 1. ComputerCraft is a mod created for Minecraft that adds LOGO-like
capabilities, such as turtles, to the game. Turtles are programmed in the Lua
programming language.

activities, sometimes leading to professional programming. As
HN3g78213 experienced when they first discovered they could
break into the game and modify it: “the excitment of that
moment stuck with me and was the enabler of the amazing
life I’ve had since.” Similarly, HN4g91359 felt “lucky enough
to be born at the right in the right environment.” They describe
their nostalgic experience as “tak[ing] things we didn’t like
and turning them into things we did like” (HN4g91359).

In some cases, we found experiences where playing games
were eventually replaced with programming. As HN3g91129
tells us, “for some reason I pretty much stopped playing
computer games when I started programming. I think Quake
IT and Diablo II are the last games I played seriously. After
that I got into indy game development as a hobby and I started
making games instead of playing them.”

As advice to providing a catalyst to others, HNg7114444
says this: “speaking from my own experience, give him not
a programming language, but either a game that includes
a programming language, or a tool for making games that
includes programming.” We heard several expressions of how
“in-game programming” (HNg151905), or mods (Figure 1), led
from play to programming for play. As HNj5151905 describes,
“modders have had an endless field day with this. It’s now
a game that contains other games.” HNg3ig380 adds, “as
this young, enthusiastic population of users grows up, they
will have a lot of buying power and interest in things like
the customizations and programming aspects of the game.
HN3501677 reflects, “I think we underestimate the imagination
of today’s kids.”

5

C. Play as fun

Within this metaphor emerges a sense of how practitioners
experience positive affect, such as fun and enjoyment, through
the activity of programming and play.

A recurring theme in many author stories were related to
simplicity as a driver of these positive feelings, especially when
this simplicity arises as unexpected surprises. For instance,
HN 4670326 observes, “I never thought I'd be playing with APIs,
but it turns out programming is easier than I thought it would be.

[E]| LEGO MINDSTORMS NXT
File Edit Tools Help

DED B DO |W@|<?

Gomman 1 || Uniked-1

'\'5‘_"{;.}

|| o sy |
— @Jr < C %
| C X T

—

Fig. 2. HNg218320 describes how intuitive, building-block coding interfaces
made programming an enjoyable experience. Shown in this figure is the Lego
Mindstorms NXT interface for programming Lego robots.

Ruby is a lot more fun than the C++ I learned in engineering
school. Hours after everyone else in the house went to sleep last
night, I was here in the office with ten tabs open in Chrome.”
And HN3sg5341 says, “I learned to program with ActionScript. I
studied art and had no background in programming, but I found
it fun to play with Flash and ActionScript. For example, getting
a webcam involved is a couple of lines of code.” Likewise,
HNg218320 orients his introduction to programming in terms of
expressions of enjoyment: “I got into programming by playing
with Lego Mindstorms when I was a kid (Figure 2). The
building block coding interface was really fun and intuitive. ‘Oh
no,” a purist would sneer, ‘you can’t code like that, it’s horrible.
Here, read this tome on C and microcontroller programming
before you start.” No thanks. I got to enjoy the end result
immediately (making a fun robot), and then from there I could
look further into making something more complicated, which
ignited my programming journey.”

Supporting the notion that play is in some way an innate
phenomenon, HNggg724¢ says that “as a kid I, perhaps naively,
didn’t think playing around with computers was even a real
thing you could do as a job. I assumed when I grew up I would
have to get a real job, doing proper engineering, or carpentry,
or accounting, or something.” This sort of playing around is
perhaps “open-ended and entirely informal” (HNg335181) and
it is unsurprising that authors like HN4412137 “love playing
around with widgets and technology just to see what happens.”

Still others authors describe the nature of programming and
play through terms such as “empowerment” and “excitement”
(HN3662188)- HN3ge2188 tells us: “when I was eight, we got a
Commodore VIC-20. It plugged into the TV and booted into
BASIC. Just running PRINT statements and simple loops was
unbelievably cool. Getting to play with Logo on the Apple 1[e
was awesome, too. Shapes and angles and horribly flickering
animations were exciting.” In the end, HNg133077 suggests that
it is not play itself that garners this excitement, but rather, that
“much of the ‘pleasure of programming’ is attributable to the
possibility of play with such a system.”

D. Play as playgrounds

When authors elaborate on the metaphor of playgrounds,
they often describe the environments and the enabling of

< Logical Labyrinth >

Challenge: Use logical operators and conditional code to
‘move through the puzzle world.

Each of these operators influences the way your

conditional code runs:

+ The NOT operator () inverts a Boolean value, saying,
“if NOT this condition, do this."

+ The AND operator (&&) combines two conditions and
funs the code only if both are true.

+ The OR operator (| combines two conditions and
funs the code if atfeast one is true.

Solve the challenge by choosing the operators and

conditions that will work best to collect all the gems and

toggle open the switches.

for idn1...64
moveForward()
if isOnClosedSwitch && isBlocked {
toggleSwitch()
turnLeft()
moveForward()
3
¥

Fig. 3. The Apple Swift playground both captures the nature of physical
playgrounds and transforms them into a virtual programming environment.

programming and play within them through the vocabulary
of physical playspaces [27]. For example, authors describe
the environments as “fun but messy” (HN3j28849), “generally
safe” (HNgg22465), and as “sandboxes” (HNy4797117, and Apple
Playgrounds in Figure 3), environments where one can “muck
it up as much as you like” (HNsg07939). Simultaneously,
authors recognize that play need not be “useful for productive
programming” (HNg719130) and that the environment should
“get out the way [of play]” (HN3g4s668, HN3g37895).

Like many playgrounds—from the traditional ones with
slides and seesaws to the “junk” playgrounds of old tires and
packing crates [28]—the landscape of programming and play
is littered with expressions of toys and playthings, equally
divergent. Within these playgrounds, “programming computers
[is] like coloring with crayons and playing with Duplo blocks”
(HN7596048), using environments like PicoList where they can
“tackle learning everything from the ground up” (HNgg59701),
or “cod[e] up the occasional fun toy or two until [they] got
bored and ditched it” (HN7509951).

HNy335734 offers a description to contextualize the nature of
play as one in which there are no rules (at least in perception).
HNy335734 says, “I thought games were amazing because I
could manipulate these little worlds, and I could do anything
imaginable within their rulesets. But, seeing ‘Hello!” scroll
forever and ever made me realize that, with this coding thing,
there were no rules. The fact that I could make this computer
do whatever I wanted, if only I could speak its language, was
irresistible.”

E. Play as spontaneity

Authors express this metaphor of play as one of “stumbling
into programming” (HNgs304166, HNs421795), described by
HNgp29370 as one in which the boundaries of play to program-
ming and play is “thin and easily crossed.” A key idea within
this metaphor is that programming and play is in some sense
experienced when it is always-on, unintentional, or a default
mode of the system—as HN5421795 says, “people used to have
to choose not to program when they turned their computers on,
in order to play games.” The author continues their recollection,

e COMMODORE 64 BASIC U2
64K RAM SYSTEM
READY .

I

38911 BASIC BYTES FREE

Fig. 4. In the Commodore 64, the system boots up in a programming
environment by default. As HN5421795 remarks, people had to explicitly
choose not to program when they turned their computers on.

File Edit Uiew Search Run Debuy Options
HELP: PLAY Statement Programming Example
then reverses with <" to play the scales from octave b to octave ©:

SCALES = “CDEFGAB"
PLAY " + UARPTRS(SCALES)
o]

X" + UARPTRS(SCALES)
NEXT
PLAY "06 X" + UARPTRS(SCALES)

FORI=1T0G
PLAY “<X" + UARPTRS(SCALES)
NEXT

Example 2

This example plays the first few notes of Besthoven's Fifth Symphony:

LISTEN$ = "T186 oz PZ P8 L8 GGG Lz E-"
FATES = "P24 P8 L8 FFF L2 D"
PLAY LISTENS + FATES

ndow> <Esc=Cancel> <Ctrl-. xt> <Alt-Ti=Back>

Fig. 5. Interpreters like Microsoft QBASIC made accessible I/O features of the
underlying hardware, making it simple for tinkerers to display graphics and
play audio. Shown here is an example of the PLAY statement, through which
the programmer can play audio through the PC speaker by providing a string
representation of musical notes.

noting that systems like the Amstrad Microcomputer and
the C64 booted the machine into programming by default
(Figure 4). HN5401795 continues, “the very next thing that
appeared was the text cursor, the assumption being that you
would now begin to type code. You could choose not to program
by putting a game cassette in the drive, holding Shift+Enter,
and pressing play. But by default, you were programming.”

HNgp29370 echoes a similar sentiment as they played within
MUDs—text-based, multi-player, real-time, virtual worlds—
during their childhood. HNgg29370 says, “playing the game led
almost inevitably to understanding the mechanics and becoming
a coder.” However, HNgg29379 continues, “I feel sorry for
today’s generation of gamers, since there is a much larger wall
between playing and creating these days.”

Other authors appear to express similar laments with respect
to the lack of spontaneity in modern programming environ-
ments. HN797802¢ describes today’s experiences and attempts
to play with programming as “frustrating” and “requiring an
amount of boilerplate” that was “mindboggling.” HN~7278026
observes, “it’s a far cry from PRINT "HELLO WORLD".”

F. Play as tinkering

Play as tinkering is “never anything too serious” (HN2415083).
Understanding during this metaphor is considered to be at the

New Button

| obiects NN

Button Info...
Field Info...
Card Info...
Bkgnd Info...
Stack Info...

Creates 2 new button named New Button.
Double-click the button to edit its name,
hide or show its name, change its style,
link it to another card, or edit its script.

Bring Closer 3+
Send Farther se-

Tou can move the button or changs its size
and shaps by dragging. Hold down the
Shift key while you drag to constrain the
button to the standard Macintosh button
height.

New Button

New Field
New Background

rowee fi Paint f Copy B Menus B Reference fl HyperTalk f{ Map B Glossary B Index f Exi

Fig. 6. Hypercard, a programming tool developed by Apple for what
we today would call end-user programmers. In the metaphor of anti-work,
authors highlighted tools such as Hypercard as being in opposition to “real
programming.”

surface (HN 924837, HNo560474) and only to “understand the
basics” (HNoy57334). It is, as HN57g6832 states, “people who
are mostly messing around playfully.” As HNy327009 notes,
“they read a bunch of blogs maybe, but they don’t think deeply
about what the underlying systems are doing.”

HNgg79112 talks about their childhood experiences of wa-
tching their father tinker, or dabble with programming: “I
was lucky enough to learn the BASICs from my father. He,
being a mathematician and having dabbled with programming
at university, would play around with his own things on the
computer in the evening, and I was rather interested in watching
him create simple graphical things on the screen” (Figure 5).

Like HNggr9112’s father, tinkering is something that a
practitioner does “on the side” (HNyg48921, HNavg4004) as
tangential to their primary development activities. Though the
duration varies, many authors describe tinkering as a time-
bounded activity, as something they do “a bit” (HNsgg7s21,
HN6043994), for “two minutes” (HN4856885) or even “for a few
months” (HN3071883)-

We found that not all authors considered tinkering to be
a positive metaphor, contrasting the shallow understanding
that tinkering entails against “real programmers,” or “hackers.”
HNs560474 says, “a little bit of knowledge is maybe worse
than not knowing at all. Id rather have someone just say ‘I
don’t know’ than try to make a decision based on a few weeks
playing with Python tutorials. Dabbling a bit in a couple of
languages is about as far from programming, or understanding
software development, as playing with toy cars is from Formula
1 racing or designing engines.” HNo560474 adds, “I tinker, I
play, I build, but I have mostly surface knowledge. ‘Hacker’
is a term that should be reserved for real programmers who
actually know what they are doing.”

G. Play as anti-work

Authors expressed strong beliefs towards the dichotomy of
play and work, and we encountered strong cynicism in the
expressions for this metaphor regarding both and work activities.
As HNga45685 says, “a big distinction for me is ‘programming

as work’ and ‘programming as play’.” They continue, “I can

spend eight hours at work and be absolutely drained when I
get home, but still leap at the chance to say, take a bite out of
my functional programming course” (HNg445685). HNga6s915
echoes the sentiment: “there’s a reason it is called work and
not play. If work was always enjoyable, then they wouldn’t
need to pay you to do it.”

Other authors contrasted programming for work as “real
programming” (HN3610936, HN7761708), suggesting that non-
work programming is in some sense “pretend programming”
(HN7761708 offers the example of Hypercard as pretend
programming, Figure 6). For example, HNg396063 comments
that “pretend” programming applications are essentially “pro-
gramming for the masses” and that they “inadvertently throw
up road blocks to experienced programmers” (HNgsg96063)-
“Real programming,” as HN3309984 suggests, is the difference
between deploying a product versus deploying code. HN3309984
argues: “the joy of being a professional, well paid developer is
in creating the product, not the code. The joy of programming
for programming’s sake is something you do in your own
time.”

The concept of this “spare time” pressure between work and
play is shared by other authors as well. HNgggp211 contrasts
differences in programming between their professional adult
career and that of childhood: “for a child it is easie—he has
the time available and that desert of despair mentioned can be
actually fun. Because to a child, making the computer do stuff
can feel like magic, whereas to an adult it feels like a chore
to get somewhere, a chore that eats all of the available time.”
HN7496608 concedes that programming for work cancels the
ability to engage in programming as play: “one needs hobbies
that are not programming. That’s no different really than a
chef coming home making himself a sandwich.”

But not all authors expressed the same cynicism. HNg129744
talks about the importance of programming and play, and
its application to work and creativity: “as much as I love
programming sometimes it’s play that’s most important. You
need to gather fresh ideas from the world around you. It can
be isolating to be stuck in the rut of progress and innovation
that is so endemic to our culture.”

IV. LIMITATIONS

Our inquiry into the expressions of programming and play
were conducted through an analysis of a single source of
practitioner experiences, Hacker News. Consequently, our
findings are biased towards the types of participants who self-
select to participate within this community. A second bias is
introduced as a result of arbitrarily bootstrapping our search
through the use of the narrow terms “programming” and “play.
In doing so, we have lost potential expressions of play in
which the author did not explicitly use both terms; for example,
they may have used “coding” rather than “programming.” For
instance, although the poetic epigraph in our introduction
highlights a performatory mode of programming and play, such
poetry contests did not appear in our stories of this metaphor.

There are several potential effects of using data from online
communities in general, specifically with regard to credibility

i

and authenticity of presented experiences. For example, pre-
vious research has found that individuals sometimes “identity
shift” in computer-mediated environments, in which public self-
presentations differs from private self-presentation, either from
denial or accountability [29], or for impression management,
in which an individual wishes to present themselves to
others in socially desirable ways [30]. However, other studies
have suggested that in online communities, some individuals
experience a form of “online disinhibition,” in which they
are more likely to self-disclose more frequently or intensely
than they would in person, in part due to perceived anonymity
and invisibility [31]. In short, there is likely some sort of
perturbation of the experiences we’ve presented in this paper,
but we don’t know exactly what that is and to what extent
such effects influence our findings.

Another effect from online communities may arise as a result
of the moderation and points-system used within Hacker News
to rank and display comments, in which individuals in the
community internalize their true opinions and instead converge
to a form of groupthink. Fearing reprisal from other members
of the community, individuals may be compelled to only share
experiences that they believe would be positively scored by
their peers [32]. A quick search for the phrase “unpopular
opinion” on Algolia partially validates that some members are
aware of groupthink, and explicitly preface their comments
with an indication that it may be unpopular to the community,
likely to mitigate reprisal from non-conforming expressions.

Finally, we acknowledge that qualitative research, however
rigorously conducted, involves not only the qualitative data
under investigation but also a level of subjectivity and interpre-
tation on the part of the researcher as they frame and synthesize
the results of their inquiry. In particular, though many authors
express notions of play, authors whose thoughts are better
articulated tend to be given greater representation in the results.
Thus, we emphasize that our own findings should be examined
as only one of many possible presentations of the nature of
programming and play.

V. RELATED WORK

Our work is positioned within the interdisciplinary field of
software studies, which aims to understand software systems
through the ways in which it shapes society and culture. That is,
it is not the software system itself that is the central artifact of
investigation, but rather, the emphasis is placed on the human
activities surrounding the use of software. In other words,
software studies as a means of inquiry asks us to devise and
incorporate new ways of thinking about software and the role
it plays in our lives [33].

For instance, a series of essays collected by Fuller explore
how computer interfaces influence our everyday lives and
reshape how we interact with the world [33]. Kitchin and
Dodge examine software from a spatial perspective, examining
how the nature of space is dependent on the product of code.
They discuss how software, for example, automated check-
in kiosks at airports, transforms the design of the physical
layout of the airport [34]. Cox and McClean emphasize the

aesthetic and political implications of code, framing code
through different sociological forms: reading code as a cultural
artifact, similar to art or film, interpreting code as expressions
of speech, and exploring how human speech is translated in a
form that computers can interpret [35].

As an idiographic inquiry, Montford and colleagues under-
take a close study on a single-line of code: 10 PRINT and
its variations, and use it as a lens to trace historically how
professionals and hobbyists read and write code [36]. Our own
work also applies a singular lens to understand a particular
social phenomenon: programming and play, as expressed by
authors on Hacker News.

Finally, Bergstrom and Blackwell inquire into the diverse
ways in which programming is done, presented as practices of
programming [37]. They use analytic methods to understand,
through accounts of embedded and lived experience, the
different accounts of programming practices. In a similar spirit,
we aim to understand the space of metaphors through which
practitioners express programming and play.

VI. DISCUSSION

In this section, we discuss three aspects of our narrative
inquiry of Hacker News. First, we discuss the expressions
of sparse metaphors, or metaphors that occur within our
analysis yet provide insufficient depth to support full inquiry.
Second, we retrospect on our decision as researchers to use
as Hacker News source of inquiry. Third and finally, our
analysis of expressions by Hacker News authors suggests that
expressions of programming and play predominantly originate
from childhood, and we briefly discuss the implications of this.

Sparse metaphors for programming and play. During
our analysis, we encountered a number of metaphors we
have termed sparse metaphors. Although these metaphors
provide additional expressions on programming and play, we
found an insufficient number of authors who shared their
experiences. Thus, we want to emphasize that the availability
of the expressions we found and characterized should not be
conflated with importance. Rather, our work attempts to convey
the space of expressions regarding the nature and significance
of programming and play as found in Hacker News.

For example, we identified the metaphor of “play as artistry,
but along the way, also identified “play as chess” as a sparse
metaphor. Although we did not find sufficient context to
promote this metaphor to a first-class citizen, it’s easy to
see envision ways in which programming and play are at
times like playing a puzzling game of chess. Other metaphors
that we were unable to promote are “play as love,” “play
as imagination,” and “play as construction”; instead, these
metaphors “fill-in” the context for metaphors such as “play as
catalyst” (Section III-B), “play as playgrounds” (Section III-D),
and “play as anti-work™ (Section III-G).

Our identification of sparse metaphors brings to attention
other contemplations that embody programming and play, yet
do not appear within our analysis of Hacker News. As one
example, within the live coding movement, composers seek
new forms of expression by coding music or coding visuals for

0l

projection on the fly using laptops [38], [39], [40]. McLean
reflects on his experiences of art and programming to produce
music; he argues, “a musical score is a kind of source code, and
a musical performance is a kind of running program. When you
play from a musical score or run a program you are bringing
instructions to life” [41]. Hackathons are brief, intensive events
through which people who are not normally collocated converge
to write code together—outside of their day-to-day routine—
to explore, learn, socialize, and form stronger connections
with others in the organization [42]. And socialization in
physical space—both good-natured and unpleasant—sometimes
finds its way as remnants within source code repositories—
as jokes, puns, and “gallows humor” found in comments
within the code [43], [44]. Finally, toolsmiths have applied
gamification—the application of game-design elements to non-
game environments—to make programming experiences more
enjoyable for software practitioners [45], [46].

Interpreting Hacker News. Although the primary con-
tribution of this research has been to provide a synthesis
of interpretations of programming and play, a secondary
(and tacit) aim of this work is to investigate the ways in
which researchers can use online, everyday, self-reported
and volunteered experiences of practitioners to understand,
shape, and frame software engineering. From our perspective,
communities like Hacker News are somewhat like a needle in
a haystack. But unlike an actual haystack, we also recognized
that these digital haystacks could be mined to effectively extract
relevant needles.

On one hand, we did drudge our way through our share of
false positives, troll comments, and difficult-to-parse comments.
In some cases, although we could classify the comment and
assign it a particular metaphor, we otherwise were unable
to easily incorporate or quote the comment as part of the
metaphor details. On the other hand, and much to our surprise,
we also encountered on several occasions expressions that
were essentially “diamonds in the rough”—vivid, clear, and
at times imaginative and even poetic (for example, “everyone
programs differently” from HN2450199 and “Jazz improvisation”
from HN4150791 in Section III-A, were particularly thought-
provoking).

Our results suggest that the seemingly mundane is sometimes
anything but; as Georgakopoulou argues, perhaps we need to
think big with small stories, and the potential they have to help
us understand our research, our society, and even ourselves [47].
We encourage other researchers to investigate Hacker News,
and other online communities, as a source of qualitative inquiry.

Programming and play is a privileged position of child-
hood. Finally, the word play arouses memories, from childhood
to adulthood [17]. Unfortunately, our analysis of Hacker News
suggests that programming and play appears to predominantly
originate as a childhood activity, and occasionally in young
adults (most noticeable, perhaps, in “play as catalyst” in
Section III-B).

One possible interpretation, and supported by Guo’s inves-
tigation on adults learning computer programming [48] and
Costabile and colleagues’ work on end-users as unwitting

software developers [49], is that expressions on programming
and play arise from childhood because the tools that we design
as software engineers to inspire programming are targeted
primarily to children [50], [51], [52], [53]. If so, an important
avenue for research is democratizing and making accessible the
experiences of programming and play; perhaps by imagining
software development tools or platforms that inspire adults to
learn computer programming, adapted to forms of entertainment
they enjoy.

Another possible interpretation is that expressions on pro-
gramming and play often originate and relate to childhood
because adult practitioners of software mostly perceive play
nostalgically; it is something that they remember and recall
doing as a child, but for whatever reason, no longer engage
in as adults or only engage in as a luxury. To quote the Irish
playwright George Bernard Shaw, “we don’t stop playing
because we grow old; we grow old because we stop playing.”
We think that’s a shame.

VII. CONCLUSION

In this paper, we conducted a qualitative study within Hacker
News to understand how practitioners expressed the nature
and significance of programming and play in experiential
terms. Through our inquiry, we discovered that programming
and play is expressed and reflected through a multiplicity of
metaphors, among them: play as artistry, play as tinkering, play
as playgrounds, and play as anti-work. These contemporary
metaphors provide a telescope through which we are able to
reflect and relate to programming and play within our own
lives—as practitioners, as researchers, as hobbyists, as parents
and grandparents, and as role models.

As tool designers, the stories shared by authors of Hacker
News reveal the need for playful experiences within software
development environments—experiences that allow program-
mers to spontaneously and creatively express their ideas to
code, to provide safe playgrounds for experimentation, and to
support tinkering as a purposeless, ludic activity. Perhaps most
importantly, these stories remind us that despite our busy and
often hurried day-to-day lives, it’s important for all of us to
make time for play.

REFERENCES

[11 J. Orwant, Games, Diversions, and Perl Culture: Best of the Perl
Journal. O’Reilly Media, Inc., 2010.

[2] E. Fink, U. Saine, and T. Saine, “The oasis of happiness: Toward an
ontology of play,” Yale French Studies, no. 41, pp. 19-30, 1968.

[3] M. Van Vleet and B. C. Feeney, “Play behavior and playfulness in
adulthood,” Social and Personality Psychology Compass, vol. 9, no. 11,
pp. 630-643, Nov. 2015.

[4] J. Huizinga, “Nature and significance of play as a cultural phenomenon,”
in The Game Design Reader: A Rules of Play Anthology. MIT Press,
2006.

[5] M. Bekoff, “Social play behavior,” BioScience, vol. 34, no. 4, pp.
228-233, Apr. 1984.

[6] G. M. Burghardt, “The evolutionary origins of play revisited: Lessons
from turtles,” in Animal Play: Evolutionary, Comparative, and
Ecological Perspectives. Cambridge University Press, 1998, ch. 1, pp.
1-26.

[7]1 G. Bateson, “A theory of play and fantasy,” in The Game Design
Reader: A Rules of Play Anthology. MIT Press, 2006, pp. 314-328.

[8]

[10]

[11]

[12]

[13]

[14]
[15]
[16]
(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Van Vleet and B. C. Feeney, “Young at heart: A perspective for
advancing research on play in adulthood,” Perspectives on
Psychological Science, vol. 10, no. 5, pp. 639-645, Sep. 2015.

A. D. Pellegrini and P. K. Smith, “The development of play during
childhood: Forms and possible functions,” Child and Adolescent Mental
Health, vol. 3, no. 2, pp. 51-57, May 1998.

M. Moore and S. W. Russ, “Follow-up of a pretend play intervention:
Effects on play, creativity, and emotional processes in children,”
Creativity Research Journal, vol. 20, no. 4, pp. 427-436, Nov. 2008.
L. K. Bunker, “The role of play and motor skill development in
building children’s self-confidence and self-esteem,” The Elementary
School Journal, vol. 91, no. 5, pp. 467471, May 1991.

A. Nicolopoulou, “Play, cognitive development, and the social world:
Piaget, Vygotsky, and beyond,” Human Development, vol. 36, no. 1, pp.
1-23, 1993.

L. A. Wing, “Play is not the work of the child: Young children’s
perceptions of work and play,” Early Childhood Research Quarterly,
vol. 10, no. 2, pp. 223-247, Jan. 1995.

H. Hein, “Play as an aesthetic concept,” The Journal of Aesthetics and
Art Criticism, vol. 27, no. 1, pp. 67-71, 1968.

B. Sutton-Smith, The Ambiguity of Play. Harvard University Press,
2001.

S. Brown and C. Vaughan, Play: How it Shapes the Brain, Opens the
Imagination, and Invigorates the Soul. Avery, 2010.

A. Sandberg, “Play memories from childhood to adulthood,” Early
Child Development and Care, vol. 167, no. 1, pp. 13-25, Jan. 2001.
M. Bamberg and A. Georgakopoulou, “Small stories as a new
perspective in narrative and identity analysis,” Text & Talk, vol. 28,
no. 3, pp. 377-396, Jan. 2008.

J. Saldafa, The Coding Manual for Qualitative Researchers.
Publications, 2009.

Y. Wu, J. Kropczynski, P. C. Shih, and J. M. Carroll, “Exploring the
ecosystem of software developers on GitHub and other platforms,” in
CSCW Companion, 2014, pp. 265-268.

T. Barik, B. Johnson, and E. Murphy-Hill, “I heart Hacker News:
Expanding qualitative research findings by analyzing social news
websites,” in ESEC/FSE, 2015, pp. 882-885.

R. Schmitt, “Systematic metaphor analysis as a method of qualitative
research,” The Qualitative Report, vol. 10, no. 2, pp. 358-394, 1990.
R. C. Smith and E. M. Eisenberg, “Conflict at Disneyland: A
root-metaphor analysis,” Communication Monographs, vol. 54, no. 4,
pp. 367-380, Dec. 1987.

A. De Fina and A. Georgakopolou, The Handbook of Narrative
Analysis. John Wiley & Sons, 2013, vol. 53, no. 9.

K. S. Moser, “Metaphor analysis in psychology—Method, theory, and
fields of application,” Forum: Qualitative Social Research, vol. 1, no. 2,
2000.

A. J. Sanford and R. Filik, ““They” as a gender-unspecified singular
pronoun: Eye tracking reveals a processing cost,” The Quarterly Journal
of Experimental Psychology, vol. 60, no. 2, pp. 171-178, Feb. 2007.

J. Veitch, S. Bagley, K. Ball, and J. Salmon, “Where do children usually
play? A qualitative study of parents’ perceptions of influences on
children’s active free-play,” Health & Place, vol. 12, no. 4, pp.
383-393, 2006.

A. M. Susa and J. O. Benedict, “The effects of playground design on
pretend play and divergent thinking,” Environment and Behavior,

vol. 26, no. 4, pp. 560-579, Jul. 1994.

A. L. Gonzales and J. T. Hancock, “Identity shift in computer-mediated
environments,” Media Psychology, vol. 11, no. 2, pp. 167-185, Jun.
2008.

SAGE

(31]

[32]

[33]
[34]
(35]

(36]

(371
[38]
[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

D. C. DeAndrea, S. Tom Tong, Y. J. Liang, T. R. Levine, and J. B.
Walther, “When do people misrepresent themselves to others? The
effects of social desirability, ground truth, and accountability on
deceptive self-presentations,” Journal of Communication, vol. 62, no. 3,
pp- 400417, Jun. 2012.

J. Suler, “The online disinhibition effect,” CyberPsychology & Behavior,
vol. 7, no. 3, pp. 321-326, Jun. 2004.

C. McCauley and Clark, “The nature of social influence in groupthink:
Compliance and internalization.” Journal of Personality and Social
Psychology, vol. 57, no. 2, pp. 250-260, 1989.

M. Fuller, Behind the Blip: Essays on the Culture of Software.
Autonomedia, 2003.

R. Kitchin and M. Dodge, Code/space: Software and Everyday Life.
MIT Press, 2011.

G. Cox and A. McLean, Speaking Code: Coding as Aesthetic and
Political Expression. MIT Press, 2013.

N. Montfort, P. Baudoin, J. Bell, I. Bogost, J. Douglass, M. C. Marino,
M. Mateas, C. Reas, M. Sample, and N. Vawter, /0 PRINT CHR
$(205.5+ RND (1));: GOTO 10. MIT Press, 2012.

I. Bergstrom and A. F. Blackwell, “The practices of programming,” in
VL/HCC, Sep. 2016, pp. 190-198.

I. Bergstrom and R. B. Lotto, “Code bending: A new creative coding
practice,” Leonardo, vol. 48, no. 1, pp. 13-25, 2015.

N. Collins, A. McLean, J. Rohrhuber, and A. Ward, “Live coding in
laptop performance,” Organised Sound, vol. 8, no. 03, pp. 321-330,
Dec. 2003.

T. Magnusson, “Herding cats: Observing live coding in the wild,”
Computer Music Journal, vol. 38, no. 1, pp. 8-16, 2014.

A. McLean, “Hacking Perl in nightclubs,” perl.com, 2004.

E. H. Trainer, A. Kalyanasundaram, C. Chaihirunkarn, and J. D.
Herbsleb, “How to hackathon: Socio-technical tradeoffs in brief,
intensive collocation,” in CSCW, 2016, pp. 1118-1130.

G. Moody, Rebel Code: The Inside Story of Linux and the Open Source
Revolution. Basic Books, 2002.

S. Rosenberg, Dreaming in Code: Two Dozen Programmers, Three
Years, 4,732 Bugs, and One Question for Transcendent Software.
Crown Publishing Group, 2007.

T. Barik, E. Murphy-Hill, and T. Zimmermann, “A perspective on
blending programming environments and games: Beyond points, badges,
and leaderboards,” in VL/HCC, Sep. 2016, pp. 134-142.

T. Dal Sasso, A. Mocci, M. Lanza, and E. Mastrodicasa, “How to
gamify software engineering,” in SANER, Feb. 2017, pp. 261-271.

A. Georgakopoulou, “Thinking big with small stories in narrative and
identity analysis,” Narrative Inquiry, vol. 16, no. 1, pp. 122-130, Aug.
2006.

P. J. Guo, “Older adults learning computer programming: Motivations,
frustrations, and design opportunities,” in CHI, 2017, pp. 7070-7083.
M. F. Costabile, P. Mussio, L. Parasiliti Provenza, and A. Piccinno,
“End users as unwitting software developers,” in International Workshop
on End-user Software Engineering, 2008, pp. 6-10.

C. Kelleher, R. Pausch, and S. Kiesler, “Storytelling Alice motivates
middle school girls to learn computer programming,” in CHI, 2007, pp.
1455-1464.

J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch programming language and environment,” ACM Transactions on
Computing Education, vol. 10, no. 4, pp. 1-15, Nov. 2010.

M. J. Lee, F. Bahmani, I. Kwan, J. LaFerte, P. Charters, A. Horvath,
F. Luor, J. Cao, C. Law, M. Beswetherick, S. Long, M. Burnett, and
A. J. Ko, “Principles of a debugging-first puzzle game for computing
education,” in VI/HCC, Jul. 2014, pp. 57-64.

K. T. Stolee and T. Fristoe, “Expressing computer science concepts
through Kodu game lab,” in SIGCSE, 2011, pp. 99-104.

