
BISCUIT: Scaffolding LLM-Generated Code with
Ephemeral UIs in Computational Notebooks

Ruijia Cheng
Apple

rcheng23@apple.com

Titus Barik
Apple

tbarik@apple.com

Alan Leung
Apple

alleu@apple.com

Fred Hohman
Apple

fredhohman@apple.com

Jeffrey Nichols
Apple

jwnichols@apple.com

1 3

4

2

Fig. 1. BISCUIT is a JupyterLab extension prototype that offers LLM-generated UI elements to support programmers working with code in machine learning
tutorials. With BISCUIT, a user working on an existing code cell in the notebook (1) can enter a natural language request (2), which triggers helpful
ephemeral UI elements to be generated and displayed on a side panel (3). The user can interact with the UI elements and get LLM-generated code based
on their interaction with the UI (4).

Abstract—Programmers frequently engage with machine
learning tutorials in computational notebooks and have been
adopting code generation technologies based on large language
models (LLMs). However, they encounter difficulties in un-
derstanding and working with code produced by LLMs. To
mitigate these challenges, we introduce a novel workflow into
computational notebooks that augments LLM-based code gen-
eration with an additional ephemeral UI step, offering users UI
scaffolds as an intermediate stage between user prompts and code
generation. We present this workflow in BISCUIT, an extension
for JupyterLab that provides users with ephemeral UIs generated
by LLMs based on the context of their code and intentions,
scaffolding users to understand, guide, and explore with LLM-
generated code. Through a user study where 10 novices used
BISCUIT for machine learning tutorials, we found that BISCUIT
offers users representations of code to aid their understanding,
reduces the complexity of prompt engineering, and creates a
playground for users to explore different variables and iterate
on their ideas.

I. INTRODUCTION

Programmers delving into machine learning frequently work
with interactive tutorials in computational notebooks, where
they complete coding exercises with examples. The advent of
large language models (LLMs) has introduced them to LLM-
based code completion technologies such as GitHub Copilot,1

OpenAI ChatGPT,2 and Google Gemini.3 Users interact with
these tools by entering requests in natural language or directly
in code, and the LLMs respond with high-quality code snippets
accompanied by comments and explanations catered to their
specific context and intentions [1], [2]. However, this mode of
interaction can present challenges for users in understanding
and exploring beyond the code produced by LLMs—for ex-
ample, in comprehending the rationale behind certain syntax
and logic in code generated by LLMs [3], [4]. Users may also

1https://github.com/features/copilot
2https://chat.openai.com
3https://gemini.google.com

overrely and overtrust code generated by LLMs, overlooking
potential issues and alternative solutions [5], [6].

We introduce a UI-centric approach for users to interact
with LLMs in code generation. Instead of directly generating
code based on user requests, our approach offers dynamically-
generated UIs as an additional layer of scaffolds between
users’ natural language requests and code generation. Inspired
by prior work on UI-based scaffolds in programming and the
emerging body of literature on LLM-generated UIs [7], [8],
we devise a workflow of ephemeral UIs—UI elements that are
dynamically generated by LLMs and contextually integrated
with the code context and user requests. This workflow allows
users to interact with UI-based scaffolds in code generation,
facilitating code comprehension and exploration.

Specifically, we present this workflow in BISCUIT (Building
Interactive Scaffolding for Code Understanding In Tutorials).
As interactive tutorials for machine learning are commonly
hosted in computational notebooks, we implemented BISCUIT
as a JupyterLab extension to offer in-context support. As
shown in Figure 1, with BISCUIT, users can trigger ephemeral
UIs through natural language requests. Useful UI elements are
generated by the underlying LLMs based on the code context
and user request. Users can interact with these UI elements,
leading an LLM to generate and inject code into the notebook.

We conducted 10 user study sessions where programmers
who are novices in machine learning engaged with BISCUIT to
work with an interactive tutorial in JupyterLab. We found that
BISCUIT supported users for understanding LLM-generated
code by surfacing key variables that users can experiment
with. BISCUIT allowed users to guide code generation, as it
reduces the effort of detailed prompting and offers users an
intuitive interface to customize the generated code. BISCUIT
also creates a playground for iteration and offered users
inspirations for alternative implementations. Despite BISCUIT
introducing an additional step where users interact with UIs
in the code generation process, users found that BISCUIT in
general enhances the efficiency of their work with tutorials.

We make the following contributions: 1) A novel workflow
of ephemeral UIs that offers dynamically generated scaffolds
for code comprehension and exploration catered to users’
intention and code context. 2) An LLM-based implementation
of the workflow as a JupyterLab extension prototype, BIS-
CUIT. 3) Empirical findings that demonstrate how BISCUIT
supports programmers in machine learning to understand,
guide, explore, and efficiently work with code in machine
learning tutorials.

II. EXAMPLE USAGE SCENARIO FOR BISCUIT

Amy, a software developer new to Python and machine
learning, is working with a machine learning tutorial on
image classification in JupyterLab. She installs BISCUIT as
an extension to the JupyterLab environment.

Amy first invokes BISCUIT by entering a request in natural
language: “Show me a sample of the dataset images.” BISCUIT
generates and displays an ephemeral UI, including a dropdown
menu of labels in the dataset and a slider, to determine the

size of the sample (Figure 2 A). Amy selects a label from the
dropdown menu and adjusts the slider to display 20 images
in the image gallery area in the UI. Amy views the sampled
images and selects another label for a new sample. Getting a
basic sense of the data, Amy progresses with the tutorial.

Amy now wants to customize a model defined in the tutorial
but she is unsure how to modify the code. She enters “What
are some other ways to construct the model” and gets a new
ephemeral UI with a dropdown menu of model architecture,
sliders for number of layers and units per layer, and UI
elements for dropout layers (Figure 2 B). She selects values
from the UI and clicks the submit button. A new block of code
that defines a model layer structure based on Amy’s selections
in the UI is generated and added to the notebook.

Going forward, Amy wants to visualize the training per-
formance and asks: “Visualize the training performance.” She
gets a UI for constructing visualizations, including a dropdown
menu for training metrics, color pickers for the curves, and
elements to specify other features in the plot (Figure 2 C).
Amy makes a selection, uses it to generate code, and runs the
code to produce a line chart with the selected colors. Amy
then changes her selections in the UI and generates another
visualization on a different training metric to understand how
different metrics change during the training process.

III. RELATED WORK

A. Dynamically generated intelligent UIs

The HCI community has been actively researching dynamic
user interfaces that are tailored to usage context in various
domains. Early systems in accessibility and ubiquitous com-
puting leverage user traces and inputs to recommend user
interfaces. For example, SUPPLE [9] automatically adjusts
user interfaces to fit the constraints of computational devices
and customizes interface renditions based on individual user’s
usage patterns; SUPPLE++ [10] leverages assessments of
user’s motor capabilities and uses optimization algorithms to
recommend personalized interfaces. An important rationale of
these dynamic UIs is to mitigate the challenges users face
when navigating complex interfaces, especially in systems that
involve multiple connected appliances. Dynamically gener-
ated interfaces are thus designed to align with user’s habits,
preferences, and context-specific needs. For example, PUC,
a personal universal controller [11] automatically generates
graphical and speech interfaces and can reduce task time and
errors compared to the static interfaces provided by manufac-
turers. This approach has been further advanced in systems
like UNIFORM [12] and HUDDLE [13], which continue to
build on automatically generated and context-aware interface
design in remote control.

In programming, tools have been developed to dynam-
ically generate user interfaces tailored to user needs. For
instance, Heer et al. [14] introduce a method for generating
dynamic UIs through query relaxation, enabling users to
generalize their selections. Mavo [15] empowers users to
create interactive HTML pages by adding special attributes
and allowing them to interact with editing widgets that are

A B C

Fig. 2. Ephemeral UIs generated by BISCUIT in the example usage scenario described in Section II. A : generated UI for sampling data in an image dataset;
B : generated UI to support model customization; C : generated UI to support visualization.

recommended based on these attributes. Bespoke [16] offers
a way for users to create custom graphical user interfaces
for command-line applications, enhancing accessibility and
usability. NL2INTERFACE [17] synthesizes SQL queries from
natural language commands and generates a UI for users to
edit the parameters or variables in the SQL query. Inspired
by these advancements, we integrate user interfaces that are
specifically tailored to the programming context within a user’s
programming workflow.

The recent advancement of LLMs has fueled interest in
using these models to generate UI elements. These tools allow
users to articulate their intentions in natural language to create
UI components. For instance, LIDA [8] offers an interface with
which users can create data visualizations directly from natural
language. DynaVis [7] uses an LLM to synthesize interactive
visualizations with dynamically generated UI widgets that are
customized to the visualizations and enable direct manip-
ulation of visualization properties. In alignment with these
new developments, our system leverages LLMs to interpret
user intentions and accordingly generate UI components. Our
approach extends beyond the domain of visualizations with the
goal of making the interaction with machine learning tutorials
more intuitive and effective.

B. Tutoring scaffolds in machine learning

Prior research has explored tutoring systems for machine
learning and programming more broadly. To scaffold novices,
graphical UIs have been developed to allow for direct manip-
ulation in programming systems. For example, Online Python
Tutor offers an interface for displaying the runtime state of
data structures, enhancing learners’ understanding of program
execution [18]. Tools such as Wrangler [19], Wrex [20], and
Unravel [21] offer interactive components for users to directly
engage with data and see the immediate impact of their actions
in data tables. In the context of computational notebooks,
Mage offers an API that allows users to construct customized
UIs themselves [22], facilitating bidirectional editing of data.

Beyond UI scaffolds, intelligent tutoring systems offer
scaffolding through additional documentation and resources.
An emphasis of these tools is to provide explanations or

comprehension support to aid users in their programming
workflows. For instance, Tutorons [23] offers context-relevant,
on-demand explanations and demonstrations of online code
snippets, reducing the need for learners to consult external
documentation. Recent tools have introduced LLM-powered
explanations adapted to the user’s specific programming con-
texts. Ivie [24], for example, provides in-situ and inline
explanations for code generated by LLMs, enhancing users’
understanding of the generated code. Furthermore, Nam et
al. [25] introduce an IDE plugin that utilizes LLMs to elucidate
code sections through highlighting, key domain-specific terms,
and usage examples for APIs.

Inspired by these LLM-powered tutoring systems, our
system utilizes LLMs to enhance users’ understanding of
code. Distinct from existing systems that directly provide
code explanations, our system offers an interactive experience
involving user prompts and dynamically generated UIs that
scaffold reflective practices in the comprehension process [26].
Moreover, our approach extends beyond mere code compre-
hension. Drawing inspiration from the design space of LLM-
based features in computational notebooks [27], our system
aims to support the user’s programming workflow in notebooks
by offering LLM-generated UI support.

IV. SYSTEM

The design goals of BISCUIT are informed by existing
research and formative discussions. BISCUIT is a prototype
implemented as an extension for JupyterLab. The backend of
the extension uses OpenAI’s Chat Completion API4 to inter-
pret user intent and to generate code. Following the approaches
in Ferreira et al. [28], the LLMs in our system leverage
the Gradio API5—a Python library that offers a catalog of
common and useful UI components for machine learning—
to implement interactive elements as part of machine learning
tutorials.

4https://platform.openai.com/docs/guides/text-generation/
chat-completions-api

5https://www.gradio.app

A. Design goals

The design of our system is informed by existing research
on intelligent interfaces and tutoring systems, as well as
formative discussions with five experts from our organization,
including two machine learning researchers, one software
engineer, and two hardware engineers who have experience
with LLM-based code generation tools and machine learning
tutorials in computational notebooks. We discussed their usage
of code generation tools as well as any suggestions for
improving the code generation experience in machine learning
workflows. We describe our design goals (DGs) as follows:

DG1: Scaffolding understanding with UI-centric sup-
port. Our formative discussions surface the potential for UI
scaffolding in code generation. For instance, one expert shared
that engineers in their team wished for UIs with attributes of
a given machine learning method to allow them to quickly
grasp and understand the various properties involved. This
feedback echos decades of research supporting the use of UIs
in programming, which suggests that UIs can reduce the entry
barrier and provide means for direct manipulation [19], [20]. In
our design, we introduce dynamically generated UI elements
that correspond to code segments that users can manipulate.

DG2: Facilitating user guidance in code generation.
While users value the flexibility of LLMs in code generation,
they also desire control over the process. We learned that
although users could have trouble understanding and working
with generated code, they nevertheless wanted to maintain
the generative capabilities of LLMs to enable serendipitous
discoveries of new methods and techniques. This reflects
ongoing discussions about scaffolding users to guide code
generation [29], [30]. Our design introduces ephemeral UIs
that allow users to specify details in the code to be generated
and enables users to view and fully edit the code produced by
LLMs.

DG3: Empowering users to explore and expand code
examples. Users consider it beneficial to investigate alternative
approaches to the provided examples in machine learning
tutorials, echoing existing research that demonstrates the im-
portance of offering a wide array of examples for programming
concepts [31], [32], [20]. Our system is designed to aid users
in exploration with code, where the UI elements correspond to
parts in the code examples that users can change. Our system
also allows users to generate different versions of code by
making selections in the UIs.

DG4: Offering in-context scaffolds. It can be disruptive for
users to switch to a different application outside of the note-
book to use LLMs to generate code or explanations. Therefore,
systems such as Tutorons [23] and Mallard [33] provide in-situ
explanations and demonstrations within the webpage a user is
working on, and recent advancements in programming support
tools often feature inline assistance within the IDEs [25], [24].
In light of this, our design integrates UI scaffolds into the
JupyterLab interface from the user’s code context.

B. Functionalities

The interface of BISCUIT consists of Code Context, User
Request, Ephemeral UI, and Code Injection (Figure 1).

a) Code Context: Code context refers to the existing
code in a cell based on which the user wishes to request an
ephemeral UI. In line with DG3, users can extend and build
on any code examples in tutorials. For instance, as depicted in
Figure 1, the code context is in the cell highlighted in 1 , which
contains code for loading a dataframe of training history.

b) User Request: Following DG2, users can guide code
generation through ephemeral UIs via natural language re-
quests that articulate their intentions in relation to the code
context. Users can insert an empty cell beneath any code cell
in the notebook, initiate it with the string “%prompt”, and
then type in their natural language request. For instance, as
illustrated in Figure 1, the user’s request on the code context
in 1 is showcased in 2 , with the instruction: “Show how the
training performance changes over the epochs.”

When needing help devising a request, the user can activate
the Prompt Suggestion feature as shown in Figure 3. In any
of the prompt cells (code cells that start with the string
“%prompt”), the user can click the blue “light bulb” button
on the cell tool bar. A suggested natural language request will
be generated by an LLM agent (independent to the ones in the
Ephemeral UI) based on the user’s original prompt (if any) and
the code context. The suggested prompt will be printed in the
output area of the prompt cell and guides the user to explore
and expand their thinking around the current code.

c) Ephemeral UI: The user request prompts the system
to provide relevant UIs (3) that assist code generation, reflect-
ing principles outlined in DG1 and DG2. After providing the
natural language request, the user can generate an ephemeral
UI by clicking the orange “magic wand” button in the cell.
Following DG4, UI elements are presented in-context with
the tutorial the user is engaged with, appearing in a panel
on the right side of the JupyterLab interface. The generation
process takes into account the prompt and the code present
in the code cell immediately preceding the prompt cell, while
using all preceding code within the notebook as supplementary
context. Figure 1 shows an example where the user interacts
with a series of UI elements generated by the LLMs to help
them visualize the training performance.

d) Code Injection: Following DG2, our system allows
users to guide the code generation process using UI elements.
Upon submission, an LLM agent creates code based on the
user’s selections within the UI elements, the code context,

Fig. 3. Helper feature of Prompt Suggestion.

Next step
instructions2a UI descriptions2b

POST request1 Kernel COMM 5

Next iteration

SERVER

CLIENT

Injected code

Code injector

Advisor UI Planner UI Coder

Code in current cell

User prompts

HTML injection
+ global variables3

Code in all previous cells

Generated UI elements

Global Variables
4

Fig. 4. System implementation of Ephemeral UI.

and the user’s prompt. This newly generated code is then
inserted into a new code cell positioned directly beneath the
user request. Users can edit and execute the injected code
just as they would with any other code cell within their
environment. For instance, as illustrated in Figure 1 4 , the
underlying LLM produces code that visualizes both training
and validation losses, reflecting the choices made by the user
through the ephemeral UI. The user can make new selections
within the UI elements to generate additional variations of
code. Furthermore, the user can re-click the magic wand button
or enter a new prompt to generate a fresh set of UI elements.
These new elements will replace the existing ones in the panel.

C. Implementation of BISCUIT

Figure 4 illustrates the implementation details of BISCUIT.
When the user activates the ephemeral UI by clicking the
magic wand button in a prompt cell, the user request, code
in the current cell, and code in all previous cells above the
current cell will be sent from the client to the server through
an HTTP POST request, as in 1 . This information will be
used by an underlying LLM agent “Advisor,” which makes
instructions on a concrete next step based on a user request.

The instruction will be passed to a second LLM agent,
the “UI Planner,” as illustrated by 2a . The UI Planner will
describe a list of UI elements helpful for the suggested next
step. The output of the UI Planner is a JSON data object with
a name label and a description of the UI element, and a unique
identification number.

The output of the UI Planner will be passed to a third
LLM agent, the “UI Coder,” as shown in 2b . The UI Coder
will generate Python code to implement the UI elements.
Specifically, it generates two snippets of Python code. It
will generate a snippet of code to declare a series of global
variables corresponding to each of the UI elements described
in 2b to store and update values based on user interaction. It
will also generate a series of methods that implement the UI

elements using the Gradio API. These code snippets will then
be sent to the Kernel to be executed, shown by 3 .

After execution in the Kernel, a generated HTML string is
injected into an empty panel created on the client JupyterLab
interface and rendered as UI elements. Users can interact with
the UI elements in the client, and in this process, the global
variables corresponding to the UI elements will be updated in
real-time to the user selected values.

Once the user clicks the “Submit” button, a fourth LLM
agent, the “Code Injector,” will generate code based on the
values of the global variables (4) as well as the earlier user
request and code context given as input. The generated code
will be injected into the cell content in a new code cell in the
client through Jupyter’s Kernel COMM protocol, as depicted
by 5 . This process can repeat as the user enters new prompts
and requests another ephemeral UI on the newly added code
cell.

All four LLM agents are based on OpenAI’s Chat Comple-
tion API: the “Advisor,” “UI Planner,” and “UI Coder” use the
GPT-4-turbo-0125 model, and the “Code Injector” uses
the GPT-3.5-turbo model.

D. Limitations of the prototype

BISCUIT is a prototype that demonstrates the workflow
of UI-centric code generation in computational notebooks.
Designed to illustrate the concept of ephemeral UIs, it has
inherent limitations. The generation of ephemeral UIs relies
on the quality of the underlying GPT models from OpenAI.
Occasionally, the “UI Planner” may produce an empty string,
leading the client interface to show an empty UI. Model hal-
lucination sometimes results in code that fails to compile. We
did not invest in implementing any mechanism for automatic
error correction. Despite these challenges, the prototype acts
as an useful instrument in our user study. In scenarios where
issues arise, users can simply reclick the magic wand button
to make a new request and regenerate the UI.

V. USER STUDY

To understand how users’ experiences with our system align
with the four Design Goals outlined in Section IV-A, we
conducted a user study with 10 participants in 1-hour, 1-to-1
interview sessions over video conference.

A. Study procedures

1) Onboarding (5 minutes): The study begins with a 5-
minute onboarding session where a researcher presents a slide
deck to familiarize the participant with the system’s features.

2) Working with machine learning tutorials using BISCUIT
(45 minutes): The participant is then asked to work with one of
two randomly assigned interactive machine learning tutorials
in JupyterLab using BISCUIT. In the tutorials, participants
were instructed to opt in to the ephemeral UIs by entering a
natural language request whenever they felt they would need
the assistance.

The tutorial acts as a design probe in the study to bring
ephemeral UIs to the forefront. Participants are instructed to
engage actively with the tutorials by running and editing the
provided code to answer questions and complete tasks. The
specific two tutorials that we used in the study are adapted
from public machine learning tutorials available on Kaggle’s
Learning module6—including a tutorial about building a bi-
nary classification model on hotel cancellation using a tabular
dataset of hotel reservation features (Binary Classification),7

and a tutorial about building an image classifier on pictures
of cars and trucks (Image Classification).8 Both tutorials are
written in Python, contain common data types and libraries
in machine learning, and take around 45 minutes to complete
based on pilot studies in our team. In preparing the tutorials,
we kept the unmodified datasets and most of the content
in both tutorials, while removing any code snippets that are
specific to the Kaggle environment (for example, code for
checking answers). We also added additional text instructions
to prompt users to customize functions and models beyond the
code examples.

Each participant was randomly assigned to one of the two
tutorials to avoid fatigue in the sessions (5 participants working
with the Binary Classification tutorial and 5 with the Image
Classification tutorial). Participants interacted with BISCUIT—
installed on the researcher’s device through the remote device
control feature of the video conference software—to reduce
the burden of installing JupyterLab and the extension. During
the sessions, participants were encouraged to think-aloud and
verbally describe what they were doing and their reactions to
different ephemeral UIs and code generated by the LLM.

3) End of session interview (10 minutes): In the end,
participants were interviewed on their experience using the
prototype and opportunities for future improvement. To inves-
tigate users’ experiences and their perceptions of how well
our system achieves each of the Design Goals, we asked

6https://www.kaggle.com
7Adapted from the Exercise: Binary Classification notebook [34].
8Adapted from the Exercise: The Convolutional Classifier notebook [35].

TABLE I
USER STUDY PARTICIPANTS

ID Job Title Python Level Tutorial1

P1 Research Scientist Experienced BC
P2 Software Engineer Experienced BC
P3 Software Engineer Intermediate IC
P4 Software Engineer Intermediate IC
P5 Software Engineer Novice BC
P6 Software Engineer Intermediate IC
P7 Hardware Engineer Novice IC
P8 Research Engineer Experienced BC
P9 Software Engineer Experienced IC
P10 Hardware Engineer Intermediate BC
1 BC: Binary Classification tutorial, IC: Image Classification tutorial

participants a series of Likert scale questions based on our
Design Goals (Section IV-A) and probed for the rationales
for their ratings. Specifically, we asked participants to rate
their agreement on the following statements about BISCUIT.
Understanding code (DG1): The system is useful in helping
me understand the code examples in the tutorial and the
code generated by the LLM. Guiding code generation (DG2):
The system allows me to guide the code generation process.
Exploring code (DG3): The system helps me explore beyond
the code examples in the tutorial. Efficiency with tutorials
(DG4): The system helps me work efficiently through the
tutorial. Overall usefulness: Overall, the system is useful as a
tool for me to work with machine learning tutorials.

B. Participant recruitment

We recruited 10 participants (4 female, 6 male) from our
organization. To recruit participants, we advertised our user
study on our internal channels. We selected a subset of 10
participants who had a range of existing experience levels
with Python and had used JupyterLab or Jupyter Notebook
before, with a balance of gender identities and job titles in the
organization. We selected participants who reported having no
experience or were novices in all the machine learning libraries
used in the tutorials, and having previous experience using
LLMs in programming. Participants were compensated with a
$12 meal voucher on completion of the study. The profile of
our participants can be found in Table I.

C. Data collection and analysis

We collected the audio and video recordings of the sessions
and conducted qualitative analysis on the recorded transcripts,
applying inductive coding to categorize participants’ experi-
ences with BISCUIT with respect to the four Design Goals.

VI. RESULTS

Participants found BISCUIT helpful in augmenting LLM-
based code generation. Eight out of 10 participants in our user
study found BISCUIT to be a useful tool for them to work
with machine learning tutorials (Figure 5). The subsequent
sections are organized according to users’ perceptions of how
our system achieves each of the Design Goals in helping
them understand, explore, guide, and enhance their efficiency

working with LLM-generated code. In each section, we first
report the Likert scale results then describe the qualitative
findings.

163

Efciency with tutorial

1 14 4

Exploring code

2 4 4

Guiding code generation

1 26 1

Understanding code
3 5 2

0 2 4 6 8 10
Number of Participants

Overall usefulness

Likert scale ratings about BISCUIT

Somewhat Disagree Disagree
NeutralSomewhat AgreeAgree

Fig. 5. Results of the Likert scale questions from the user study.

A. Understanding code

Most participants found BISCUIT helpful for aiding them
to understand code that they were working on in the tutorial.
Figure 5 shows 7 out of 10 participants either agree or
somewhat agree that BISCUIT supports them in understanding
code generated by the LLM. Participants highlighted that the
ephemeral UIs supported their understanding of both LLM-
generated code and existing code examples in tutorials by
providing representations of code coupled with support for
empirical experimentation, which they referred to as “learning
by doing.” At the same time, participants found a lack of
explanations in some of the ephemeral UIs and offered sug-
gestions for opportunities to enhance these UIs with additional
explanations to further augment their comprehension.

1) Offering visual representation of code: Participants
found BISCUIT helpful with code comprehension by providing
novices with a “visual representation and visual playground”
(P5) of the code. For example, in the part of the Binary
Classifier tutorial where users were asked to complete the
model.compile() function with an optimizer and perfor-
mance metrics, P1, who had never programmed model training
before, was initially not sure how to compile the model. In
the ephemeral UI generated based on her request to “compile
the model with optimizer and metrics,” P1 was able to select
“Adam” as the optimizer, loss as the metric, and learning rate
of 0.05. P1 was then able to understand the function and the
different properties.

P5 described a similar experience where an ephemeral UI
(Figure 6 C) helped him break down the tutorial code to
process missing values in the data: “I like the split screen view
where I have the code on the left and the UI on the right. I can
see the connection that I made here” (P5). The labels generated
as part of the UIs helped users “connect the dots” (P5) between
machine learning concepts and the implementation in code.

For example, P3 interacted with a slider labeled “First Layer
Neurons” (Figure 6 D) and realized that it corresponded to
the numbers defined in the example code: “in this code I had
no idea these numbers are the number of neutrons—and in
the UI I am getting a visual hint.” In summary, ephemeral UIs
functioned as a visual representation of code, transforming
code into accessible and comprehensible segments.

2) Enabling “learning by doing”: Participants reported that
they were able to achieve a deeper understanding of machine
learning methods from experimenting in the UI and reading
the corresponding code—what they referred as “learning by
doing”: “You can learn more about the code if you’re changing
the elements and then you see some parts of the code change.
So the learning comes from doing it, by messing with the UI”
(P9). For example, P4 was trying to change a model structure
and found the UIs helped him make meaningful changes to
code: “Especially when there’s existing code, sometimes you
don’t know what you can change without breaking it. You get
a slider and you can just move it.” According to him, the UI
felt “less scary” compared to direct code manipulation. While
he needed to understand the details of code in order to edit it,
the UI provided a supportive environment that encouraged ex-
perimentation: “something about code is definitive and fragile.
The UI is easily undone and wants to be interacted with and is
also easy to understand” (P4). As learning to program involves
experimentation and tinkering, ephemeral UIs facilitate this
process by offering easy and interactive options.

3) Opportunity—supplementing ephemeral UIs with ad-
ditional explanation: Participants wanted explanations inte-
grated with some of the UI elements in the ephemeral UIs
to assist their learning and selection in context. For example,
P1, who was unfamiliar with the mechanisms of the different
options of activation functions in a dropdown menu, desired
more details: “I was expecting a little bit of explanation for
the options, kind of integrated with the explanations into
the UIs. There were a lot of options. I feel like if there
was a brief explanation, it would have been pretty helpful.”
Around more comprehensive explanations within ephemeral
UIs, participants brought up ideas for future enhancement—
such as integrating API documentation directly into the UI
explanations and providing users with access to detailed infor-
mation about UI elements and their associated functionalities.

B. Guiding code generation

Six out of 10 participants either agreed or somewhat agreed
that BISCUIT allowed them to guide the LLM to generate code.
Participants agreed that the ephemeral UIs helped them reduce
the effort of excessive prompt engineering and scaffolded
them to customize code generation. They also pointed out
that while ephemeral UIs are helpful in many ways, there
could be scenarios where text-based prompts could lead to
desired code generation outcomes more effectively, suggesting
a hybrid approach for users to flexibly choose UI or text-based
approaches to interact with LLMs.

1) Reducing effort of prompt engineering: Participants
thought BISCUIT reduced the effort of prompting compared

to existing code generation tools with which they commonly
needed to write detailed text prompts. For example, P7 shared
their frustration of excessive prompt engineering: “I need to
give ChatGPT very detailed prompts to make it work. It’s
very frustrating” (P7). In contrast, ephemeral UIs introduced
a scaffold of “templating prompts,” (P3) which added a UI
layer where users could specify details about the code to be
generated that they might initially omit. For instance, P6 found
it straightforward to select from a color picker within the
UI when requesting the LLMs to generate visualization code:
“it’s allowing you to define those variables that you wouldn’t
otherwise be able to define easily.” Users appreciated how
ephemeral UIs made it easier for them to articulate details
for code generation, allowing them to specify aspects of the
code they would not be able to in textual prompts.

2) Scaffolding customization in code: BISCUIT makes areas
where users can customize their code more apparent. P1
appreciated the ephemeral UIs for “pulling out the things
that you can configure, and helping you understand what are
the parts of the code you actually have to customize.” Users
were able to realize the decisions needed to be made before
code generation: “when you generate the code, you can get
that information upfront. This is the stuff that you need to
configure, this is what it does, and this is why it matters.
Rather than after the code is generated and then you got to do
research” (P6.) Ephemeral UIs facilitate users to thoughtfully
guide code generation rather than passively receiving decisions
made by LLMs. For example, P2 highlighted that while with
ChatGPT she usually followed what the LLM suggested, with
BISCUIT she could easily tailor the approaches: “(BISCUIT)
gives you more control of what kind of model structure
you prefer.” In summary, ephemeral UIs encourage users to
proactively identify areas in programming where they need to
make decisions—and assist with their decision-making.

3) Opportunity—allowing users to choose UI or text to
interact with LLMs: While participants generally agreed that
our system scaffolded their code generation process, some
described situations where they would like to prompt the code
generation in text. UIs are recognized as beneficial for learning
and exploratory tasks, while text-based prompt approaches are
suited for determined goals. As P9 pointed out, “if I’m writing
code that I have a pretty good idea of what I want to write and
I just need to look up the syntax, I will prompt LLMs with text.
I think when I’m learning, it (the ephemeral UI) allows for a
little bit more exploration embedded into the learning.” Such
comments suggest the opportunities for a hybrid approach
where both kinds of tools can be used in different phases of
the code generation process.

C. Exploring code

Eight out of 10 participants either agreed or somewhat
agreed that BISCUIT supported them when exploring machine
learning methods in the tutorials. Participants reported on how
BISCUIT supported exploration through facilitating iteration
on existing examples and offering inspirations for new di-
rections. At the same time, some participants pointed out

that merely providing options in the UIs alone might not be
sufficient for users to effectively iterate on their design, as
some machine learning parameters were often determined by
outcomes later in the workflow. They shared ideas on how to
further incorporate guidance and rapid feedback into BISCUIT.

1) Facilitating iteration on existing examples: BISCUIT
enabled users to efficiently and effectively iterate on different
variations of existing code in the tutorials. For example, with
BISCUIT, participants were able to experiment how choices on
different machine learning parameters affected classification
results: “it (the dropdown menu for label modes) allows me
to do experiments, changing from categorical to int or
binary. And you could see how that affects the model later
on” (P9). Compared to manually editing code or prompting
LLMs in text, ephemeral UIs were regarded as more effective
because simple interactions with UI elements generated new
versions of the code: “Sometimes in ChatGPT you have to
write the prompt again, it will type everything and you will
copy and paste. (With BISCUIT,) let’s say I had chosen one
category, but I actually wanted to see another one. I can just
click it and I can go back and forth. This is way better from
a iteration point of view” (P8).

Ephemeral UIs also offer a playground for exploration that
is separate from the main workflow. Exploratory activities,
such as viewing data samples, are encapsulated within the UIs,
thereby not impacting the main workflow. As P4 described,
“if I wanted to generate a random selection of 10 images,
(without BISCUIT) I would need to create a random string or
dictionary, and then open them myself. This (BISCUIT) is just
way simpler and saves me from code that I don’t have to write
or ask LLMs to write” (Figure 6 B).

2) Getting inspirations for new directions: Participants
shared that BISCUIT illuminated various options for machine
learning variables previously unknown to them. Surfacing the
available options can inspire users to expand the original
example in the tutorial. For example, P10 appreciated the
various options displayed on the ephemeral UIs: “sometimes
in ChatGPT, my impression is that if I specify one approach,
it follows that path with little room for deviation or improve-
ment. In contrast, here, without me having to ask explicitly,
I’m presented with three to four options.” That is, the UIs
broaden the horizon for participants and encourage creativity.

Being able to view different options also aids users in re-
flecting on the nuances between various choices. For instance,
the imputation options offered by an ephemeral UI prompted
P10 to think about how the different strategies might impact
data differently: “it gave me the option of using the mean,
median, or mode. I might have defaulted to using the mean,
but thanks to the UI, I started questioning my choice. Why did
I choose mean? Why not median? This level of engagement
is definitely beneficial for learning.” These examples highlight
how BISCUIT can help users engage in critical thinking and
decision-making through facilitating exploration.

3) Opportunity—enhancing exploration with guidance and
rapid feedback: Some participants noted the importance of re-
ceiving feedback to navigate their exploration with the system

A B C D

Fig. 6. Examples of user request and ephemeral UI in our study. A : UI generated by P8 for plotting. B : UI generated by P4 to view training data. C : UI
generated by P5 to impute missing values. D : UI generated by P3 to construct a model.

effectively. In certain instances, it might not be feasible for
users to select specific values in UI elements immediately—
as these values often require experimental determination. For
instance, when adjusting dropout rate in a model using sliders,
P1 commented, “because the dropout is typically a parameter
that you would run different experiments to decide, I don’t
know if I would necessarily need this to set those values at
this early stage.” Similarly, P2 wished to preview the final
classification results in order to choose from the imputation
strategy dropdown menu: “I would certainly be curious about
how each of my choices affected the result.” Therefore, the
ephemeral UIs on their own might not be sufficiently helpful;
users require guidance on how to interact with the UIs from
effective and dynamic feedback deriving from future steps in
the machine learning workflow.

D. Efficiency in working with tutorials

In our study, 9 out of 10 participants either agreed or some-
what agreed that our system enhances their efficiency while
working through machine learning tutorials. This finding was
somewhat counterintuitive, considering our system introduces
an additional step—interacting with ephemeral UIs—into the
code generation workflow. Participants provided several rea-
sons BISCUIT helped them work with tutorials efficiently.

1) Producing code templates: Even experienced Python
programmers found it helpful that the UIs could provide
them with code templates. For instance, P2 noted how the
ephemeral UIs offered a customizable starting point for func-
tion generation: “It’s a much more intuitive way to experiment
with all the different inputs and properties without having
to manually type everything out in Python” (P2). Similarly,
P9, who disliked writing or editing code for visualization,
found that the ephemeral UI (Figure 6 A) made variables in
visualizations easily accessible: “I can simply choose [from
color pickers] to make this red and make this blue. Plotting
code is perhaps one of my least favorite tasks. The UI is really
useful here because it allows you to specify things visually,
and it generates a significant block of code for you” (P9).

2) Providing in-context support: Participants appreciated
that the ephemeral UIs were “embedded” (P9) in the program-
ming environment of JupyterLab, offering them in-context

support. In particular, ephemeral UIs helped users navigate
unfamiliar syntax and save time from searching documenta-
tion: “I think without the help of this UI, I wouldn’t have been
able to get through the tutorial nearly as quickly. To fill out
the optimizer part, I would have to go to the docs and look
up the compiler syntax and try to find where I’d find those
versus in the UI where it just filled it out for me” (P1).

Additionally, in-context support from the UIs reduced dis-
traction from the main programming workflow: “I don’t have
to change tabs. I don’t have to set a break to my flow or have
multiple windows open to do something” (P9).

3) Opportunity—opting in ephemeral UIs based on user
preference: P2 was the only participant who somewhat dis-
agreed that our system enhanced their efficiency in machine
learning tutorials. Comfortable with Python programming,
P2 found that the ephemeral UIs could be “getting in the
way” when she already had a clear idea of the program she
wanted to write. She highlighted a preference for bypassing
the ephemeral UIs and directly editing the code herself in
such instances. This feedback connects to the findings in
Section VI-B indicating that users appreciate the flexibility
to employ UI and text for different programming tasks.

VII. DISCUSSION

Our user studies revealed that users’ experiences align
closely with our Design Goals. We now delve into the broader
implications of LLM-generated ephemeral UIs in code genera-
tion beyond the specific context of machine learning tutorials.

A. UI-centric interaction with code generation LLMs

We introduced the workflow of ephemeral UIs, a novel in-
teractive paradigm for code generation. Different from existing
code generation tools such as ChatGPT and GitHub Copilot,
our workflow dynamically generates UIs catered to users’
intentions and the existing code context, and contributes to the
ongoing discussions around how LLMs bring up new opportu-
nities for UI-based interactions. For example, Jovanovic [36]
brought up the concept of “generative UIs”—LLM-powered
interfaces that dynamically cater to specific user needs. Moran

and Gibbons [37] devised the design framework of “Outcome-
Oriented Design” that focuses on “user goals and final out-
comes, while strategically automating aspects of interaction
and interface design.” Our work demonstrates that ephemeral
UIs offer affordances adapted to users’ evolving intentions in
programming. We believe that the UI-centric workflow has the
potential to influence a variety of programming environments.

B. Ephemeral UIs for exploratory programming in notebooks

We found that ephemeral UIs facilitate exploratory activities
in computational notebooks. Programmers commonly engage
in exploratory programming activities that are not directly
relevant to their main workflow [38], [39]. However, the
linear cell structure designed for a sequential flow of code
in computational notebooks often clashes with the convoluted
and iterative processes of exploration [40], [41]. Existing
research on notebooks has explored designs that facilitate
better management of code variations and explorations within
notebooks [42], [43], [44]. Our approach adds to this body
of work by offering dynamically generated UIs that scaffold
exploration. Ephemeral UIs address the challenges of explo-
ration by containing certain exploratory steps within the UI,
mitigating the messiness in the notebook by streamlining and
reducing the exploratory code. We also observed users explore
various options for function properties through dropdown
menus, think about their implications on code in advance,
and thereby make informed decisions about the code to be
generated. This suggests that ephemeral UIs can incorporate
understanding with exploration, easing the tension between
the two [40] by prompting thoughtful reflection with code in
action [26].

User feedback highlighted in Section VI-C indicated that
merely providing UIs may not be sufficiently helpful. Besides
the UIs, users need effective and dynamic feedback to inform
their exploration. Future research could explore mechanisms
to present users with previews on the implications of their
interaction with the UIs. For example, interfaces could in-
corporate predictive models that simulate the outcomes of
different user choices within the UI to provide feedback and
integrate contextual help or tooltips that explain the potential
impact of each option based on user data or best practices.

C. Introducing dynamic and in-situ scaffolds to tutorials

In line with Moran and Gibbons [37], our work explores the
potential of serving ephemeral UIs in programming tutorials.
Traditional UI supports—although carefully and aesthetically
designed to afford complex user activities—are pre-defined
and typically locked into the initial assumptions and design
choices made by software authors. There is a cost both for
authors to write the UIs and for users to learn to use those
UIs.

In contrast, ephemeral UIs are automatically generated and
dynamically adapted to the code context as users engage
with programming tasks. This flexibility allows for a more
personalized and in-situ learning experience, giving users
relevant support. The dynamic nature of the UIs also means

that users are presented with a cleaner interface instead of
complex navigational paths, lowering the barrier to entry for
users by eliminating the need to master complex software.

Although the ephemeral UIs generated in our particular
prototype are relatively simple and based on the Gradio API,
our work demonstrates the potential for LLMs to generate UIs
that are useful for scaffolding users to explore data, to work
with unfamiliar frameworks, and to iterate on their coding
ideas. We envision future development of a hybrid approach
that combines pre-defined and dynamically generated UIs in
tutoring systems. Some of the features might remain prede-
fined to ensure stability and consistency, while others can be
dynamically generated to provide personalized support tailored
to specific coding episodes.

D. Limitations
The usage of Gradio in BISCUIT limits the generated

ephemeral UIs to those available in its library. Because our
system is a JupyterLab extension, we were restricted to inter-
actions that are possible within the JupyterLab interface. While
we have gained qualitative insights on how users understand,
guide, and explore code generation with BISCUIT and how
users compare it with commercial tools such as ChatGPT,
we did not test the findings quantitatively. We also recruited
participants from a single organization. Although our orga-
nization does not own any technologies utilized in BISCUIT,
participants can still have biases due to our shared affiliation.
As a result, it is possible that participants were more reserved
in providing critical feedback. Finally, our study focused on
users working with machine learning tutorials. The potential
applications and use cases for LLM-powered ephemeral UIs
extend beyond the domains of just programming tutorials,
or even code generation more generally. We invite future
researchers to further explore this space.

VIII. CONCLUSION

In this paper, we introduce a UI-centric workflow to LLM-
based code generation tools that serves as an interface between
text-based user prompts and the code to be generated. Through
our system, BISCUIT, we introduce LLM-generated ephemeral
UIs as a helpful assistant in machine learning tutorials.
Our user study found that BISCUIT not only facilitates a
deeper understanding of coding concepts but also encourages
code exploration among users. The insights and implications
from our research contribute guidance for the design and
implementation of UI-centric experiences in LLM-powered
code generation, with potential applicability in programming
environments beyond computational notebooks.

REFERENCES

[1] N. Al Madi, “How readable is model-generated code? Examining
readability and visual inspection of GitHub Copilot,” in Automated
Software Engineering, 2023.

[2] M. Kazemitabaar, J. Chow, C. K. T. Ma, B. J. Ericson, D. Weintrop, and
T. Grossman, “Studying the effect of AI code generators on supporting
novice learners in introductory programming,” in CHI, 2023.

[3] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experi-
ence: Evaluating the usability of code generation tools powered by large
language models,” in CHI Extended Abstracts, 2022, pp. 1–7.

[4] C. Bird, D. Ford, T. Zimmermann, N. Forsgren, E. Kalliamvakou,
T. Lowdermilk, and I. Gazit, “Taking flight with Copilot: Early in-
sights and opportunities of AI-powered pair-programming tools,” Queue,
vol. 20, no. 6, p. 35–57, Jan. 2023.

[5] R. Wang, R. Cheng, D. Ford, and T. Zimmermann, “Investigating and
designing for trust in AI-powered code generation tools,” in FAccT,
2024, p. 1475–1493.

[6] B. Johnson, C. Bird, D. Ford, N. Forsgren, and T. Zimmermann, “Make
your tools sparkle with trust: The PICSE framework for trust in software
tools,” in ICSE SEIP, 2023, pp. 409–419.

[7] P. Vaithilingam, E. L. Glassman, J. P. Inala, and C. Wang, “Dynavis:
Dynamically synthesized UI widgets for visualization editing,” in CHI,
2024.

[8] V. Dibia, “LIDA: A tool for automatic generation of grammar-agnostic
visualizations and infographics using large language models,” in ACL,
2023, pp. 113–126.

[9] K. Gajos and D. S. Weld, “SUPPLE: Automatically generating user
interfaces,” in Intelligent User Interfaces, 2004, pp. 93–100.

[10] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld, “Automatically generating
user interfaces adapted to users’ motor and vision capabilities,” in UIST,
2007, pp. 231–240.

[11] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosen-
feld, and K. Litwack, “Personal universal controllers: Controlling com-
plex appliances with GUIs and speech,” in CHI Extended Abstracts,
2003, pp. 624–625.

[12] J. Nichols, B. A. Myers, and B. Rothrock, “Uniform: Automatically
generating consistent remote control user interfaces,” in CHI, 2006, pp.
611–620.

[13] J. Nichols, B. Rothrock, D. H. Chau, and B. A. Myers, “Huddle:
Automatically generating interfaces for systems of multiple connected
appliances,” in UIST, 2006, pp. 279–288.

[14] J. Heer, M. Agrawala, and W. Willett, “Generalized selection via
interactive query relaxation,” in CHI, 2008, pp. 959–968.

[15] L. Verou, A. X. Zhang, and D. R. Karger, “Mavo: Creating interactive
data-driven web applications by authoring html,” in UIST, 2016, pp.
483–496.

[16] P. Vaithilingam and P. J. Guo, “Bespoke: Interactively synthesizing
custom guis from command-line applications by demonstration,” in
UIST, 2019, pp. 563–576.

[17] Y. Chen, R. Li, A. Mac, T. Xie, T. Yu, and E. Wu, “Nl2interface:
Interactive visualization interface generation from natural language
queries,” arXiv preprint arXiv:2209.08834, 2022.

[18] P. J. Guo, “Online Python Tutor: Embeddable web-based program
visualization for cs education,” in SIGCSE, 2013, p. 579–584.

[19] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive
visual specification of data transformation scripts,” in CHI, 2011, p.
3363–3372.

[20] I. Drosos, T. Barik, P. J. Guo, R. DeLine, and S. Gulwani, “Wrex: A
unified programming-by-example interaction for synthesizing readable
code for data scientists,” in CHI, 2020, p. 1–12.

[21] N. Shrestha, T. Barik, and C. Parnin, “Unravel: A fluent code explorer
for data wrangling,” in UIST, 2021, p. 198–207.

[22] M. B. Kery, D. Ren, F. Hohman, D. Moritz, K. Wongsuphasawat, and
K. Patel, “mage: Fluid moves between code and graphical work in
computational notebooks,” in UIST, 2020, pp. 140–151.

[23] A. Head, C. Appachu, M. A. Hearst, and B. Hartmann, “Tutorons: Gen-
erating context-relevant, on-demand explanations and demonstrations of
online code,” in VL/HCC, 2015, pp. 3–12.

[24] L. Yan, A. Hwang, Z. Wu, and A. Head, “Ivie: Lightweight anchored
explanations of just-generated code,” in CHI, 2024.

[25] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, and B. Myers,
“Using an LLM to help with code understanding,” in ICSE, 2024, pp.
881–881.

[26] D. A. Schön, The Reflective Practitioner: How Professionals Think in
Action. Routledge, 2017.

[27] A. M. Mcnutt, C. Wang, R. A. Deline, and S. M. Drucker, “On the
design of AI-powered code assistants for notebooks,” in CHI, 2023.

[28] R. Ferreira, M. Canesche, P. Jamieson, O. P. V. Neto, and J. A. Nacif,
“Examples and tutorials on using Google Colab and Gradio to create
online interactive student-learning modules,” Computer Applications in
Engineering Education, p. e22729.

[29] S. Barke, M. B. James, and N. Polikarpova, “Grounded Copilot: How
programmers interact with code-generating models,” OOPSLA, 2023.

[30] E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J.
Cai, and M. Terry, “Discovering the syntax and strategies of natural
language programming with generative language models,” in CHI, 2022.

[31] R. Cheng, S. Dasgupta, and B. M. Hill, “How interest-driven content
creation shapes opportunities for informal learning in Scratch: A case
study on novices’ use of data structures,” in CHI, 2022.

[32] W. Ni, J. Sunshine, V. Le, S. Gulwani, and T. Barik, “reCode: A
lightweight find-and-replace interaction in the IDE for transforming code
by example,” in UIST, 2021, p. 258–269.

[33] X. Zhang and P. J. Guo, “Mallard: Turn the web into a contextualized
prototyping environment for machine learning,” in UIST, 2019, p.
605–618.

[34] A. C. Ryan Holbrook, “Binary classification,” 2023, [Accessed
15-March-2024]. [Online]. Available: https://www.kaggle.com/kernels/
fork/11887335

[35] R. Holbrook and A. Cook, “The convolutional classifier,” 2023,
[Accessed 15-March-2024]. [Online]. Available: https://www.kaggle.
com/kernels/fork/10781907

[36] B. Jovanovic, “Generative UI: The future of dy-
namic user experiences,” March 2024, [Accessed 15-
March-2024]. [Online]. Available: https://bootcamp.uxdesign.cc/
generative-ui-the-future-of-dynamic-user-experiences

[37] K. Moran and S. Gibbons, “Is UI dead? how conversational models
are taking over,” March 2024, [Accessed 15-March-2024]. [Online].
Available: https://www.nngroup.com/articles/generative-ui/

[38] M. Beth Kery and B. A. Myers, “Exploring exploratory programming,”
in VL/HCC, 2017, pp. 25–29.

[39] M. B. Kery, M. Radensky, M. Arya, B. E. John, and B. A. Myers,
“The story in the notebook: Exploratory data science using a literate
programming tool,” in CHI, 2018, pp. 1–11.

[40] A. Rule, A. Tabard, and J. D. Hollan, “Exploration and explanation in
computational notebooks,” in CHI, 2018, pp. 1–12.

[41] S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma, and T. Barik,
“What’s wrong with computational notebooks? Pain points, needs, and
design opportunities,” in CHI, 2020, p. 1–12.

[42] M. B. Kery and B. A. Myers, “Interactions for untangling messy history
in a computational notebook,” in VL/HCC. IEEE, 2018, pp. 147–155.

[43] A. Rule, I. Drosos, A. Tabard, and J. D. Hollan, “Aiding collaborative
reuse of computational notebooks with annotated cell folding,” CSCW,
2018.

[44] M. B. Kery, B. E. John, P. O’Flaherty, A. Horvath, and B. A. Myers,
“Towards effective foraging by data scientists to find past analysis
choices,” in CHI, 2019, pp. 1–13.

