
ABSTRACT

BARIK, TITUS. Error Messages as Rational Reconstructions. (Under the direction
of Emerson Murphy-Hill.)

Program analysis tools apply elegant algorithms—such as static analysis, model
checking, and type inference—on source code to help developers resolve compiler
errors, apply optimizations, identify security vulnerabilities, and reason about the
logic of the program. In integrated development environments, program analysis
tools provide feedback about their internal diagnostics to developers through error
messages, using a variety of text and visual presentations such as error listings,
tooltips, and source code underlined with red squiggles. The design of human-
friendly error messages is important because error messages are the primary
communication channel through which tools provide feedback to developers.

Despite the intended utility of these tools, the error messages these tools produce
are cryptic, frustrating, and generally unhelpful to developers as they attempt to
understand and resolve the messages. Existing approaches in programming lan-
guage research have attempted to surface the internal reasoning process of program
analysis tools and present these details to developers to aid their comprehension
process. However, we argue that the tool-centric perspective of simply revealing
details in the error message about the tools’ internal algorithms is insufficient: the
fundamental problem is that computational tools do not reason about the causes of
an identified error in the same way as the developer who attempts to understand
and reconstruct why the tool produced that particular error.

The goal of this research is to investigate these misalignments through the
theoretical framework of rational reconstruction—a model for identifying rationales,
or reasons, for arriving at a particular conclusion—to the domain of error messages
in program analysis tools. Essentially, a rational reconstruction of an error message
would present rationales to the developer from a human-centered perspective that
aligns with the developers’ reasoning process, irrespective of the underlying algo-
rithm or process used by the program analysis tool to identify the error. Through
rational reconstructions, we can identify how to design error messages that are
most useful for developers, rather than those that are most convenient for the tool.



The thesis of this dissertation is that difficulties interpreting error messages
produced by program analysis tools are a significant predictor of developers’ inabili-
ties to resolve defects, and that these difficulties interpreting error messages can
be explained by framing error messages as insufficient rational reconstructions in
both visual and text presentations. This dissertation advances knowledge about
developer comprehension during error message tasks and defends the claims of
this thesis through three studies, evaluated through the theoretical framework of
rational reconstruction:

1. To learn how developers use error messages during their own rational recon-
structions, we conducted an eye tracking study in which participants resolved
common defects within the Eclipse development environment. We found that
the difficulty of reading these messages is comparable to the difficulty of read-
ing source code, that difficulty reading error messages significantly predicts
participants’ task performance, and that participants allocate a substantial
portion of their total task to reading error messages (13%–25%).

2. To learn how developers construct and are aided by diagrammatic rational
reconstructions, or explanatory visualizations, we conducted a usability design
experiment in which developers diagrammatically annotated and explained
source code listings involving compiler error messages. We found that ex-
planatory visualizations are used intuitively by developers in their own self-
explanations of error messages, and that these visualizations are significantly
different from baseline visualizations in how they explicate relationships
between program elements in the source code.

3. To learn how rational reconstructions aid developer comprehension in text pre-
sentations, we conducted a comparative evaluation between two Java compilers
and investigated their error messages through Toulmin’s model of argument,
a form of rational reconstruction. For generalizability, we additionally con-
ducted a study to analyze confusing error messages on Stack Overflow against
human-authored reconstructions of those error messages. We also analyzed
these answers using Toulmin’s model of argument. We found that developers
significantly preferred error messages with proper argument structures over



deficient arguments, but will prefer deficient arguments if they provide a
resolution to the problem. We found that human-authored explanations con-
verge to argument structures that either offer a simple resolution, or employ
a proper simple or extended argument structure.

The dissertation concludes with implications and design guidelines for practi-
tioners who wish to improve the usability of error messages for program analysis
tools. To assess and operationalize these guidelines, we developed a proof-of-concept
compiler called Rational TypeScript—a modified Microsoft TypeScript compiler
that presents error messages as rational reconstructions. A focus group conducted
with professional software developers suggested that Rational TypeScript messages
were more helpful than baseline TypeScript messages, particularly with developers
who only sporadically program with TypeScript. Although full-time TypeScript
developers generally preferred the brevity of baseline error messages for routine
errors, they nevertheless indicated that rational reconstructions would be useful as
a presentation option for error messages when working with unfamiliar code.
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1 | My Thesis

People spend all their time making
nice things and then other people
come along and break them.

The Doctor

Difficulties interpreting error messages produced by program analysis tools are a
significant predictor of developers’ inabilities to resolve defects: difficulties
interpreting error messages can be explained by framing error messages as
insufficient rational reconstructions in both visual and text presentations.1

1Supporting documentation attached.
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2 | Introduction

Our lives are different to anybody
else’s. That’s the exciting thing.
Nobody in the universe can do what
we’re doing.

The Doctor

2.1 Problem
Program analysis tools are intended to help developers identify problems in their
source code: they pinpoint unsafe or undesirable runtime behavior, enforce con-
formance to programming language specifications, and flag stylistic issues that
hinder the readability of the code [36, 53, 137, 138, 332]. Many of the problems that
program analysis tools detect are also subtle to spot through manual inspection [15,
34, 177, 271]. Unfortunately, research has found that the output program of analysis
tools—error messages—are confusing, unconstructive, misleading, or incompre-
hensible [50, 55, 83, 356, 381]. As a result, developers spend unnecessary effort
comprehending and resolving the defects identified by the tools or simply abandon
otherwise useful tools because they can’t understand the error messages [65, 190].

What makes these error messages so confusing for developers?
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2.2 Examples
Program analysis tools communicate these problems to developers through error
messages, using various text and visual presentations. But rather than attempt to
characterize precisely what an error message is (we’ll do that in Chapter 3), let’s
take a tour of five concrete examples to explore different facets for why error mes-
sages might be difficult for developers to comprehend. Examples in Sections 2.2.1
to 2.2.4 explore text-based error messages, as found in console or terminal environ-
ments. Section 2.2.5 shifts direction and tailors text-based error messages to visual,
integrated development environments (IDEs)—such as Visual Studio Code [260].
In particular, this example articulates how the appropriateness of an error message
depends not only on the message content but also in how the error message is
situated within the programming environment.

2.2.1 Portable C Compiler
We’ll start with the PCC [193] compiler from 1979, for which a developer attempts to
write the venerable “Hello, world!” program. Here’s the source code for this program:

1 #include <stdio.h>
2

3 int main() {
4 printf("Hello, world!\n")
5 }

Despite its simplicity, this program is useful for sanity checking: seeing the words
“Hello, world!” appear on the screen means that the basic libraries are in the right
place, and that the source code can compile, execute, and successfully send output
to a console.

However, this source listing contains an error: the rules of the C programming
specification require that all statements end with a semicolon (;), and the code is
missing one at the end of Line 4. The program analysis within the compiler identifies
this error and outputs an error message:

hello.c, line 5: syntax error
hello.c, line 5: cannot recover from earlier errors: goodbye!
error: /usr/libexec/ccom terminated with status 1
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It turns out this error message isn’t technically wrong, but it is misleading. For
instance, it claims that the error is on Line 5, but it seems that the error should
actually be reported on Line 4. Regardless, the error doesn’t provide any reasons
for how it came to this conclusion: it leaves it to developer to identify what causes
the syntax error. PCC then unhelpfully exits with the message goodbye!, followed
with a termination status that is only useful to the operating system.

Is it fair to use a compiler written in the 1970s to illustrate confusing error
messages? Probably not. But it is a good baseline for error messages. Despite its
historical interest, the error message has the minimal components of modern error
messages: a location indicating the problem, hello.c, line 5, and a description of
the problem. And many of the design decisions within PCC continue to influence
contemporary program analysis tools.

2.2.2 GNU Compiler Collection
Let’s now look at GCC [129], a modern C compiler that is part of the GNU Compiler
Collection. Here’s the error message for the same “Hello, world!” program in GCC:

hello.c: In function ‘main’:
hello.c:5:1: error: expected ‘;’ before ‘}’ token
}
^

The GCC compiler is an improvement over PCC: rather than a vague syntax error it
does tell us the semicolon is the actual token that is missing. The program analysis
tool also adds a bit of color to the error message and some context about the source
code, for example, by indicating that the problem is in the function main.

Still, the cause of the error message is disorienting from the developers’ per-
spective, because the tool emits a location that follows the problem, rather than
the location that immediately precedes it [140]. The easiest way to illustrate this
concern is to contrast GCC with a compiler that does this correctly, at least in this
case. Here’s the output from Clang [235], part of LLVM:

hello.c:4:28: error: expected ';' after expression
printf("Hello, world!\n")

^
;

1 error generated.
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The problem is now apparent, and the error message also matches the way
developers would think about the problem, rather than what would be more con-
venient for the toolsmith—that is, the designer of the program analysis tool—to
generate [250]. In other words, “I’m missing a semicolon at the end of Line 4” is a
more direct explanation than “I’m missing a semicolon at immediately before the
brace on Line 5, but it would be strange to add a semi-colon at the start of the line,
so it must be even before that. The compiler must actually mean the end of Line 4.”

Syntax problems like these are nuisances for expert developers—even with the
original error from the 1970s PCC compiler—but it’s more work than we should
have to do. For novices, however, error messages like these are thoroughly discon-
certing [43]. The reasoning of the compiler, strictly applied, can lead to idiosyncratic
but nevertheless conformant fixes like this one:

1 #include <stdio.h>
2

3 int main() {
4 printf("Hello, world!\n")
5 ;}

2.2.3 Oracle Java Compiler (OpenJDK)
Here’s a source listing in Java:

1 class Toy {
2 Toy() throws Exception { }
3 }
4

5 class Kite extends Toy {
6 }

The source listing results in the following error message from the OpenJDK [286]
compiler:1

Kite.java:5: error: unreported exception Exception in default constructor
class Kite extends Toy {
^
1 error

1This error message was reported as bug JDK-4071337, “misleading error message when super-
class constructor has throws clause.” See: https://bugs.java.com/bugdatabase/view_bug.do?bug_id=
4278961
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Let’s construct a rationale for what could cause this error message. First, we note
that the error message involves a default constructor, but no such constructor
explicitly appears in the Kite class. This is probably why the bug marker ^ points to
the class itself: default constructors are implicit and therefore there is no constructor
we can actually point to directly. Let’s change the source code to add this constructor
explicitly, and hope that it compels the program analysis to reveal more of its
rationale:

1 class Toy {
2 Toy() throws Exception { }
3 }
4

5 class Kite extends Toy {
6 Kite() { }
7 }

We compile again. Not only does the new error message point to a different location,
the message now reveals more information about the problem:

Kite2.java:6: error: unreported exception Exception;
must be caught or declared to be thrown

Kite() { }
^

1 error

Thus, we add a throws Exception in response to this explanation:

1 class Toy {
2 Toy() throws Exception { }
3 }
4

5 class Kite extends Toy {
6 Kite() throws Exception { }
7 }

Our last attempt is accepted by the compiler, and now we must retrospectively
find reasons for why. For instance, why did we have to explicitly create a default
constructor? Don’t these get created automatically if we don’t write one ourselves?
It turns out that according to the Java Language Specification 9 (8.8.9) [139]:

It is a compile-time error if a default constructor is implicitly declared
but the superclass does not have an accessible constructor that takes no
arguments and has no throws clause.
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Thus, in the case when the default constructor in the superclass has a throws clause,
the compiler is forbidden from automatically generating a default constructor on
behalf of the developer.

2.2.4 Clang Compiler (LLVM)
Let’s now look at a source listing in C++, named ptrcopy.cpp, in which we’ll use the
Clang compiler from LLVM [235]:

1 #include <iostream>
2 #include <memory>
3 #include <vector>
4

5 int main() {
6 std::vector<std::unique_ptr<int>> foo;
7 std::vector<std::unique_ptr<int>> bar = foo;
8 }

The intent of this program is presumably to do some sort of copying, from the
contents of foo to the contents of bar. But attempting to do this generates an
unwieldy compiler error:

1 In file included from ptrcopy.cpp:2:
2 In file included from /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../ c

../../include/c++/7.2.0/memory:64:↪→

3 /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../../../include/c++/ c
7.2.0/bits/stl_construct.h:75:38: error: call to deleted constructor
of

↪→

↪→

4 'std::unique_ptr<int, std::default_delete<int> >'
5 { ::new(static_cast<void*>(__p)) _T1(std::forward<_Args>(__args)...);

}↪→

6 ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
7 /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../../../include/c++/ c

7.2.0/bits/stl_uninitialized.h:83:8: note: in instantiation of
function template specialization

↪→

↪→

8 'std::_Construct<std::unique_ptr<int, std::default_delete<int> >,
const std::unique_ptr<int, std::default_delete<int> > &>'
requested here

↪→

↪→

9 std::_Construct(std::__addressof(*__cur), *__first);
10 ^
11 /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../../../include/c++/ c

7.2.0/bits/stl_uninitialized.h:134:2: note: in instantiation of
function template specialization

↪→

↪→

12 'std::__uninitialized_copy<false>::__uninit_copy<__gnu_cxx:: c
__normal_iterator<const std::unique_ptr<int,
std::default_delete<int> > *,

↪→

↪→
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13 std::vector<std::unique_ptr<int, std::default_delete<int> >,
std::allocator<std::unique_ptr<int, std::default_delete<int> >
> > >, std::unique_ptr<int,

↪→

↪→

14 std::default_delete<int> > *>' requested here
15 __uninit_copy(__first, __last, __result);
16 ^
17 /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../../../include/c++/ c

7.2.0/bits/stl_uninitialized.h:289:19: note: in instantiation of
function template specialization

↪→

↪→

18 'std::uninitialized_copy<__gnu_cxx::__normal_iterator<const
std::unique_ptr<int, std::default_delete<int> > *,
std::vector<std::unique_ptr<int,

↪→

↪→

19 std::default_delete<int> >, std::allocator<std::unique_ptr<int,
std::default_delete<int> > > > >, std::unique_ptr<int,
std::default_delete<int> > *>' requested here

↪→

↪→

20 { return std::uninitialized_copy(__first, __last, __result); }
21 ^
22 /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../../../include/c++/ c

7.2.0/bits/stl_vector.h:331:9: note: in instantiation of function
template specialization

↪→

↪→

23 'std::__uninitialized_copy_a<__gnu_cxx::__normal_iterator<const
std::unique_ptr<int, std::default_delete<int> > *,
std::vector<std::unique_ptr<int,

↪→

↪→

24 std::default_delete<int> >, std::allocator<std::unique_ptr<int,
std::default_delete<int> > > > >, std::unique_ptr<int,
std::default_delete<int> > *,

↪→

↪→

25 std::unique_ptr<int, std::default_delete<int> > >' requested here
26 std::__uninitialized_copy_a(__x.begin(), __x.end(),
27 ^
28 ptrcopy.cpp:7:43: note: in instantiation of member function

'std::vector<std::unique_ptr<int, std::default_delete<int> >,
std::allocator<std::unique_ptr<int,

↪→

↪→

29 std::default_delete<int> > > >::vector' requested here
30 std::vector<std::unique_ptr<int>> bar = foo;
31 ^
32 /usr/bin/../lib/gcc/x86_64-linux-gnu/7.2.0/../../../../include/c++/ c

7.2.0/bits/unique_ptr.h:388:7: note: 'unique_ptr' has been explicitly
marked deleted here

↪→

↪→

33 unique_ptr(const unique_ptr&) = delete;
34 ^
35 1 error generated.

Squinting at this error message, we may be able to derive clues to help us
reconstruct an explanation for what the actual problem might be. For example,
we can scan the error message to see that the files of interest are memory (Line
2), stl_construct.h (Line 3), stl_uninitialized.h (Line 7, Line 11, and Line 17),
stl_vector.h (Line 22), and the source listing we wrote, ptrcopy.cpp (Line 28). Since
the only file the developer has actually touched is ptrcopy.cpp, we can infer that the
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error locations are presented backwards: something happens deep inside memory,
and this problem bubbles up through the various C++ files until we arrive back
at the cause in ptrcopy. Although it’s true that the problem doesn’t occur, strictly
speaking, until we reach memory, it’s not very helpful to have a problem identified
within a library that we didn’t even write.

What if the program analysis instead presented an error message from the
perspective of the developer, rather than the perspective of the compiler? Here’s an
example of what such a message might look like:

ptrcopy.cpp: cannot construct 'bar' from 'foo':
foo's template type is non-copyable

std::vector<std::unique_ptr<int>> bar = foo;
^

I think this version of the error message is an interesting contrast for several
reasons.2 First, it pinpoints a location that the developer actually wrote. Second, it
argues for a presentation that is in many ways less precise than the original LLVM
error message, yet much easier to read. Third, even with this loss of precision, it’s
obvious what the problem is: unique_ptr is not copyable. Trying to assign a vector
of unique_ptr to another vector would mean that somewhere in the vector source
code the unique pointer would necessarily need to be copied.

2.2.5 ESLint for JavaScript
Thus far, we’ve only examined text-based error messages. However, in this section
we’ll argue that whether an error message is appropriate depends not only on
the message content but also on how the error message is situated within the
programming environment—for example, in a terminal or in an IDE. That is,
sometimes the “medium is the message” [255], and it is the medium that shapes
the way in which we should present error messages to the developer.

2A Stack Overflow answer refers to this version of the error message as their “ideal error message”
to explain the problem: https://stackoverflow.com/questions/8779521/tools-to-generate-higher
-quality-error-messages-for-template-based-code.
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Let’s look at an example of this through ESLint [420], a pluggable bug-finding
utility for JavaScript. By pluggable, we mean: 1) developers can add custom bug-
finding rules to extend the capability of the tool, and 2) the tool is intended to be
bundled and used within other workflows, such as integrated development envi-
ronments and build systems. Thus, the tool supports multiple output formats, or
mediums, for presentation.

Consider what happens when we apply ESLint to the following JavaScript file:

1 const who = 'Titus';
2 console.log('Hello, ' + who + '!');

Depending on the default formatter, this causes ESLint to emit the following error
message:

hello.js: line 2, col 13, Error - Unexpected string concatenation.
(prefer-template)↪→

We can use a template literal3 to resolve the error message:
1 const who = 'Titus';
2 console.log(`Hello, ${who}!`);

In contrast to the error messages from OpenJDK, GCC, and LLVM, the error
message from ESLint almost seems like a regression to an earlier era of compilers!
Unlike either of these tools, the ESLint error message does not provide a contextual
code snippet. Unlike GCC and LLVM, ESLint does not colorize the output. And
prefer-template seems like an internal error code, which doesn’t help the developer.

If we were solely targeting a console environment, we might consider relatively
simple improvements to this error message to expand on the suggested prefer-

template fix and add a rationale for the error:

× [eslint] Unexpected string concatenation (2, 13)
Fix: Use template literals instead of concatenation.

(re-run with --fix to automatically fix this problem)
Why? Template literals give you a readable, concise syntax

with proper newlines and string interpolation features.
(see: airbnb.io/javascript/#es6-template-literals)

3In prior editions of the ES2015 specification, template literals were called template strings. See:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals.
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The above error message replaces the cryptic prefer-template key with natural
language. Incidentally, this particular fix is trivially corrected by ESLint, and so
the message also suggests the availability of this automated repair. Then, given
the rationale for the error, we see that the reason ESLint recommends this change
is because the Airbnb JavaScript standard considers template literals to be more
readable. An extended explanation is offered through a link, and gives examples of
converting string concatenation operations to template literals.

Although ESLint supports console output as a last resort, ESLint is really in-
tended to be used as a program analysis building block to be incorporated within
other programming and build environments. To illustrate this, let’s consider again
the default formatter, but this time rendered within Visual Studio Code (Figure 2.1
on the following page). In Figure 2.1a, we see that ESLint presents its error mes-
sage as a tooltip when the developer hovers over the red wavy underline. Also,
the developer can double-click the error message in the problems pane to directly
navigate to Line 2 of hello.js. Given the single-line affordances in the problems
pane, it now makes sense to present a terse error message that the developer can
use to quickly navigate to the relevant code context. Similarly, the somewhat cryptic
(prefer-template) text in the default error message now becomes an interactive
affordance that allows the developer to automatically repair the code in their IDE
(Figure 2.1b). Therefore, providing a contextual code snippet within the error mes-
sage itself would be redundant, given that we expect the errors to be presented in
the IDE.

2.3 Objective, Significance, and Scope
Given the problematic error messages we detailed in the previous section, how can
we rigorously explain the difficulties developers encounter with these messages?
Importantly, how can we go about improving error messages through principled
approaches—so they are more useful to developers?

The objective of this dissertation is to evaluate a novel framework that applies
rational reconstruction theory to error messages as a unifying explanation for why
error messages are difficult for developers to comprehend. We formalize this theo-
retical framework in the next section (Section 2.4). The significance of this research
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(a) ESLint identifies a problem.

(b) ESLint suggests a fix for the problem.

Figure 2.1 For the ‘unexpected string concatenation’ error, the bare ESLint error message
is appropriate when the message is presented in the Visual Studio Code IDE. Other
affordances, such as the light bulb icon, tooltip overlay, and red wavy underline, provide
additional context to the developer.
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is that it demonstrates that error messages as rational reconstructions are more
useful to developers than baseline error messages, because rational reconstructions
align with the way in which they strategize and reason about problems in their
code under the presence of errors. Furthermore, the design of human-friendly error
messages is important because error messages are the primary communication
channel through which tools provide feedback to developers. Consequently, the
research in this dissertation advances a systematic, theoretical lens to investigate
error messages in program analysis tools, and embodies six postulates that scaffold
it:

Postulate I—Error messages are routine. The selected examples are everyday
messages that confound developers, taken from program analysis tools used in
industry. Generally, the types of error messages developer encounter don’t require
them to have knowledge of esoteric language concepts, nor do the error messages
arise from extraordinary circumstances [342].

Postulate II—Error messages aren’t false positives. False positives are a
known problem with program analysis tools, especially static analysis tools which
use approximations in order to determine whether a problem exists [65, 190]. But
none of the selected examples were false positives, and all of them indicated an
actual problem in the code. This suggests that developers have difficulties with
error messages even when they are revealing an actual problem in the code.

Postulate III—Developers are intermediate-experts. This isn’t just a prob-
lem for novices. The persona we assumed in the examples, and study in this
dissertation, are developers who are intermediate-experts [348] in the program-
ming ecosystem they use. That is, they are not completely new to programming
(naive), nor are they novices who are in the early-stages of learning the program-
ming language or their program analysis tools.
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Postulate IV—There isn’t only one way to automatically repair the pro-
gram. Even small programs have a combinatorially large design space for program
transformations that would remove the compiler error message [18]. To illustrate,
an alternate way to make the “Hello, world!” syntactically valid for the examples
in Section 2.2.1 and Section 2.2.2 would be to simply remove the printf statement
entirely. Such a fix seems incredulous if the intention of the developer is to print a
string to the console, but perfectly logical if the developer intended “Hello, world!”
to only act as a starting point for the program they actually intended to implement.
Good automatic fixes are useful as accelerators for developers, but they don’t remove
the need to understand the error message.

Postulate V—Error messages present an insufficient construction of the
problem. The error messages present only the symptom of the problem, and leave
it to the developer to come up with the rationale for why the problem occurs. We
saw this in the unreported exception example for Java in Section 2.2.3, in which the
developer needed to reconstruct a chain of reasons to identify the cause of the error.

Postulate VI—Error messages are rational, but only from the perspective
of the compiler. Let’s turn again to the source code listing for the “Hello, world!”
example from Section 2.2.2, but this time we will reformat the listing like so:

int main(){printf("Hello, world!")}

Some compilers remove insignificant whitespace, or trivia, because they are unnec-
essary in the program analysis pipeline; this results in a program that appears
to the tool essentially like the above. From the perspective of the compiler, the er-
ror message expected ';' before '}' token is now perfectly rational if we reorient
ourselves to the perspective of how the compiler thinks about the situation. But
developers shouldn’t have to know the internal mechanics of program analysis tools
to understand their error messages.

The first three postulates eliminate specific factors as being the cause of developer
difficulties with error messages: developers experience difficulties in cases when
the error messages are routine, when they aren’t false positives, and even when the
developers are comfortable with their programming languages and tools. The fourth
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Source Listing Tool Error Message Developer
(Josh)

Interlocutor
(Emmie)

Figure 2.2 The theoretical framework of rational reconstruction.

postulate suggests that error messages are useful to developers for verification,
even when tools suggest automatic fixes. The first four postulates, then, scope
the dissertation. But it is the fifth and sixth postulates that motivate a theory
to investigate: these two postulates conjecture a misalignment between the way
program analysis tools present error messages to developers and the way in which
developers attempt to comprehend the problem. In the next section, we formalize
these misalignments through the theoretical framework of rational reconstruction.

2.4 Theoretical Framework
Example. Consider a scenario in which a developer, Josh, encounters a confus-
ing error message. He isn’t able to comprehend the error message, so he turns
to a colleague, Emmie, for assistance. Much like we did for the examples in Sec-
tion 2.2, Emmie explains the error message by offering reasons and justifications to
demonstrate the problem is actually a problem. We can diagram this scenario as in
Figure 2.2, with Emmie as the interlocutor—a participant in the discourse.

What did Emmie say differently from the error message in the program analysis
tool that allowed Josh to understand the problem? Generally, how was the human-
human interaction different from the human-computer interaction, and can these
differences explain why error messages in program analysis tools are confusing for
developers?

15



Definitions. The theory I apply to investigate developer difficulties with error
messages is rational reconstruction [248]. Rationales are the set of reasons for some-
thing: here, that something is the error message produced by the program analysis
tool. If the error message is deficient and does not provide sufficient rationale, Josh
must reconstruct the rationale for the error message himself and come to the same
conclusion as the conclusion of the error message.

The process of identifying these rationales is rational reconstruction. Within this
theory, rationales come in two forms [58, 248, 253]: 1) as a justification-explanation
(called an argument), in which the rationale functions as evidence that supports
the conclusion; and 2) a trace-explanations (sometimes referred without qualifier
as simply an explanation), in which the rationale functions as a cause for the
conclusion.

Utility. Rational reconstruction is a useful theoretical framework to apply to
error messages, for four reasons:

1. Rational reconstruction is a process centered around ordinary hu-
man dialogue. Having origins in philosophy and linguistics, rational recon-
struction applies a human-centered lens as a means to construct intuitive, yet
logical explanations intended for human consumption—such as the exchanges
between Emmie and Josh. But are human-human interactions a ground truth
for human-computer interactions? The influential theory of computers as so-
cial actors suggests that it is: people treat computers and respond to computers
as if they were real people [275]. And subsequent research has argued that
it is often valuable for computational agents to mimic how people behave
in human-human interactions and approximate them in human-computer
interactions [31, 106, 262].

2. Rational reconstructions are not historical reconstructions. They ad-
mit orthogonal explanations of the problem, and the research implication is
that we may consider the presentation of an error message as independent
from how the tool internally functions. Emmie does not need to know the inter-
nals of the program analysis tool in order to provide a sufficient explanation
to Josh for why the error message is emitted. In Chapter 9, we exploit this
property to instrument a compiler that produces rational reconstructions as
error messages.
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3. Rational reconstruction has been applied with some success to other
areas of software engineering. For example, the design process from Par-
nas and Clements [290] proposes that software design documentation should
appear as if it were designed by a precise requirements process, even though
we do not actually design products in that way. In other words, the software
design documentation is a rational reconstruction.

4. There is formative evidence that rational reconstructions would be
useful to developers. For example, Dean [89] notes that “a message whose
meaning has to be explained does not communicate—it fails as a message.” A
review of existing design guidelines in Section 3.5 demonstrates how rational
reconstructions are a fruitful direction for error message investigation.

2.5 Research Paradigm
The research paradigm governs the philosophical assumptions and beliefs for how
we conduct research and interpret research findings [76]. In this dissertation, I
employ a pragmatic research paradigm, which I describe through the four basic
questions of the research process [78]:

1. What epistemology informs the theoretical perspective?
2. What theoretical perspective lies behind the methodology in question?
3. What methodology governs our choice and use of methods?
4. What methods do we propose?

2.5.1 Epistemology
The epistemology of the research in this dissertation is pragmatic. It is helpful here
to define the epistemology of pragmatism against two epistemological extremes:
positivism and constructivism [264]. In positivism, there is one and only one ob-
jective truth, and this truth can be uncovered through objective analysis, such as
in quantitative methods. In constructivism, theories are social constructs: there is
no objective truth and theories are interpretations of subjective inquiries. Pragma-
tism sidesteps this debate entirely by making no epistemological stance: truth is
whatever seems to work for a particular situation [132].

17



2.5.2 Theoretical Perspective
Pragmatic research places emphasis on identifying the research problem, and
then selecting appropriate research tools or instruments to study the problem [104].
Because of the lack of epistemological commitment, the output of pragmatic research
is in the form of solution-focused guidelines or interventions to understand or attack
the nature of the problem. Within this perspective, theories are problem-solving
tools to help understand why a particular problem occurs and what steps we can
take to correct the situation. Theories are also self-correcting as new evidence
emerges. A central idea of pragmatism is human inquiry: that we can advance
understanding through observing how people work in their day-to-day lives, seeing
what works, and identifying what doesn’t [192].

2.5.3 Methodology
I use mixed-methods in my studies, applying both quantitative and qualitative
methodologies, both when appropriate and when convenient. Therefore, I reject the
incompatibility thesis, which argues that integrating qualitative and quantitative
research is incompatible epistemologically [95].

2.5.4 Methods
I used an assortment of research methods in this dissertation. In Chapter 6, I
conducted a usability study of error messages within the Eclipse IDE, supported by
eye tracking instrumentation. I used established eye tracking measures, such as
fixation duration, to understand comprehension difficulties developers have with
reading error messages. In Chapter 7, I applied a think-aloud protocol and observed
how developers constructed explanatory visualizations for error messages. I used a
memorization/recall task technique from Shneiderman [347] to assess developer
comprehension. In Chapter 8, I conducted a comparative evaluation between two
Java compilers to understand developer preferences for different structures of
error messages. I qualitatively investigated Stack Overflow posts related to error
messages, and analyzed these posts through the lens of argumentation theory—a
form of rational reconstruction.
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2.6 Who Did What
I am the lead author of all content presented within this dissertation. As lead
author, I made substantial contributions to all aspects of the work, which include
designing the experiments, collecting experimental data, performing data analysis,
interpreting the data, and drafting and revising manuscripts for submission to
academic venues. Consequently, I take full responsibility for all aspects regarding
the accountability and integrity of the work.

With that said, this dissertation would not have been possible without the
assistance of several other researchers. In the interest of responsible authorship, I
report their contributions to published work that also appears in this dissertation:

• Chris Parnin and Emerson Murphy-Hill are co-authors for my scoping review
(Chapter 4). Through various exchanges, Parnin and I discussed the motivation
and framing for the introduction as interpreting PL papers through an HCI
lens. Murphy-Hill and I had several exchanges during the design of the paper
on how this work could serve towards a comprehensive literature review.

• Kevin Lubick, Justin Smith, Elisabeth Holmes, Jing Feng, Emerson Murphy-
Hill, and Chris Parnin are co-authors on my eye tracking study (Chapter 6).
Lubick and I both conducted studies with the participants, with each of us
conducting roughly half the studies. I identified the categories of error mes-
sages to be used for the study, and the software library in which to inject
these errors. Lubick injected the error messages into this software library, and
verified that the error messages would display properly to the participants.
He also ran several early pilot studies on my behalf to identify potential issues
with the study design.

Smith continued to support this work after Lubick transitioned to other
projects. Smith helped substantially with the data cleaning pipeline to correct
calibration errors in eye tracking data; he also rendered two of the figures
in the paper (Figure 6.1 and Figure 6.2). Smith and I pair-wrote the intro-
duction and motivating example (Section 6.1) sections of the paper. Holmes
spent an entire summer manually tagging the participant videos, with limited
success. Her efforts in this area led me to investigate automated and scalable
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techniques for tagging video data (Section 6.2), which I eventually applied to
this study. Feng provided her expertise in working with professional eye track-
ing equipment. Jess Cherayil, a summer undergraduate research student,
contributed code for area of interest detection in video data.

• Kevin Lubick, Samuel Christie, and Emerson Murphy-Hill are co-authors on
my think-aloud study on how developers visualize error messages (Chapter 7).
Lubick ran approximately half of the participants for the study, and helped
to annotate the participant data. Christie analyzed the data from the pilot
study, and reported the frequency of annotations participants used (Table 7.1).
Murphy-Hill provided suggestions on making sure the story about visualiza-
tion would appeal to the VISSOFT community, recommended some related
work, and suggested the title for the paper.

• Denae Ford, Emerson Murphy-Hill, and Chris Parnin are co-authors on my
study investigating Stack Overflow questions and answers on error messages
(Chapter 8). Ford and I had many early discussions on how to classify Stack
Overflow posts before arriving at argumentation theory. In the paper, Ford
wrote the query to compute Table 8.2. Ford also qualitatively coded half of the
data—across multiple programming languages—and labeled Stack Overflow
responses in terms of argument structure. Parnin and Murphy-Hill provided
feedback on drafts.

2.7 Contributions
This dissertation advances knowledge through several contributions, and defends
the claims of the thesis presented in Chapter 1. I have repeated the thesis in full
below:

Difficulties interpreting error messages produced by program analysis
tools are a significant predictor of developers’ inabilities to resolve defects:
difficulties interpreting error messages can be explained by framing error
messages as insufficient rational reconstructions in both visual and text
presentations.
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To defend the claim that “difficulties interpreting error messages produced by
program analysis tools are a significant predictor of developers’ inabilities to resolve
defects,” I offer evidence through the study in Chapter 6. The study finds that:

• Participants read error messages; unfortunately, the difficulty of reading error
messages is comparable to the difficulty of reading source code—a cognitively
demanding task.

• Participant difficulty with reading error messages is a significant predictor
of task correctness (p < .0001), and contributes to the overall difficulty of
resolving a compiler error (R2 = 0.16).

• Across different categories of errors, participants allocate 13%–25% of their fix-
ations to error messages in the IDE, a substantial proportion when considering
the brevity of most compiler error messages compared to source code.

To defend the claim that “difficulties interpreting error messages can be ex-
plained by framing error messages as insufficient rational reconstructions in both
visual and text presentations,” I offer evidence through two studies. For visual
presentations, this evidence is offered through the study in Chapter 7, in which we
compare explanatory diagrammatic visualizations of error messages overlaid on
source code with baseline visualizations used in IDEs today. The study finds that:

• Explanatory visualizations yield more correct self-explanations than the base-
line visualizations used in IDEs today.

• These annotations are used intuitively by developers in their own explana-
tions of error messages, even when explanatory visualizations have not been
provided to them.

• Participants identified that explanatory visualizations revealed hidden depen-
dencies, that is, the relationships between different program elements, in a
significantly different way than those of baseline visualizations in IDEs.

In addition, the study contributes a foundational set of composable, visual annota-
tions that aid developers in better comprehending error messages.

To defend the claim for text presentations, I offer evidence through the study in
Chapter 8. The study finds that:
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• Developers prefer error messages with proper argument structures over defi-
cient arguments, but will prefer deficient arguments if they provide a resolution
to the problem.

• Human-authored explanations converge to argument structures that either
offer a simple resolution, or to proper arguments that minimally provide a
claim, ground, and warrant.

2.8 How to Read the Dissertation
This dissertation is organized as self-contained chapters that together support
the thesis (Chapter 1) and tell a coherent story about error messages as rational
reconstructions. Figure 2.3 on page 24 provides a roadmap of the dissertation.

Chapter 2 (you’re reading this now!) identifies and provides context for the
research problem, articulates the objective, significance, and scope of the work,
and proposes the theoretical framework of rational reconstruction through which I
investigate error messages.

Following this chapter are three literature reviews which survey the literature
through different perspectives. The state-of-the-art review presented in Chapter 3
familiarizes the reader to the research area of error messages, framed in terms
of contemporary program analysis tools that developers actually use. The scoping
review in Chapter 4 identifies rational reconstruction as a problem of alignment,
and contributes a taxonomy of other dimensions that are important to the design of
human-friendly error messages. The chapter may be of particular interest to readers
who desire to bridge the research communities of human-computer interaction and
programming languages. The mapping review in Chapter 5 defends the novelty of the
thesis; the chapter demonstrates how the work in this dissertation fits conceptually
with neighboring research disciplines, such as artificial intelligence and human
factors.

Chapters 6 to 8 describe the three principal studies that provide evidence to
support the thesis statement; each of these studies considers a different facet of
rational reconstruction. Chapter 6 characterizes difficulties developers confront as
they comprehend and resolve error messages within the Eclipse integrated devel-
opment environment; these findings serve to baseline error messages as rational
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reconstructions. Chapter 7 studies rational reconstructions as visual explanations
for defects in source code. Chapter 8 studies rational reconstructions as text expla-
nations, through two evaluations: a comparative evaluation of error messages, and
an empirical evaluation of Stack Overflow that identifies situations when developers
find error messages from program analysis to be insufficient.

In Chapter 9, we revisit the key contributions of this dissertation. The chapter
interprets the findings from the studies and explicates them as design guidelines.
These guidelines are operationalized and evaluated through a prototype compiler
implemented in TypeScript.

The appendices provide supplemental material that may be of interest to the
reader, but this material is not necessary to support the central claims of the thesis.
Appendices A to C compile the materials from our user studies. Appendix D synthe-
sizes existing guidelines for error messages from the research literature. Appendix E
describes the implementation details of the TypeScript prototype compiler.
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Figure 2.3 A roadmap of the dissertation. The dissertation is organized as self-contained
(at least to the extent reasonably possible), modular chapters. Three literature reviews
offer the reader different perspectives on rational reconstruction; these chapters may be
read in any order. Each of the three research studies defends one of the claims in the thesis.
Although the sequence of the research studies follows the sequence of claims in the thesis
statement, these chapters may also be read in any order.
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3 | How Do Contemporary
Program Analysis Tools
Present Error Messages to
Developers?

A straight line may be the shortest
distance between two points, but it
is by no means the most interesting.

The Doctor

This chapter presents a state-of-the-art review on program analysis tools, with
the goal of familiarizing readers to current matters on how contemporary program
analysis tools construct and present error messages to developers. The chapter
frames these error messages through our theoretical framework of rational recon-
struction, emphasizing how presentation design choices support or do not support
developers. As a state-of-the-art review, the literature surveyed within this chapter
is presented through the context of program analysis tools that developers actually
use in practice.

Section 3.1 offers a general overview of program analysis tools. The overview
articulates why traditional taxonomies of static and dynamic analysis are unsuit-
able lenses through which to investigate rational reconstruction, and proposes a
presentation-centric organization of error messages as an alternative. Sections 3.2
and 3.3 characterize the design space of text and visual representations, respectively.
Section 3.4 summarizes the existing literature on empirical distributions of error
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messages from program analysis tools; this allows researchers as well as practi-
tioners to prioritize improvements in error messages to problems that developers
actually encounter. Section 3.5 chronologically reviews design guidelines towards
presenting human-friendly error messages.

3.1 Overview of Program Analysis Tools
Program analysis tools refer to a broad class of software intended to help developers,
with applications across software architecture, program comprehension, program
evolution, testing, software versioning, and verification [36]. This dissertation
focuses on a particular class of program analysis tools, source code analysis, that
identifies defects within source code [36]:

Source code analysis is the process of extracting information about a
program from its source code or artifacts (e.g., from Java byte code or
execution traces) generated from the source code using automatic tools.
Source code is any static, textual, human readable, fully executable
description of a computer program that can be compiled automatically
into an executable form. To support dynamic analysis the description
can include documents needed to execute or compile the program, such
as program inputs.

We can further elaborate program analysis tools through examining charac-
teristics of these tools, across two implementation dimensions found in existing
literature [56, 112, 137, 332].

The first dimension is when the program analysis is performed. In static analysis,
tools examine the source code—either directly or as an abstraction of the source
code—and identify defects in the code without executing the program (see survey
on static analysis tools by Gosain and Sharma [138]). In dynamic analysis, tools
instrument or otherwise inspect the runtime and examine the flow of execution
to identify defects [56] (see survey on dynamic analysis tools, also by Gosain and
Sharma [137]). Static and dynamic analysis can also be applied synergistically to
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strengthen program analysis [112]. An as example of hybrid analysis, Check ’n’ Crash
combines static theorem proving with dynamic test execution to eliminate spurious
warnings and improve the ease-of-comprehension of error messages through the
production of Java counterexamples [79].

The second dimension is where the program analysis is performed. For example,
FindBugs is a standalone static analysis tool for Java that supplements the error
messages provided by the Java compiler [15]. In contrast, LLVM embeds program
analysis tools directly within the compilation pipeline; Lattner and Adve [215]
demonstrate that this type of “lifelong program analysis,” such as interprocedural
static leak detection, can enable identification of certain defects that would not be
possible to find otherwise.

Unfortunately, neither of these implementation dimensions is satisfactory for
understanding developer difficulties within the theoretical framework of rational
construction (Section 2.4). In rational reconstruction, the implementation detail
of whether the information for the problem is obtained using static, dynamic, or
hybrid analysis is orthogonal to the appropriate presentation of the error message.
For example, though both LLVM (static) and Valgrind [386] (dynamic) can report
uninitialized variables, rational reconstruction suggests that the type of analysis
should not dictate the appropriate error message to present to the developer.

3.2 Text Representations of Program Analysis
What do contemporary error messages look like when presented to developers
through text interfaces, such as consoles and terminals? And how do program
analysis tools construct these error messages?

In this section, we’ll describe four categories of text representations. The first
two representations, template diagnostics (Section 3.2.1) and extended explanations
(Section 3.2.2), are primarily human-authored. In contrast to these human-authored
messages, the next two representations, type errors (Section 3.2.3) and examples
and counterexamples (Section 3.2.4), are computationally-constructed using various
formal methods.
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3.2.1 Output as Source Location and Template Diagnostic
The familiar error message scheme within program analysis tools consists of a loca-
tion indicating where the problem occurs, a human-authored description indicating
what has gone wrong, and some additional information—such as the severity of the
problem, an error code, resolution hints, and code context—to help the developer
correct the problem.

In this section, we’ll first bootstrap our investigation of this error message scheme
using the following three source code listings to induce an error during program
analysis:

1 The Java implementation:

1 class Brick {
2 void m(int i, double d) { }
3 void m(double d, int m) { }
4

5 {
6 m(1, 2);
7 }
8 }

2 The C# implementation:

1 namespace Program {
2 class Brick {
3 void m(int i, double d) { }
4 void m(double d, int m) { }
5

6 static int Main(string[] args) {
7 var b = new Brick();
8 b.m(1, 2);
9 return 0;

10 }
11 }
12 }

3 The C++ implementation:

1 class Brick {
2 void m(int i, double d) { }
3 void m(double d, int m) { }
4 };
5

6 int main() {
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7 Brick b;
8 b.m(1, 2);
9 return 0;

10 }

In all three listings—Java, C#, and C++—we have introduced an ambiguous
method error: despite the different type signatures, program analysis cannot disam-
biguate which of two candidate implementations to invoke given a call of method m(1,

2). One possible fix is to explicitly indicate the type of the argument as m((int)1,

(double)2) (in Java) or b.m((int)1, (double)2) (in C# and C+).
We then input these listings into assorted compilers for that programming lan-

guage to obtain error messages. For Java error messages, we use OpenJDK [286]
and the Eclipse Batch Compiler [105]. For C#, we use Roslyn [259] and Mono [257].
For C++, we use LLVM/Clang [235] and GCC [129]. The choice of compilers illus-
trates the diversity in how toolsmiths choose to present error messages for what is
conceptually the same problem. Applying the source code to their corresponding
tools yields the following error messages during compilation:

1 OpenJDK (Java):

1 Brick.java:6: error: reference to m is ambiguous
2 m(1, 2);
3 ^
4 both method m(int,double) in Brick and method m(double,int) in Brick

match↪→

5 1 error

2 Eclipse (Java)

1 ----------
2 Brick.java (at line 6)
3 m(1, 2);
4 ^
5 The method m(int, double) is ambiguous for the type Brick
6 ----------
7 1 problem (1 error)

3 Roslyn (C#)

1 Brick.cs(8,9): error CS0121: The call is ambiguous between the
following methods or properties: 'Brick.m(int, double)' and
'Brick.m(double, int)'

↪→

↪→
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4 Mono (C#)

1 Brick.cs(8,9): error CS0121: The call is ambiguous between the
following methods or properties: `Program.Brick.m(int, double)' and
`Program.Brick.m(double, int)'

↪→

↪→

2 Brick.cs(3,12): (Location of the symbol related to previous error)
3 Brick.cs(4,12): (Location of the symbol related to previous error)
4 Compilation failed: 1 error(s), 0 warnings

5 GCC (C++)

1 Brick.cpp: In function ‘int main()’:
2 Brick.cpp:8:13: error: call of overloaded ‘m(int, int)’ is ambiguous
3 b.m(1, 2);
4 ^
5 Brick.cpp:2:10: note: candidate: void Brick::m(int, double)
6 void m(int i, double d) { }
7 ^
8 Brick.cpp:3:10: note: candidate: void Brick::m(double, int)
9 void m(double d, int m) { }

10 ^

6 LLVM (C++)

1 Brick.cpp:8:7: error: call to member function 'm' is ambiguous
2 b.m(1, 2);
3 ~~^
4 Brick.cpp:2:10: note: candidate function
5 void m(int i, double d) { }
6 ^
7 Brick.cpp:3:10: note: candidate function
8 void m(double d, int m) { }
9 ^

10 1 error generated.

There are several differences in the reporting of these tools in location, descrip-
tion of the problem, supporting context, and formatting. OpenJDK, Eclipse, and
Roslyn indicate the location of the invocation, but not the locations of the candi-
date methods. Furthermore, the Eclipse error message also does not indicate to
what methods the invocation is ambiguous. This is in contrast to GCC, LLVM, and
Mono—which report both the call, candidates, and the locations for each. However,
GCC and LLVM report a different column position for the error: GCC indicates the
problem at the end of method call (8:13) while LLVM indicates the problem at the
name, b.m (8:7). There are other small variations in how the line and column are
presented to the developer.
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OpenJDK, Eclipse, GCC, and LLVM inject snippets directly from the source code
into the error report to provide context to the developer; Roslyn and Mono do not.
I also found it interesting that Mono seems to indicate that it does not know if m
is a method or property. Finally, GCC and LLVM colorize the output of the error
messages for expressiveness; the LLVM toolsmiths reasonably argue that colors
make it easier to distinguish the different elements of the error message [233].

How do program analysis tools construct these error messages? The messages
I have just described are output from a template diagnostic [267].1 Templates
are string literals that allow expressions to be embedded, or interpolated, within
them. For example, in OpenJDK, the error description string is found in the file
compiler.properties:

# 0: name, 1: symbol kind, 2: symbol, 3: symbol, 4: symbol kind, 5:
symbol, 6: symbol↪→

compiler.err.ref.ambiguous=\
reference to {0} is ambiguous\n\
both {1} {2} in {3} and {4} {5} in {6} match

The parameters that can be interpolated are indicated as 0, 1, 2, and so on. The
Roslyn implementation uses a similar interpolation scheme, through an XML file
called CSharpResources.resx:

<data name="ERR_AmbigCall" xml:space="preserve">
<value>The call is ambiguous between the following methods or

properties: '{0}' and '{1}'</value>↪→

</data>

The Roslyn implementation supports only two parameters, now evident in the
presented error message.

The template string and associated metadata are bundled up as diagnostic
objects and passed to a formatter within the program analysis tool. The formatter
augments the template string with metadata information, such as the location. The
formatter also colorizes the output and includes pertinent source code snippets, if
those capabilities are available in the formatter implementation.

We’ll end this section by describing a dastardly form of template messages
that routinely frustrates both novice and expert developers alike—the neglected
“battle fields of syntax errors” [210]. A syntax error occurs when program analysis
encounters an unexpected token, for example, from unintentionally misplaced

1Moulton and Muller [267] (1967) called these skeletal messages, but this term seems to have
fallen out of favor.
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semicolons, extra or missing braces, or a case statement without an enclosing
switch [4]. In particular, one frustration of syntax error messages is that program
analysis tools will sometimes report the location of the syntax problem far removed
from the actual cause of the syntax error [55]. For example, consider the following
Racket [302] program, which implements factorial:
1 #lang racket
2

3 (define (factorial n)
4 (if (= n 0) 1
5 (* n (factorial (- n 1))))

This program implements the correct behavior, but has a syntax error due to a
missing closing parenthesis. Racket reports this syntax error to the developer on
Line 3:

factorial.rkt:3:0: read: expected a `)' to close `('

The error is actually correct in that there is no corresponding closing parenthesis
for the opening parenthesis beginning in Line 3. However, to actually resolve the
defect, the developer must add a closing parenthesis to the end of Line 5:

5 (* n (factorial (- n 1)))) )

There are many research efforts to improve syntax errors—extensively covered
in various literature reviews [42, 90, 91]—that historically have occurred in tandem
with the construction of even the earliest compilers in the 1950s. Hammond and
Rayward-Smith [150] describe some of the early syntactic error recovery and repair
schemes, and characterize the trade-offs in implementing the different schemes. For
instance, in panic mode, one of the earliest and simplest error recovery techniques,
the parser deletes incoming tokens until the parser discovers a token that enables it
to continue processing the source code. Although this approach is easy to implement,
the authors report that it results in cryptic and unhelpful error messages because of
the lack of information available at the time of the error message; the approach also
leads to spurious error messages. Subsequent research approaches have therefore
focused on: 1) error detection, or reducing the difference between the location where
the error is detected and the point where the error actually occurs, and 2) error
correction, on providing the developer with one or more candidate repairs that
transform the incorrect input into a syntactically correct one [90, 91].
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In contrast to techniques that mathematically define notions of minimizing error
distance, Campbell, Hindle, and Amaral [55] motivate a natural language model to
improve error reporting by arguing that humans read code as they read natural
language; follow-up work by Santos, Campbell, Patel, and colleagues [337] offer
additional evidence that language models can successfully locate and fix syntax
errors in human-written code, without formal parsing.

Still other approaches have investigated reducing the burden for toolsmiths
to author more useful error messages. For example, Jeffery [181] describes a tool
called Merr—meta error generator—that allows compiler designers to associate
hand-authored diagnostic messages with syntax errors by example. From this
specification of errors and the associated message, Merr identifies the relevant
parse states and input token, and inserts an error function into the parser to
produce the error message at the appropriate point. Pottier [308] improves upon
this approach by enabling the parser to automatically build a collection of erroneous
statements, rather than having toolsmiths provide examples manually. Though
useful, both approaches still require toolsmiths to manually write an accompanying
error message to incorporate this diagnostic information.

3.2.2 Output as Extended Explanations (--explain)
Program analysis tools can provide supplemental channels for extended explana-
tions about an error message, as an alternative to the concise, line-oriented error
message presentations from Section 3.2.1. Johnson, Song, Murphy-Hill, and col-
leagues [190] reported that concise error messages in program analysis tools do
not provide enough information. However, the authors also reported that devel-
opers did not want to sift through volumes of output to identify the problem. A
supplemental mechanism for providing extended explanations can reconcile these
conflicting requirements. Extended explanations can also aid understanding when
the developer doesn’t know about the concepts in the message [268], and allows them
to selectively investigate unfamiliar error messages with a longer, more verbose
explanation [384].
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To illustrate how extended explanations are useful in practice, let’s look at a
simplified build pipeline using Bazel [135]—an open source release of the build
system used internally at Google. Bazel includes a program analysis tool called
Error Prone [134] that identifies defects in Java code. The build pipeline is guided
by a BUILD file which specifies the targets to the build system:

java_library(
name = "shortset",
srcs = ["ShortSet.java"],

)

In this scenario, we have only one build target named shortset, and this build target
needs to compile only a single Java file, ShortSet.java. Here’s the Java file:

1 import java.util.Set;
2 import java.util.HashSet;
3

4 public class ShortSet {
5 public static void main (String[] args) {
6 Set<Short> s = new HashSet<>();
7 for (short i = 0; i < 100; i++) {
8 s.add(i);
9 s.remove(i - 1);

10 }
11

12 System.out.println(s.size());
13 }
14 }

Building the shortset target with Bazel results in the following output, which
includes the error message:

1 INFO: Analysed target //:shortset (0 packages loaded).
2 INFO: Found 1 target...
3 ERROR: /BUILD:1:1: Building libshortset.jar (1 source file) failed (Exit

1)↪→

4 ShortSet.java:9: error: [CollectionIncompatibleType] Argument 'i - 1'
5 should not be passed to this method; its type int is not compatible with
6 its collection's type argument Short
7 s.remove(i - 1);
8 ^
9 (see http://errorprone.info/bugpattern/CollectionIncompatibleType)

10 Target //:shortset failed to build
11 Use --verbose_failures to see the command lines of failed build steps.
12 INFO: Elapsed time: 0.582s, Critical Path: 0.29s
13 FAILED: Build did NOT complete successfully
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The error message is embedded within other build output, and begins at Line 3
and ends at Line 9; the error message is also relatively terse. However, the error
message points to external documentation that explains extensively the reason
for this message, why remove is unlikely to actually remove the element, and why
the type system in Java alone is not able to detect this problem.2 Delegating this
explanation to an external source reduces the verbosity of the build output, while
still allowing the developer to access additional explanation about the message. If
the developer is already familiar with the error message, they may not need the
extended explanation at all. From this perspective, Error Prone is a modernized
implementation of early expert systems, such as the expert system for COBOL
program debugging by Litecky [231]. In Litecky’s implementation, the developer
could take a cryptic error code such as 3A13 (period missing after VALUE clause)
and query the error code against a database to obtain a detailed explanation that
included advice for how to address the problem (for a review of expert systems, see
Section 5.3).

A limitation of the approach used by Error Prone is that the extended explanation
is detached from the context of the developers’ code. Here is a snippet of the extended
explanation:

In a generic collection type, query methods such as Map.get(Object)

and Collection.remove(Object) accept a parameter that identifies a
potential element to look for in that collection. This check reports cases
where this element cannot be present because its type and the collection’s
generic element type are “incompatible.” A typical example:

Set<Long> values = ...
if (values.contains(1)) { ... }

This code looks reasonable, but there’s a problem: The Set contains
Long instances, but the argument to contains is an Integer .

In other words, the developer must evaluate an example different from the code they
have actually written in order to understand the explanation. Even if the developer
understands the example given in the extended explanation, they may still not
understand how the problem applies to their own code.

2http://errorprone.info/bugpattern/CollectionIncompatibleType
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To mitigate this concern, the Dotty compiler offers a --explain flag that can
provide an explanation that is contextual to the code that the developer has actually
written [268]. For instance, consider the following Dotty code snippet (the Dotty
language is a superset of Scala):

1 try {
2 foo()
3 }

By default, this code snippet generates the following error message from the Dotty
compiler:

-- [E002] Syntax Warning: scala.test -----------------------------------
1 | try {

| ^
| A try without catch or finally is equivalent to putting
| its body in a block; no exceptions are handled.

2 | foo()
3 | }

Like the Rust [384] and Elm [80] programming language communities, usability
of error messages and tools are one of the design goals of Dotty. So, this error
message is already pretty good: it describes the location of the error in the context of
the code, describes what the try mechanism would do in this context, and provides
a rationale for why this is a problem. Nevertheless, perhaps it is the case that the
developer is new to the language and does not understand what the try construct
actually does. They can then pass the --explain flag to Dotty to obtain the extended
explanation:

1 Explanation
2 ===========
3 A try expression should be followed by some mechanism to handle any
4 exceptions thrown. Typically a catch expression follows the try and
5 pattern matches on any expected exceptions. For example:
6

7 import scala.util.control.NonFatal
8

9 try {
10 foo()
11 } catch {
12 case NonFatal(e) => ???
13 }
14

15 It is also possible to follow a try immediately by a finally - letting

36



16 the exception propagate - but still allowing for some clean up in
17 finally:
18

19 try {
20 foo()
21 } finally {
22 // perform your cleanup here!
23 }
24

25 It is recommended to use the NonFatal extractor to catch all exceptions
26 as it correctly handles transfer functions like return.

Unlike the extended explanation from Error Prone, the explanation from Dotty
is situated using code the developer has written. This is easily seen from the use
of foo (Line 10 and Line 20). The current implementation of this in Dotty is fairly
rudimentary, and only slightly more elaborate than the template error messages
we have discussed:

abstract class EmptyCatchOrFinallyBlock(tryBody: untpd.Tree,
errNo: ErrorMessageID)(implicit ctx: Context)

extends Message(EmptyCatchOrFinallyBlockID) {
val explanation = {

val tryString = tryBody match {
case Block(Nil, untpd.EmptyTree) => "{}"
case _ => tryBody.show

}

...

Essentially, Dotty grabs the code block from the source code, stores it in intermediate
variables like tryString, and then injects these variables throughout the extended
explanation. But we could imagine more elaborate implementations of this idea, for
example, manipulating the natural language portion of the explanation based on
the code context.

Recognizing that developers frequently turn to other information sources such
as the web to help with errors or debugging problems, there are several research
tools for generating context-relevant, extended explanations. The implementation
of Tutoron by Head, Appachu, Hearst, and colleagues [159] detects potentially
explainable code in a web page, parses it, and generates in-situ natural language
explanations and demonstrations of the code. Their qualitative study found that
Tutoron-generated explanations can reduce the need for reference documentation in
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code modification tasks. The HelpMeOut system for novice students collects exam-
ples of code changes that fix errors, and then suggests these examples as solutions
to others [156]. The tools Prompter [307], Seahawk [306], and SurfClipse [316]
automatically retrieve pertinent Stack Overflow explanations and present them
within the IDE. The availability of these tools also suggests that developers find
human-authored explanations on Stack Overflow to be useful; we investigate Stack
Overflow explanations through an empirical study in Chapter 8.

3.2.3 Output as Type Errors
Rather than assembling error messages from a catalog of hand-authored strings,
program analysis tools can leverage computational techniques to automatically
construct explanations in error messages.

In this section, we describe type systems, one such form of program analysis tool
for automatically constructing explanations. To explain how type systems operate,
let’s consider some simple Haskell expressions (evaluated in GHC [157]), prefixed
with a :t command to tell us the type of an expression:

:t True
:t 'a'

As expected, :t True is True :: Bool, or a boolean true or false value. Similarly, the
result of :t 'a' is 'a' :: Char, or character.

Let’s consider a function called map: this function returns a new list by taking
a list and applying a function to every element in that list. Here’s a canonical
implementation of map:

map _ [] = []
map f (x:xs) = f x : map f xs

Haskell can tell us the type of map, through :t map:

map :: (t -> a) -> [t] -> [a]

The type signature tells us that map takes a function that takes a t and returns an a,
and a list of t’s. Finally, it returns a list of a. Note that in the above examples we
did not specify the type of the expressions explicitly, although we could have easily
done so:
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:t True :: Bool
:t 'a' :: Char

map :: (t -> a) -> [t] -> [a]
map _ [] = []
map f (x:xs) = f x : map f xs

Instead, Haskell is able to infer that the type is a character or boolean through
type inference: a process of reconstructing missing type information through how it
is used in the program [35, 82, 103, 298]. During program analysis, type checking
verifies that the types are sound. If a violation is found, this results in a type error
message. Let’s induce a type error through the following Haskell snippet:

True && 1

Since the logical conjunction of a boolean to a number is incompatible in Haskell,
this expectedly returns an error message in the form of a type error:

<interactive>:25:9: error:
• No instance for (Num Bool) arising from the literal ‘1’
• In the second argument of ‘(&&)’, namely ‘1’

In the expression: True && 1
In an equation for ‘it’: it = True && 1

Even this simple example illustrates a double-edged sword regarding type error
messages. For toolsmiths, unlike the human-authored messages in Section 3.2.1,
the type checker absorbs the bulk of the work as it proceeds through its standard
type inference, and the program analysis can mechanically produce the problem.
For the developer, however, this style of output means they must often have a precise
understanding of the type inference algorithm in order to comprehend the error
message [369]. Worse, relying on type inference as the sole mechanism for inducing
error messages can lead to cryptic and counterintuitive error messages, even for
simple problems. Consider the following example:

print 5

This program, of course, prints 5. What about this one?

print -5

Unless you’re an experienced Haskell developer, you might be surprised to discover
that this results in the following error message:
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<interactive>:26:1: error:
• Non type-variable argument in the constraint: Num (a -> IO ())

(Use FlexibleContexts to permit this)
• When checking the inferred type

it :: forall a. (Show a, Num (a -> IO ())) => a -> IO ()

This Haskell error is pedantically correct, but framing this error message in terms
of the type system makes it indecipherable. The problem becomes self-evident only
if we realize that ‘-’ is itself a function, masquerading as a unary negation:

print (- 5)

Tada! The fix is to write print (-5).
Error messages such as the above are endemic to programming languages that

rely on type systems as the vehicle through which to present errors. The problems
of inscrutable type errors are well known, and the impact of these cryptic type
error messages is articulated by Charguéraud [59]. First, cryptic type errors are
a major obstacle to learning functional languages, and require the developer to
also understand the underlying inference algorithm being applied. Second, he
notes that it is tempting to report all error messages through the type inference
machinery, but this strategy can quickly lead to verbose and incomprehensible
messages. Third, even if the program analysis could produce a short error message,
the type checker would still need to make a decision on which of the many possible
locations to actually report. Fourth and finally, type inference algorithms suffer
from well-known biases—such as left-right bias [251]—in which the type checker
will systematically report type conflicts near the end of the program. Thus, the
point at which type inference fails may not be the point at which the developer has
made a mistake.

There are several research approaches that make type errors more helpful for
developers. One approach is to selectively replace or supplement automated type
inference diagnostics with human-authored error messages for common situations.
Helium [162], a user-friendly compiler for learning Haskell, employs this approach:
it uses a wide range of heuristics to present human-authored hints that supplement
the type inference machinery. Similarly, the approached employed by Objective Caml
“patches” the compiler [59]: the compiler considers the first top-level definition that
fails to type-check and attempts to match the failure against a set of carefully-crafted
secondary heuristics. These heuristics identify if the tool can present an alternative,
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human-authored error message. If so, the alternative message is presented; oth-
erwise, the default type error is presented to the developer. Their implementation
covers the commonly used features of the Objective Caml programming language.
In effect, Objective Caml presents a rational reconstruction of the original type
error.

To improve type error messages, three studies have applied statistical, machine
learning, and search-based approaches. Zhang, Myers, Vytiniotis, and colleagues
[421] apply Bayesian reasoning to type systems; the Bayesian model incorporates
knowledge regarding common developer mistakes to more accurately pinpoint the
location of the true error. Wu, Campora, and Chen [412] employ machine learning:
they use the type error from the compiler and associated features of the source
code to identify a more-precise offending location of the problem, and suggest fixes
that would resolve the ill-typed program. Lerner, Flower, Grossman, and colleagues
[220] pursue an approach in which the type-checker itself does not produce the final
error message. Instead, the type checker is used as an oracle for a search procedure
that finds similar programs that do type check.

Other approaches apply formal methods to improve error messages. McAdam
[250] uses a fix-oriented approach to error messages, based on modulo isomorphism,
when type inference fails. The resulting error message is then presented in the form
of a suggested change. For example, in the source listing:

val oneToThreeStrings = map ([1, 2, 3], Int.toString) ;

the Moscow ML compiler would normally report:

! Toplevel input:
! val oneToThreeStrings = map ([1, 2, 3], Int.toString) ;
! ˆˆˆ
! Type clash: expression of type
! (’a -> ’b) -> ’a list -> ’b list
! cannot have type
! ’c * ’d -> ’a list -> ’b list

Instead, McAdam reports the following error message:

Try changing
map ([1, 2, 3], Int.toString)

To
map Int.toString [1, 2, 3]
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Source
Listing

Source
Abstraction

Specification Model
Checker Yes

No Counter-
example

Figure 3.1 A typical model checking pipeline. The source listing is transformed into a
source abstraction suitable for verification by the model checker, along with a specification
describing some property for how the software should behave. Given these two inputs, the
model checker can identify a violation of the property. If a violation exists, the model
checker returns a counterexample of how the property can be violated.

Additional formal method approaches to improving type error messages include
adapting and leveraging type constraint procedures during program analysis to
aid error message construction [44, 237], using data flow reasoning to explain type
errors [127], incorporating various modifications to the underlying type inference al-
gorithm to provide a record of the specific reasoning steps used during inference [26,
103, 110, 372, 396], enabling interactive approaches to querying types [357, 371],
and implementing algorithmic techniques to pinpoint the actual location of the
problem [61, 160, 161, 251, 315, 341, 393, 416].

3.2.4 Output as Examples and Counterexamples
Software model checkers are another form of automated reasoning approach for
constructing error messages; they do so by formally verifying some property of
the software [68, 81]. The principle of model checking is that, given a finite state-
transition graph of a system (that is, the software model) and a formal specification,
model checking systematically checks whether the specification holds in the state-
transition graph [67]. Essentially, the model checker exhaustively explores this finite
state-transition graph. If the model checker does not find a violation of the property,
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the model checker has proved that the model satisfies the specification. Otherwise,
the model checker reports a diagnostic counterexample or trace that violates the
specification. These diagnostic counterexamples can be presented on their own or
as a component of an error message explanation.

There are a variety of model checking tools for the domain of software engi-
neering, including SLAM [17], SPIN [170], BLAST [165], Bandera [74], and Java
PathFinder [390] (for extensive literature reviews on model checkers, see Mosleh,
Alhussein, Baba, and colleagues [266] and Jhala and Majumdar [184]).

Concretely, let us illustrate model checking with CBMC [69]—a model checker
for C and C++ programs—applied to the diagram in Figure 3.1.3 For this example,
we’ll use the following source listing, written in C:

1 void f(int a, int b, int c) {
2 int temp;
3 if (a > b) {temp = a; a = b; b = temp;}
4 if (b > c) {temp = b; b = c; c = temp;}
5 if (a < b) {temp = a; a = b; b = temp;}
6

7 assert (a <= b && b <= c);
8 }

The intention of this function is that after executing the if statements in Lines
3–5, the values of the variables will be swapped such that a <= b and b <= c at
Line 7. This specification is embedded within the source listing using an assert

statement (Line 7), and the assert does not otherwise affect the behavior of the
source listing.

Does our program satisfy this specification? Because this program is artificially
trivial, we can manually identify a counterexample and test that it violates the
specification. For example, when a = 1, b = 1, and c = 0, the resulting values will
be a = 1, b = 0, and c = 1 at Line 7. Of course, the CBMC program analysis tool
also detects that the source listing violates the specification, and emits the following
snippet:

State 17 file file.c line 1 thread 0
----------------------------------------------------

3The term model is ambiguous and has multiple meanings depending on the literature: it can
refer to the source code, the source abstraction, the source abstraction and specification, or examples
produced by the model checker. To avoid ambiguities with the term model, we will instead use the
terms in Figure 3.1.
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INPUT a: 124955 (00000000000000011110100000011011)

State 19 file file.c line 1 thread 0
----------------------------------------------------

INPUT b: 256027 (00000000000000111110100000011011)

State 21 file file.c line 1 thread 0
----------------------------------------------------

INPUT c: 124954 (00000000000000011110100000011010)

Violated property:
file file.c line 7 function f
assertion a <= b && b <= c
a <= b && b <= c

** 1 of 1 failed (1 iteration)
VERIFICATION FAILED

Model checkers are useful because they produce concrete instances as evidence
of a problem. However, the counterexamples they produce, as we saw in the case of
CBMC, are arbitrary. As with type errors in Section 3.2.3, the presented counterex-
ample reflects what was found through the execution of the internal algorithm, and
not what is necessarily the best example to present to the developer.

This has led to principled approaches to presenting output in model checking
tools. For example, tools like Aluminum [278] and Razor [333] provide a minimal
example to the user: an example that contains no more information than is necessary.
Danas, Nelson, Harrison, and colleagues [83] investigate principled techniques for
evaluating model checking output through user studies; for example, they evaluate
whether counterexample minimization helps users.

Beer, Ben-David, Chockler, and colleagues [29] apply the idea of causality to
formally define a set of causes for the failure of the specification on the given
counterexample trace; these causes are marked as red dots and presented to the
user as a visual explanation of the failure. Amalgam [277] allows the developer
to interrogate the model checker about the counterexamples it provided, through
“why?” and “why not?” questions.

Several approaches use multiple counterexamples to facilitate understanding,
or supplement the counterexamples with additional information. Groce and Visser
[145] argue that although model checking is effective at finding subtle errors, these
errors can be difficult to understand from only a single counterexample. They
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propose an automated technique for finding multiple counterexamples for an error,
as well as traces that do not produce an error. Next, they analyze these executions to
produce a more succinct description of the key elements of the error. Similarly, Ball,
Naik, Rajamani, and colleagues [16] present an algorithm that exploits the existence
of correct traces in order to localize the error cause in an error trace, report a single
error trace per error cause, and generate multiple error traces having independent
causes. Wang, Yang, Ivančić, and colleagues [397] propose a technique in which
developers are able to zoom into potential software defects by analyzing a single,
concrete counterexample. Gurfinkel and Chechik [147] annotate counterexamples
with additional proof steps: they argue that this approach does not sacrifice any of
the advantages of traditional counterexamples, yet allows the user to understand
the counterexamples better.

Finally, Hoskote, Kam, Ho, and colleagues [174] introduce the idea of model
checker coverage, similar to that of code coverage; they propose a coverage metric to
estimate the completeness of a set of properties verified by model checking.

3.3 Visual Representations of Program Analysis
Thus far, we have presented error messages predominantly through terminal, text-
only interfaces. In addition to terminals, many software developers utilize modern
integrated development environments (IDE) such as Eclipse [105], Visual Stu-
dio [259], and IntelliJ [183], as a core part of their development process [367]. These
environments are intended to increase developer productivity by bringing together
multiple tools and making these tools accessible within a unified experience [84].

Unsurprisingly, error messages from program analysis tools are also made acces-
sible within these environments: the diagnostic objects (as discussed in Section 3.2.1)
are unbundled and rendered through appropriate interface elements in the IDE.
Consider the Visual Studio IDE in Figure 3.2a on the following page, with a project
file containing a call to an ambiguous method. The IDE presents the error messages
to the developer through several interface elements. The Error List window at
the bottom of the IDE displays the current error messages in the project. Within
this window, errors can be searched, sorted, and filtered. The diagnostic object
components, such as the description, file, and line number, are presented as indi-
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(a) Visual Studio

(b) Eclipse

Figure 3.2 Modern IDEs have converged on affordances for presenting error messages to
developers.
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(a) Highlighting markers (b) Colored backgrounds

Figure 3.3 NCrunch and JetBrains dotCover are concurrent unit testing and code
coverage tools that integrate with Visual Studio. Shown here are two methods for
displaying code coverage information: (a) in NCrunch, as highlighting markers in the
margin, or (b) in JetBrains dotCover, as colored backgrounds on the source. Green means
that tests pass, red indicates that at least one test that covers the statement fails, and
black or gray shows uncovered code.

vidual columns in the table. Within the source code editor, a red wavy underline
is presented under the corresponding source code for each error message. The de-
veloper can hover over the wavy underline to reveal a tooltip containing the error
message description. In addition, the margin contains visual indicators that provide
an overview of where problems are in the current file. Unit testing extensions such
as NCrunch [276] and dotCover [182], leverage margin indicators as well as source
code highlighting, to indicate unit test coverage (Figure 3.3).

The Eclipse IDE in Figure 3.2b uses similar affordances to Visual Studio, and
other popular IDEs, such as Atom [131], Xcode [12], and Sublime Text [360], appear
to have converged on how they present errors to developers.

Several research tools explore diagrammatic, box-and-arrow representations
of error messages. For example, the Refactoring Annotations tool by Murphy-Hill
and Black [270] displays diagrammatic control flow and data flow information and
overlays this information on the source code; through these annotations, developers
understand the causes of refactoring errors significantly faster and more accurately
than standard Eclipse error messages. The study on visual compiler error messages
in Chapter 7 is influenced by refactoring annotations. MrSpidey [120] is designed to
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be a user-friendly interactive static debugger for Scheme; the tool assists developers
in pinpointing run-time errors, and uses arrows overlaid on the source code to
explicate portions of the value-flow graph to the developer. A relatively recent
implementation of MrSpidey can found in its spiritual successor, DrRacket [302].
Whyline renders arrows between related elements in source code files, and fades the
rest of the code; the tool also automatically arranges windows when arrows span
multiple files [206].

The Rust Enhanced [331] extension for Sublime Text inlines error message infor-
mation through phantoms. Phantoms are like tooltips, except that the information
is directly embedded within the text view and remains persistent. Lieber, Brandt,
and Miller [227] found that developers adopt unique debugging strategies when
always-on information is available.

Representations of error messages also present information alongside the source
editor. Risley and Smedley [322] implement a visualization for compiler errors in
Java; they contribute a visual syntax that renders diagrammatic representations
for incorrect assignments, type checking, and exceptions. The Stench Blossom tool
is an ambient visualization composed of semi-circles on the right-hand side of the
editor pane; each sector, called a petal, corresponds to a category of errors [269].
The tool is tailored for situations where there may be multiple, simultaneous issues
within the code—and where identified issues would require the experience of the
developer to judge whether the issue actually needs to be addressed. The study
finds that ambient visualizations help developers make more informed judgements
about the code they have written.

Other bells and whistles for communicating errors to developers, such as dash-
boards and e-mail notifications, are described in the dissertation by Johnson [187].

3.4 Errors Developers Make
A typical compiler, such as for Java or C#, recognizes several thousand possible
program analysis errors. Given finite resources, it’s therefore prudent to characterize
the space of error messages that developers actually receive in order to effectively
target tool improvements.
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To understand this space, Seo, Sadowski, Elbaum, and colleagues [342] con-
ducted an empirical case study at Google of 26.6 million Java and C++ builds
produced over nine months by thousands of developers. The authors found that
nearly 30% of builds at Google fail due to a static analysis error, and that the median
resolution time for each error is 12 minutes. Surprisingly, the costly errors that
developers make are rather mundane, relating to basic issues such as dependencies,
type mismatches, syntax, and semantic errors.

For novice developers, such as students using Java in the BlueJ IDE [208], the
situation is even worse. Through telemetry of over 37 million compilation events,
Altadmri and Brown [6] identified that nearly 48% of all compilations fail due to a
compiler error. Similar to the errors made by expert developers at Google, novices
too produced primarily syntax errors, type errors, and other semantic errors. For
some reason, it appears that experience alone isn’t making these errors go away.

Using a Python corpus of 1.6 million code submissions, of which 640,000 resulted
in an error (approximately 40%), and re-examining the BlueJ dataset, Pritchard
[310] model-fit the distribution of these error messages and found that they empiri-
cally resemble a Zipf-Mandelbrot distribution. Such power-law distributions have
a small set of values that dominate the distribution, followed by a long tail that
rapidly diminishes.

Other researchers have also discovered power-law distributions for error mes-
sages. In an early study by Litecky and Davis [230] in 1976, the authors empirically
obtained and catalogued COBOL error diagnostics to identify a Pareto distribution:
20% percent of error types accounted for 80% of the total error frequency. In more
recent work, a study by Jackson, Cobb, and Carver [178] found that the top ten
errors represent nearly 52% of all errors, and that the top twenty represent 62.5% of
all errors. And Denny, Luxton-Reilly, Tempero, and colleagues [94] found that 73%
of all submissions failed to compile due to a syntax error; in the top quartile, nearly
50% of all submissions failed to compile due to a syntax error. The median lines of
code for the submitted programs was eight. Although Seo, Sadowski, Elbaum, and
colleagues [342] did not model-fit the distributions (their paper, Figure 7), a visual
inspection of Java and C++ suggests that a similar power-law effect is present.
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1950

1960

1970

1980

1990

2000

2010

2020

IBM introduces the first commercially available
compiler, for the FORTRAN programming language.

1957

“DITRAN—a compiler emphasizing diagnostics” (Moulton
and Muller)

1967

“What the compiler should tell the user” (Horning)1974

“How a computer should talk to people” (Dean)1982

“Designing computer system messages” (Shneiderman)1982

Borland releases the Turbo Pascal IDE.1983

“Error messages: The neglected area of the man/machine
interface” (Brown)

1983

“Automatic generation of useful syntax error messages”
(Kantorowitz and Laor)

1986

“Making APL error messages kinder and gentler” (Shaw)1989

IBM, Borland, and other members form a consortium
and release Eclipse, an open-source IDE for Java.

2001

“On compiler error messages: What they say and what
they mean” (Traver)

2010

“Programmer-friendly refactoring errors” (Murphy-Hill and
Black)

2012

“Interactive ambient visualizations for soft advice”
(Murphy-Hill, Barik, and Black)

2013

Figure 3.4 History of design guidelines for error messages in program analysis tools. In
tandem with design guidelines, significant shifts in industry tools are indicated in bold.

The triangulation of these multiple data sources indicates two consistent features
about errors across programming languages. First, the dominant errors, both in
terms of cost and frequency, are relatively consistent irrespective of developer
experience. This is interesting because it suggests that improvements to these error
messages are likely to benefit a spectrum of developers. Second, the power-law
distribution suggests that addressing even a small number of dominant errors
would make program analysis tools more usable.
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3.5 Design Guidelines for Error Messages
Researchers have contributed a lengthy history of design guidelines—rules that
toolsmiths can apply to increase the usability of the tool [100]—to improving error
messages in program analysis (Figure 3.4 on the previous page). In this section, we
present the guidelines here narratively in terms of their influence towards rational
reconstruction (having said that, an unadulterated inventory of the guidelines is
also available in Appendix D).

The earliest guidelines by Moulton and Muller [267] in 1967 offer recommen-
dations that today would seem astonishingly self-evident. For example, they rec-
ommend that all error messages be presented in terms of the source language:
concretely, that error messages should provide the name of the variable actually
used in the source code rather than the variable’s memory address. There is also
some consideration given to the structure: that ideally, error messages should
suggest a correction.

Horning [172] echoes similar guidelines to Moulton and Muller; namely, that
good error messages are source-oriented. Moreover, readable error messages should
describe the symptom of the problem. Horning introduces some nascent ideas
towards relationality: he notes that if an inconsistency involves information from
some other part of the program—for example, a declaration—then that information
should be displayed, even if only as a location. Happily, Horning contributes the
notion that it is important to think of the interaction between developers and tools
as a dialogue.

Less happily, both the guidelines by Moulton and Muller [267] and Horning
[172] consider the extent of this dialogue, from tools to developers, to be in the form
of substitutional fixes: “expected this, found that.” These types of error messages
are useful and certainly have their place (as we’ll see in Chapter 8), but they aren’t
actually rational reconstructions. Nevertheless, we can consider these guidelines as
primordial building blocks towards thinking about rational reconstruction. Dean
[89] extends this thinking further by introducing an assortment of human-centric
guidelines, from various inspirations in psychology. In particular, relevant to ra-
tional reconstruction are guidelines for presenting messages in a conversational
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language, such as in everyday situations, and guidelines suggesting that having
to re-read error messages is a signal that they are confusing (we’ll revisit this in
Chapter 6). As with earlier guidelines, Dean also notes the importance of showing
relationships.

Shneiderman [349] adds little more in terms of new guidelines (“address the
problem in the user’s terms”) for rational reconstruction; however, this work is
influential because it contributes a controlled experiment in COBOL for different
error message presentations. The study found that applying these design guidelines
to error messages led participants to successfully resolve defects more often than
the baseline messages.

In 1983, the Borland Turbo Pascal integrated development environment was
released to the development community. This IDE (and others from the same era)
introduced a host of a novel affordances, including multi-window environments,
which enabled developers to interact—for example—with both a source code window
and an error output window simultaneously. Responding to the affordances brought
about by the IDE, Brown [50] advocated that these “modern” systems also presented
opportunities to significantly improve error messages. His guidelines leverage these
visual affordances: using color to identify offending symbols on the source code,
providing a contextual window that displays several lines of source code before and
after the error message, and providing some visual markers to show the developer
where in the source code the error has occurred. In isolation, these guidelines
aren’t rational reconstructions; however, it’s easy to see how highlighting and visual
markers can allow rational reconstructions to more expressively communicate their
explanations.

Around the same time as Brown [50], Kantorowitz and Laor [197] probe at
some initial directions towards encoding explanation using visual presentations
for syntax errors. For example, during a syntax error, they use ‘|’ to indicate the
first symbol that does not match the syntax of the language, a ‘.’ to indicate where
the compiler has resumed analysis, and a short message suggesting other tokens to
substitute (‘,’ or ‘;’):

const n=5: b:=4;
|-----. { , ; } EXPECTED
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Despite the improved visual presentation, these error messages are still fun-
damentally of the found-expected form. It is not until guidelines by Shaw [346]
that we diverge from this form of error presentation. Specifically, Shaw introduces
an essential contribution in rational reconstruction: that error messages should
provide a reason for the error. Rather than returning (in APL), for example:

Length Error
2 3 + 4 5 6

they propose the compiler instead emit:

Shape Error - Length of corresponding axes must be equal.
2 3 + 4 5 6
2 | 3
^ ^

The second error message gives a reason for why the length (shape) is invalid. As
in Kantorowitz and Laor [197], the error also uses some visual representations,
through ‘^’ and ‘|’.

After Shaw, there’s a roughly twenty-year gap in contributions to design guide-
lines, despite another substantial improvement to integrated development environ-
ments around the mid-1990s: the emergence of actual graphical user interfaces,
versus text-based user interfaces, that could exploit high-resolution displays. In-
deed, it’s not until Traver [381] in 2010 that design guidelines are revisited. And
even here, Traver presents a modernization of existing guidelines—namely, Horn-
ing [172]—and explains these guidelines in terms of contemporary C++ compilers
(Table 1, their paper). I do have some intuitions about why this gap exists in the
literature—however, explaining it isn’t necessary to support the thesis.

Two additional design guidelines by Murphy-Hill and Black [270] and Murphy-
Hill, Barik, and Black [269] (and described prior in Section 3.3) both contribute
elements of rational reconstruction through presenting visual annotations—such as
boxes and arrows—adorned directly on the source code that the developer actually
edits. Both design guidelines present several useful recommendations, but of these
the guideline of relationality is closest to ideas within rational reconstruction: the
guidelines advocate that violations often arise from multiple program elements in
the code, and that visualizations should reveal these relationships. In other words,
the visualization should present a trace-explanation form of rational reconstruction.
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In Section 9.2, I contribute design guidelines derived from the studies on rational
reconstruction in this dissertation, and describe how my guidelines extend and
differ from existing guidelines for error messages.

3.6 Conclusions
This state-of-the-art review described a design space of text and visual represen-
tations for error messages, through the lens of contemporary program analysis
tools. A survey of distributions for error messages that developers actually make
revealed that improvements to even a relatively small number of error messages
could substantially benefit developers. The review also identified several points
within this design space through which we can apply rational reconstruction to
advance the state-of-the-art.

The studies in this dissertation address two such points. First, towards advanc-
ing our understanding of visual representations, we investigate box-and-arrow
representations as a form of rational reconstruction to explain error messages
(Chapter 7). Second, towards improving text explanations in template diagnostic
error messages, we investigate a rational reconstruction model to improve the
structure and content of these error messages (Chapter 8). There remain several
questions about how to support computationally-constructed explanations, such as
in type inference and model checking; these topics are also important but beyond
the scope of the dissertation.

This chapter presented a chronology of existing design guidelines, derived from
the state of program analysis tools for that time period. In continuing this tradition,
I too synthesize the research conducted within this dissertation and contribute a
set of design guidelines for contemporary program analysis tools (Section 9.2).

In the next chapter, we conduct a scoping review. The scoping review positions
the studies on rational reconstruction in this dissertation within a broader taxonomy
of programming language research for error messages.
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4 | What Do We Know About
Presenting Human-Friendly
Output from Program
Analysis Tools?

Always take a banana to a party.

The Doctor

Rational reconstructions are only one of many research approaches towards
improving the presentation of error messages.1 Thus, to position the work in this
dissertation within a broader taxonomy of programming language research for error
messages, we conducted an interim scoping review of the proceedings from Program-
ming Language Design and Implementation (PLDI), from 1988–2017. While PLDI
papers are typically written to emphasize the formal properties of their program
analysis tools as their primary goal, our scoping review reframes these papers in
terms of their program analysis output as the primary investigation.

Notably, the scoping review is intended to be accessible to human-computer
interaction (HCI) researchers who want to understand how the PL community is
currently applying program analysis output, with the longer-term goal of bridging
HCI research with program analysis tools. Therefore, the contributions of this
scoping review are:

1Significant portions of this chapter were previously published as T. Barik, C. Parnin, and
E. Murphy-Hill, “One λ at a time: What do we know about presenting human-friendly output
from program analysis tools?” In Evaluation and Usability of Programming Languages and Tools
(PLATEAU), 2017.
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• A quasi-gold set of manually-identified papers from PLDI that relate to pro-
gram analysis output, to bootstrap future, comprehensive literature reviews
on the subject of human-friendly program analysis output.

• A knowledge synthesis of the features of program analysis output that re-
searchers employ to present output to developers, instantiated as a taxonomy
(Section 4.2). Our taxonomy is agnostic to a particular mode of output, such
as text or graphics.

4.1 Methodology

4.1.1 What is a Scoping Review?
In this study, we conduct a scoping review—a reduced form of the traditional sys-
tematic literature review [13, 203]. Scoping reviews have many of the same charac-
teristics of traditional literature reviews: their purpose is to collect, evaluate, and
present the available research evidence for a particular investigation. However, be-
cause of their reduced form, they can also be executed more rapidly than traditional
literature reviews [340]. For example, reductions to scoping reviews include limiting
the types of literature databases, constraining the date range under investigation,
or eliding consistency measures such as inter-rater agreement. A notable weakness
of scoping reviews is that they are not a final output; instead, they provide interim
guidance towards what to expect if a comprehensive literature review were to be
conducted. Scoping reviews are particularly useful in this interim stage for soliciting
guidance on conducting a more formal review, as is our intention in this chapter.

4.1.2 Execution of SALSA Framework
We conducted our scoping review using the traditional SALSA framework: Search,
AppraisaL, Synthesis, and Analysis. Here, we discuss the additional constraints we
adopted in using SALSA for our scoping review.
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Search. We scoped our search to all papers within a single conference: Pro-
gramming Language Design and Implementation (PLDI), for all years (1988–2017).
As HCI researchers, we selected PLDI because it is considered to be a top-tier
conference for programming languages research, because it contains a variety of
program analysis tools, and because these tools tend to have formal properties of
soundness and completeness that are not typically found in prototype tools within
HCI. Discussions with other researchers within PLDI also revealed that researchers
are interested in having their tools adopted by a broader community, but confusing
program analysis output hinders usability of the tools to users outside their own
research groups.

Appraisal. We manually identified papers through multiple passes. In the first
pass, we skimmed titles and abstracts and included any papers which mentioned a
program analysis tool and indicated output intended to be consumed by a developer
other than the authors of the tool. In this pass, our goal was to be liberal with
paper inclusion, and to minimize false negatives. We interpreted program analysis
tools in the broadest sense, to include model checkers, verifiers, static analysis
tools, and dynamic analysis tools. In the second pass, we examined the contents of
the paper to identify if the paper contributed or discussed its output. Finally, we
removed papers that were purely related to reducing false positives, unless those
papers used false positives as part of their output to provide additional information
to the developer. For some papers, the output was measured in terms of manual
patches submitted to bug repositories. We excluded such papers since the output
was manually constructed, and not obtained directly from the tool.

Synthesis and Analysis. We synthesized the papers into a taxonomy of pre-
sentation features (Section 4.2). For analysis, we opted for a narrative-commentary
approach [141] in which we summarized the contributions of each of the papers
with respect to human-friendly presentations.

4.1.3 Limitations
As a form of interim guidance, a scoping review has several important limitations.
First, the review is biased in several ways. Being scoped only to PLDI means
that the identified taxonomy is likely to be incomplete. Second, the scoping review
by definition misses key contributions found in other conferences, such as the
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International Conference on Software Engineering (ICSE), Foundations of Software
Engineering (FSE), and the Conference on Human Factors in Computing Systems
(CHI), just to name a few. Third, the paper summaries are intended to be accessible
to HCI researchers who may not have formal PL experience. As a result, in the
interest of being broadly accessible, some of the summaries of the papers may be
oversimplified in terms of their PL contributions. Finally, any conclusions made
from this interim work should be treated as provisional and subject to revision as
more comprehensive reviews are conducted.

4.2 Taxonomy of Presentation
In this section, we classify and summarize all of the papers from PLDI from
1988–2017 that discuss or contribute to program analysis output intended for
developers. Intentionally, we labeled the taxonomy features such that they do not
commit to a particular text or visual affordance. For example, in a text interface,
the feature of ranking (Section 4.2.7) may be implemented as an enumerated list
of items in the console, with a prompt for selection if interactivity is required. In
a graphical interface, ranking might instead be implemented using a drop-down,
through which the developer would select their desired option.

The identified taxonomy of presentation features are summarized in Table 4.1.
Some papers describe output that use multiple features; in these cases, we selected
the feature which we felt best represented the contribution of the output.

4.2.1 Alignment
In alignment, program analysis output is presented in a representation that is
already familiar to the developer.

Within this feature, Pombrio and Krishnamurthi [304] tackle the problem of
syntactic sugar: programming constructs that make things easier to express, but
are ultimately reducible to alternative constructs. For example, in C, the array
access notation a[i] is syntactic sugar for (the sometimes less convenient notation)
*(a + i). Unfortunately, syntactic sugar is eliminated by many transformation
algorithms, making the resulting program unfamiliar to the developer. Pombrio
and Krishnamurthi [304] introduce a process of resugaring to allow computation
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Table 4.1 Taxonomy of Presentation

Feature Description
Alignment
(Section 4.2.1)

Presents analysis output in a representation
that is already familiar to the developer.

Clustering and Classification
(Section 4.2.2)

Organizes or separates information in a way
that reduces cognitive burden.

Comparing
(Section 4.2.3)

Facilitates comparisons when the developer has
a need to examine or understand differences
between two or more versions of their code.

Example
(Section 4.2.4)

Examples and counterexamples are forms of
output that provide evidence for why a situation
can occur or how a situation can be violated.

Interactivity
(Section 4.2.5)

The developer can interact with tools either be-
fore the output is produced, or collaboratively
interact with multiple iterations of output, to
arrive at a solution.

Localizing
(Section 4.2.6)

Presents and pinpoints the relevant program
locations for an error.

Ranking
(Section 4.2.7)

Orders the output of the analysis in a systematic
way.

Reducing
(Section 4.2.8)

Reduces or filters a large design space of al-
lowable analysis output, using some systematic
rule, before this output is presented to the de-
veloper.

Tracing
(Section 4.2.9)

Applies a form of slicing that involves flows of
information, and supports understanding how
information propagates across source code.
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reductions in terms of the surface syntax. With similar aims, the AutoCorres
tool uses a technique of specification abstraction, to present developers with a
representation of the program at a human-readable abstraction while additionally
producing a formal refinement of the final presentation [143].

Notions of natural language and readability find their place in several PLDI
papers. Qiu, Garg, Ştefănescu, and colleagues [314] propose natural proofs, in
which automated reasoning systems restrict themselves to using common patterns
found in human proofs. Given a reference implementation, and an error model of
potential corrections, Singh, Gulwani, and Solar-Lezama [359] introduce a method
for automatically deriving minimal corrections to students’ incorrect solutions, in
the form of a itemized list of changes, expressed in natural language. And the AFix
tool uses a variety of static analysis and static code transformations to design bug
fixes for a type of concurrency bug, single-variable atomicity violations [185]. The
bug fixes are human-friendly in that they attempt to provide a fix that, in addition
to other metrics, does not harm code readability. To support readability, the authors
manually evaluated several possible locking policies to determine which ones were
most readable.

Issues of alignment and representation become important to developers during
understanding of optimizations in source-level debugging of optimized code [3];
in their approach, Adl-Tabatabai and Gross [3] detect engendered variables that
would cause the developer to draw incorrect conclusions as a result of internal
optimizations by the compiler. Earlier work by Brooks, Hansen, and Simmons [47]
and Coutant, Meloy, and Ruscetta [75] also provide techniques that allow developers
to reason about optimized code through mapping the state of the optimized execution
back to the original source. For example, Brooks, Hansen, and Simmons [47] use
highlighting, boxing, reverse video, grey-scale shading, and underlining to animate
and convey runtime program behavior, overlaid on the original source code, to the
developer.
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4.2.2 Clustering and Classification
Clustering and classification output aims to organize or separate information in a
way that reduces the cognitive burden for developers. For example, Narayanasamy,
Wang, Tigani, and colleagues [273] focus on a dynamic analysis technique to automat-
ically classify data races—a type of concurrency bug in multi-threaded programs—as
being potentially benign or potentially harmful. Furthermore, the tool provides
the developer with a reproducible scenario of the data race to help the developer
understand how it manifests.

Liblit, Naik, Zheng, and colleagues [226] present a statistical dynamic debugging
technique that isolates bugs in programs containing multiple undiagnosed bugs;
importantly, the algorithm separates the effects of different bugs and identifies
predictors that are associated with individual bugs. An earlier technique using
statistical sampling is also presented by the authors [225]. Ha, Rossbach, Davis,
and colleagues [148] introduce a classification technique in Clarify, a system which
classifies behavior profiles—essentially, an application’s behavior—for black box
software components where the source code is not available. And Ammons, Mandelin,
Bodı́k, and colleagues [9] consider the problem of specifications on programs in that
the specifications themselves need methods for debugging; they present a method for
debugging formal, temporal specifications through concept analysis to automatically
group traces into highly similar clusters.

4.2.3 Comparing
Comparisons occur in program analysis tools when the developer has a need to
examine or understand differences between two or more versions of their code.
Within this feature, Hoffman, Eugster, and Jagannathan [168] introduce a technique
of semantic views of program executions to perform trace analysis; they apply
their technique to identify regressions in large software applications. Through a
differencing technique, their RPrism tool outputs a semantic “diff” between the
original and new versions, to allow potential causes to be viewed in their full context.
Similarly, early work by Horwitz [173] identifies both semantic and text differences
between two versions of a program, in contrast to traditional diff-tools that treat
source as plain text.
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4.2.4 Example
Examples and counterexamples are forms of output that provide evidence for why
a situation can occur or how a situation can be violated. Examples are usually
provided in conjunction with other presentation features.

The Alive-Infer tool infers preconditions to ensure the validity of a peephole
compiler optimization [256]. To the user, it reports both a weakest precondition and
a set of “succinct” partial preconditions. For wrong optimizations, the tool provides
counterexamples. Zhang, Sun, and Su [422] apply a technique of skeletal program
enumeration to generate small test programs for reporting bugs about in GCC and
Clang compilers; the generated test programs contain fewer than 30 lines on average.
Still other work with test programs devise a test-case reducer for C compiler bugs
to obtain small and valid test-cases consistently [320]; the underlying machinery is
based on generic fixpoint computations which invokes a modular reducer.

Padon, McMillan, Panda, and colleagues [287] hypothesize that one of the rea-
sons automated methods are difficult to use in practice is because they are opaque.
As Padon, McMillan, Panda, and colleagues [287] state, “they fail in ways that
are difficult for a human user to understand and to remedy.” Their system, Ivy,
graphically displays concrete counterexamples to induction, and allows the user to
interactively guide generation from these counterexamples. Nguyễn and Van Horn
implement a tool in Racket to generate counterexamples for erroneous modules and
Isradisaikul and Myers [176] design an algorithm that generates helpful counterex-
amples for parsing ambiguities; for every parsing conflict, the algorithm generates
a compact counterexample illustrating the ambiguity.

PSketch is a program synthesis tool that helps developers implement concurrent
data structures; it uses a counter example guided inductive synthesis algorithm
(CEGIS) to converge to a solution within a handful of iterations [362]. Given a
partial program example, or a sketch, PSketch outputs a completed sketch that
matches a given correctness criteria.

For type error messages, Lerner, Flower, Grossman, and colleagues [220] pursue
an approach in which the type-checker itself does not produce error messages, but
instead relies on an oracle for a search procedure that finds similar programs that
do type-check; to bypass the typically-inscrutable type error messages, their system
provides examples of code (at the same location) that would type check.
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And for memory-related output, Cherem, Princehouse, and Rugina [63] im-
plement an analysis algorithm for detecting memory leaks in C programs; their
analysis uses sparse value-flows to present concise error messages containing only
a few relevant assignments and path conditions that cause the error to happen.

4.2.5 Interactivity
We identified several papers whose tools support interactivity. That is, the developer
can interact with the tool either before the output is produced, in order to customize
the output—or work with the output of the tool in a mixed-initiative fashion, where
both the developer and the tool collaborate to arrive at a solution.

Within this feature, Parsify is a program synthesis tool that synthesizes a parser
from input and output examples. The tool interface provides immediate visual
feedback in response to changes in the grammar being refined, as well as a graphical
mechanism for specifying example parse trees using only text selections [223]. As
the developer adds production rules to the grammar, Parsify uses colored regions
overlaid on the examples to convey progress to the developer.

Live programming is a user interface capability that allows a developer to edit
code and immediately see the effect of the code changes. Burckhardt, Fahndrich,
Halleux, and colleagues [51] introduce a type and effect formalization that separates
the rendering of UI components as a side effect of the non-rendering logic of the
program. This formalization enables responsive feedback and allows the developer
to make code changes without needing to restart the debugging process to refresh
the display.

Dillig, Dillig, and Aiken [98] present a technique called abductive inference—that
is, to find an explanatory hypothesis for a desired outcome—to assist developers in
classifying error reports. The technique computes small, relevant queries presented
to a user that capture exactly the information the analysis is missing to either
discharge or validate the error.

LeakChaser identifies unnecessarily-held memory references which often result
in memory leaks and performance issues in manages languages such as Java [415].
The tool allows an iterative process through three tiers which assist developers at
different levels of abstraction, from transactions at the highest-level tier to lifetime
relationships at the lowest level tier.
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Chameleon assists developers in choosing an abstract collection implementa-
tion in their algorithm [343]. During program execution, Chameleon computes
trace metrics using semantic profiling, together with a set of collection selection
rules, to present recommended collection adaptation strategies to the developers.
Similarly, the PetaBricks tool makes algorithm choice a first-class construct of the
language [11].

Dincklage and Diwan [99] identify how tools can benefit from guidance from
the developer in cases where incorrect tool results would otherwise compromise
its usefulness. For example, many refactoring operations in the Eclipse IDE are
optimistic, and do not fully check that the result is fully legal. They propose a
method to produce necessary and sufficient reasons, that is, a why explanation,
for a potentially undesirable result; the developer can then—through applying
predicates—provide feedback on whether the given analysis result is desirable.

Finally, MrSpidey is designed to be a user-friendly debugger for Scheme [120];
the program analysis computes value set descriptions for each term in the program
and constructs a value flow graph connecting the set descriptions; these flows are
made visible to the developer through a value flow browser which overlays arrows
over the program text. The developer can interactively expose portions of the value
graph.

4.2.6 Localizing
Tools present the relevant program locations for an error, or localize errors, through
two forms: 1) a point localization, in which a program analysis tool tries to identify a
single region or line as relevant to the error, and 2) as slices, where multiple regions
are responsible for the error.

Point. Zhang, Myers, Vytiniotis, and colleagues [421] implement, within the
GHC compiler, a simple Bayesian type error diagnostic that identifies the most likely
source of the type error, rather than the first source the inference engine “trips over.”
The BugAssist tool implements an algorithm for error cause localization based on a
reduction to the maximal satisfiability problem to identify the cause of an error from
failing execution traces [195]. The Breadcrumbs tool uses a probabilistic calling
context (essentially, a stack trace) to identify the root cause of bug, by recording
extra information that might be useful in explaining a failure [41].
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Slices. Program slicing identifies parts of the program that may affect a point
of interest—such as those related to an error message; Sridharan, Fink, and Bodik
[366] propose a technique called thin slicing which helps developers better iden-
tify bugs because it identifies more relevant lines of code than traditional slicing.
Analogous to thin slicing, Zhang, Gupta, and Gupta [423] developed a strategy for
pruning dynamic slices to identify subsets of statements that are likely responsible
for producing an incorrect value; for each statement executed in the dynamic slice,
their tool computes a confidence value, with higher values corresponding to greater
likelihood that the execution of the statement produced a correct value.

4.2.7 Ranking
Ranking is a presentation feature that orders the output of the program analysis
in a systematic way. For example, random testing tools, that is, fuzzers, can be
frustrating to use because they “indiscriminately and repeatedly find bugs that may
not be severe enough to fix right away” [62]. Chen, Groce, Zhang, and colleagues [62]
propose a technique that orders test cases in a way that diverse, interesting cases
(defined through a machine technique called furthest point first) are highly ranked.
And the AcSpec tool prioritizes alarms for automatic program verifiers through
semantic inconsistency detection in order to report high-confidence warnings to the
developer [38].

Coppa, Demetrescu, and Finocchi [73] present a profiling methodology and
toolkit for helping developers discover asymptotic inefficiencies in their code. The
output of the profiler is, for each executed routine of the program, a set of tuples that
aggregate performance costs by input size—these outputs are intended to be used
as input to performance plots. The Kremlin tool makes recommendations about
which parts of the program a developer should spend effort parallelizing; the tool
identifies these regions through a hierarchical critical path analysis and presents
to the developer an ordered (by speedup) parallelism plan as a list of files and lines
to modify [126].

Perelman, Gulwani, Ball, and colleagues [296] provide ranked expressions for
completions in API libraries through a language of partial expressions, which allows
the developer to leave “holes” for the parts they do not know.
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4.2.8 Reduction
Reduction approaches take a large design space of allowable program output and
reduce that space using some systematic rule. Within this feature, Logozzo, Lahiri,
Fähndrich, and colleagues introduce a static analysis technique of Verification
Modulo Versions (VMV), which reduces the number of alarms reported by verifiers
while maintaining semantic guarantees [236]. Specifically, VMV is designed for
scenarios in which developers desire to fix new defects introduced since a previous
release.

4.2.9 Tracing
Tracing is a form of slicing that involves flows of information, and understanding
how information propagates across source code. As one example, Ohmann, Brooks,
D’Antoni, and colleagues [283] present a system that answers control-flow queries
posed by developers as formal languages. The tool indicates whether the query
expresses control flow that is possible or impossible for a given failure report. As
another example, PIDGIN is a program analysis and understanding tool that allows
developers to interactively explore information flows—through program dependence
graphs within their applications—and investigate counterexamples [186]. Taint
analysis is another information-flow analysis that establishes whether values from
unstructured parameters may flow into security-sensitive operations [383]; imple-
mented as TAJ, the tool additionally eliminates redundant reports through hybrid
thin slicing and remediation logic over library local points. Other techniques, such
as those by Rubio-González, Gunawi, Liblit, and colleagues [329], use data-flow
analysis techniques to track errors as they propagate through file system code.

To support algorithmic debugging, Faddegon and Chitil [114] developed a li-
brary in Haskell, that, after annotating suspected functions, presents a detailed
computational tree. Computational trees are essentially a trace to help developers
understand how a program works or why it does not work. The tool TraceBack pro-
vides debugging information for production systems by providing execution history
data about program problems [14]; it uses first-fault diagnosis to discover what
went wrong the first time the fault is encountered.
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MemSAT helps developers debug and reason about memory models: given an
axiomatic specification, the tool outputs a trace—sequences of reads and writes—of
the program in which the specification is satisfied, or a minimal subset of the
memory model and program constraints that are unsatisfiable [378].

The Merlin security analysis tool infers information flows in a program to identify
security vulnerabilities, such as cross-site scripting and SQL inject attacks [232].
Internally, the inference is based on modeling a data propagation graph using
probabilistic constraints.

4.3 Conclusions
In this chapter, we conducted a scoping review of PLDI from the period 1988–2017.
We identified and cataloged papers for program analysis tools that discussed or
made contributions to the presentation of output intended for developers.

The resulting taxonomy of presentation clarifies the contributions of rational
reconstruction theory and positions those contributions with respect to broader re-
search efforts towards improving program analysis output. Concretely, the taxonomy
suggests that the research on rational reconstruction conducted in this dissertation
most closely advances research efforts in alignment and tracing features of the
taxonomy, for example, through justification-explanations and trace-explanations,
respectively (Section 2.4). Importantly, the scoping review underscores taxonomy
features to which rational reconstruction does not noticeably contribute. For in-
stance, rational reconstruction does not make contributions towards clustering
and classification, comparing, examples and counterexamples, localizing, ranking,
or reducing. Nevertheless, rational reconstruction can leverage advances in these
taxonomy features when formulating explanations.

In the next chapter, we present a mapping review. The mapping review is com-
parable to a scoping review in that it also positions my research on rational recon-
struction within a broader context. However, whereas the scoping review connects
rational reconstruction to the single discipline of programming language research,
the mapping review positions rational reconstruction conceptually with multiple
neighboring research disciplines, such as artificial intelligence and human factors.
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5 | Where Do Error Messages as
Rational Reconstructions Fit
Within Related Work?

As we learn about each other, so we
learn about ourselves.

The Doctor

How does the work in this dissertation fit within the ontology of related research
in computer science and other disciplines? The mapping review conducted within
this chapter delineates collections of research pertinent to the design of error
messages, in strongly interrelated, neighboring research disciplines that include
program comprehension (Section 5.1), human factors in error and warning design
(Section 5.2), expert systems (Section 5.3), structure editors (Section 5.4), and error
messages for novices (Section 5.5). Through establishing linkages between rational
reconstruction and concepts within these collections, I defend the novelty of my
thesis.

5.1 Program Comprehension in Debugging
Program comprehension is a cognitively-demanding activity, coordinating and com-
peting with a number of parallel mental processes that include language [354],
learning [317], attention [406], problem-solving [207], and memory [292]. Given the
complexity of human cognition and the different levels of abstraction under which
cognition has been studied, there are several concurrent theories to explain program
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comprehension. The multiplicity of theories can support, complement, and integrate
with respect to the theory of rational reconstruction to inform the design of error
messages. In this section, I review three established theories of program comprehen-
sion during debugging and maintenance activities: plans (Section 5.1.1), beacons
(Section 5.1.2), and information foraging theory (Section 5.1.3). I conclude with an
explanation of how rational reconstruction fits with these theories (Section 5.1.4).

5.1.1 Plans
Shneiderman and Mayer [350] presented an information processing model that
comprises a long-term store of semantic and syntactic knowledge in conjunction with
a working memory through which developers construct problem solutions, called
plans. When executing these plans results in an error message—a plan failure—the
authors proposed that developers attempt to resolve the error in one of two cognitive
contexts.

In the first context, the developer has a correct plan for what the program is
supposed to do, but has at some point introduced a mistake in representing that
idea in the source code in a way that has resulted in an error message. That is, the
developer has incorrectly transformed internal semantics to program statements.
Shneiderman and Mayer argued that developers can usually recover from such
errors once they figure out the differences between what they intended to write and
what they actually wrote.

In the second context, the developer has incorrectly transformed the problem
solution to the internal semantics of the language, resulting in an error message.
This second plan failure is more insidious: although the error message can appear
to be the result of incorrectly translating internal semantics to program statements,
the true cause is actually due to a misconception about how the internal semantics
of the language actually work. In this context, what the developer intended to write
is actually erroneous. Often, this second context requires the developer to completely
reevaluate their programming strategy [350].

Other researchers have also considered debugging as the construction or execu-
tion of programming plans [49, 221, 323, 363, 364, 370, 392]. The planning theories
have several differences: they are sometimes top-down comprehension models [48,
363] (that is, developers begin with a hypothesis about the program, then decompose
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parts of the code to verify it), bottom-up comprehension models [222, 295] (that is,
developers gather smaller chunks of code and piece them together to understand
the program), or integrated models [249] (that is, developers interleave top-down
and bottom-up planning). Nevertheless, there are many commonalities among them:
namely, they are all cognitive processes that construct a mapping between the source
code and a cognitive representation of the problem, and program understanding
involves reconstructing some or all of these mappings.

5.1.2 Beacons
But what is the link between source code and mapping during planning and recon-
struction? One theory is that developers search for beacons [48, 77, 406]—lines of
code that serve as indicators of a particular structure or operation; developers use
the presence or absence of these beacons to confirm or reject hypotheses about errors.
To search for these beacons, developers employ a process called program slicing, in
which developers break apart large programs into smaller, coherent pieces; these
pieces need not be textually contiguous [401]. During slicing, if the developer fails
to confirm the presence of beacons in source code, they may reject their hypothesis
about the error and possibly even the error message itself. A recent functional mag-
netic resonance imaging (fMRI) study by Siegmund, Peitek, Parnin, and colleagues
[355] confirmed lower activation of brain areas during comprehension based on
semantic cues, confirming that beacons ease comprehension.

5.1.3 Information Foraging Theory
An alternative theory for program comprehension that contrasts with the classical
information processing theories thus far is information foraging theory [218]. Infor-
mation foraging theory explains and predicts how developers navigate source code
through an information-seeking model driven by cost minimization [122].

Specifically, the theory proposes a parsimonious predator-prey model in which
a predator (for example, a developer who is debugging an error message) seeks
one or more prey (for example, pertinent information useful to understanding and
resolving the error). To do so, the predator (developer) would follow various cues
(for example, affordances within the environment such as

::::
red

::::::
wavy

:::::::::::::
underlines) to
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identify information patches (for example, a method in a source code file). Informa-
tion foraging theory suggests that the predator (developer) decides which cues to
follow or not follow based on information scents—essentially, a perceived likelihood
measure that following the cue would successfully lead them to discovering prey
(pertinent information). Thus, we can think of information foraging theory as a
greedy search: at every decision point, the developer chooses the interaction in the
environment that they estimate would maximize information gain while minimizing
the cost to seek.

A salient property of information foraging theory is that the environment alone
explains the developer’s behavior. In other words, in contrast to classical information
processing theories, information foraging theory does not require knowledge of what
is inside the developer’s mind [218].

5.1.4 Relation to Rational Reconstruction
Although the theory of rational reconstruction is at a higher level of abstraction
than either the cognitive theories of plans and beacons, and orthogonal to the
ecological theory of information foraging, rational reconstruction can be used to
support both cognitive and ecological theories. For instance, rational reconstructions
as explanations can help developers construct plans, or they can act as arguments
to help developers justify their already-constructed plans. Explanations situated
within source code are essentially explicit beacons; without rational reconstruction,
the developer would likely need to identify these beacons implicitly anyway. And
within information foraging theory, rational reconstruction may act as a navigational
aid that influences the developer’s self-estimates for what information to seek.

5.2 Human Factors in Error and Warning Design
Of course, warnings messages aren’t something people encounter exclusively in
digital systems; they can be found in everyday situations and places, such as product
instruction manuals [418], medication [116, 265], cigarettes and alcohol labels [30,
217], and on signs at beaches [246]. There are several noteworthy literature re-
views in human factors which cover these and other applications for warnings and
errors [92, 107, 216, 219, 293, 327, 408].
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But are theories of warning design [107] for physical objects applicable to the
design of error messages in digital systems like program analysis tools? Research
suggests that it is [152, 299]: Pieterse and Gelderblom [299], for example, success-
fully applied warning design theory—originally studied in the context of the physical
world—to the design of error messages in digital systems like online Internet bank-
ing. As part of their study, Pieterse and Gelderblom [299] adopted guidelines from
warning design theory, and conducted a heuristic evaluation in which experts used
these guidelines to effectively identify problems with error messages.

Mapping findings from warning design theory in the physical world to digital
systems provide additional lenses through which we can investigate the compre-
hension of error messages—beyond the theory of rational reconstruction that I’ve
considered within this dissertation. As one example, the Communication-Human
Information Processing (C-HIP) model is a communication theory from warning
design with three conceptual stages: source, channel, and receiver [71]. Within
the receiver stage, the model describes not only comprehension, but also attention,
attitudes, and motivation for why a user may or may not successfully interpret
the message. Similarly, the model also explains why a user might not notice the
warning, due to processing bottlenecks in one of the stages of this pipeline. For error
messages in program analysis tools, the C-HIP model could be applied to describe
how information flows from one stage to the next.

Warning design theory can also inform the design space of error messages as
a medium (for example, as we’ve seen in Section 2.2.5). These dimensions include
color [204], size [23, 45], location [217, 410], language of the warning text [2, 102,
152, 409], pictorials or icons [86, 180, 375], expertise [46], habituation [154, 202], and
social influence [96, 108, 124]. These dimensions influence how developers interpret
the severity of the message, whether they choose to take action for the message,
which message they are likely to use if multiple presentations are available, and
how they would prioritize multiple errors.
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Nevertheless, warning design theory does not obviate the need for rational
reconstruction, because warning messages (at least, in warning design theory)
aren’t about explanation; rather, they are about presenting information in a way
that allows people to make judgments about the level of risk they are willing to accept
or not accept [216]. In short, although warning design and rational reconstruction
have several commonalities, the two theories diverge in that they have different
aims.

5.3 Expert Systems
Expert systems [228] are computer programs that reconstruct the expertise and
reasoning capabilities of qualified specialists within limited domains [312], for
emulating human expertise in well-defined problem domains [321], and for compu-
tationally representing task-specific human-knowledge of experts to systems [224].
One of the key goals of expert systems research is for systems to be able to explain
their reasoning to users [312]. Some early research even suggested that program
analysis tools could be investigated as expert systems [40, 151, 194, 231, 335]. Hence,
the theory of rational reconstruction proposed in this dissertation can be seen as a
natural extension to expert systems research.

Although first-generation expert systems in the 1970s, such as DENDRAL [115]
and MACSYMA [245], focused primarily on performance and problem-solving—and
not explanation—second-generation systems, notably MYCIN [66, 351], introduced
the distinguishing feature of explanation facilities as part of the problem-solving
process [88].

MYCIN became a model for succeeding systems [312], and the development
of expert systems became a forcing function in artificial intelligence research for
computational explanations and problem-solving [368]. Davis [88] writes, “problem
solving is only the most obvious [behavior of expert systems] and while necessary, it
is clearly insufficient. Would we be willing to call someone an expert if he could solve
a problem, but was unable to explain the result? …I think not.” And Chandrasekaran
and Swartout [57] observed that “explanation of a knowledge system’s conclusions
can be as important as the conclusions themselves”.
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In addition to the technical contributions of expert systems, people find their
explanations to be useful across several dimensions [144]. An evaluation by Ye and
Johnson [417] indicated that explanation facilities can make advice from expert
systems more acceptable to users. They evaluated three types of explanation: infer-
ential steps taken by the expert-system (trace or line reasoning), explicit description
of the causal argument or rationale for each step taken by the expert system (justifi-
cation), and high-level goal structures to determine how the expert system uses its
domain knowledge to accomplish the task (strategy). Of the three, justification was
found to be the most effective in changing user attitudes towards the system. Lim,
Dey, and Avrahami [229] found that explanations describing why a system behaved
a certain way resulted in better understanding and stronger feelings trust. Wick and
Thompson [405] proposed a computational model of reconstructive explanations for
expert systems: that effective explanations often need to substantially reorganize
the internal line of reasoning and decouple it from the line of explanation that is
ultimately presented to the user. However, the authors did not actually evaluate
these explanations.

Though both novices and experts find explanations to be useful, they use the
explanations in different ways. Mao and Benbasat [242] showed that people re-
quested explanations to deal with comprehension difficulties caused by perceived
anomalies—not necessarily real anomalies—in expert system output messages,
and that there were both qualitative and quantitative differences in the nature of
explanation between novices and experts. Specifically, they found that novices relied
on explanations for understanding the basic meaning, implication, and reasoning
process of the expert system. In contrast, experts rapidly created their own ratio-
nalizations and used explanations as a source of confirmation. Fischer, Mastaglio,
Reeves, and colleagues [118] proposed that systems should not attempt to generate
a perfect, one-shot explanation: instead, systems should initially provide a brief
explanation and then allow the user to elaborate through several levels of expla-
nation. Other researchers have also suggested that tailoring explanations to users
improves the quality of explanation [25, 171, 188, 254, 261, 288].

74



Standalone expert systems eventually declined in popularity [10]; nevertheless,
their ideas were embedded in specialized contexts such as recommendation sys-
tems [289, 325, 377], and as intelligent tutoring systems [388]. The prolific rise and
fall of expert systems brought to attention three critical weaknesses, particularly
with respect to explanation [191]:

1. There was no unifying theory of explanation, and few papers actually consid-
ered what explanations might be, or what might be acceptable as everyday
explanations as opposed to scientific explanations.

2. The lack of theory of explanation also gave rise to the absence of any criteria
for judging the quality of the explanation.

3. There were relatively few studies which evaluated to any degree the resulting
explanations.

The third point can be debated, as what constitutes relatively few studies is
subjective. But the first two problems reveal a knowledge gap, not only for expert
systems, but also for comprehensible error messages in program analysis tools. It is
precisely these first two points that this dissertation investigates: it proposes a the-
ory of rational reconstruction, and in doing so, offers a mechanism for constructing
and evaluating error messages.

Given the similarities in goals between expert systems and error messages in
program analysis tools, could contemporary program analysis tools be investigated
as a form of expert system? If so, would explanations be as useful as they appear to be
for classical expert systems? What lessons could we learn from their successes and
failures? For example, linters—however rudimentary they may be—are essentially
a collection of automated rules about problems in source code, encoded into the
tool by expert developers. It may be fruitful to revisit ideas from expert systems
research to inform the implementation of program analysis tools.
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5.4 Preventing Errors with Structure Editors
Structure editors, also called projectional editors or syntax-directed editors, make
it difficult-to-impossible for developers to insert costly syntax errors into the source
code in the first place [7]. Rather than having developers work with source code as
text composed of strings of characters, these editors work directly with the syntax-
tree structure of the program. Structure editors have a long history, with early
efforts such as MENTOR [101] and the Cornell Program Synthesizer [376] in the
1980s. Although structure editors are not mainstream, there are a few contemporary
and boutique structure editors intended for professional developers, such as Eco [97],
Lamdu [238], Unison [64], and isomorƒ [199].

There are some arguments in favor of structure editing approaches, beyond pre-
venting syntax errors [213, 344]. First, if developers think in terms of tree structures
in their own mind, editors should support this mode of thinking [133, 201]. Second,
structure editors express a typically-desirable property of closeness of mapping in
that developers work with the underlying syntax tree directly, rather than an ab-
straction of text [391]. Third, proponents of structure editing argue that antiquated
text-based representations are inefficient ways of composing programs [239].

Unfortunately, the arguments in favor have not held up to scrutiny [387, 398].
Critics of structure editors have described them as restrictive, inflexible, and in-
efficient [201]. Thinking in terms of tree structures turns out not to be natural at
all [167]: complex tasks require substantial experience with the underlying abstract
tree structure, and additional developer experience doesn’t lead to increased effi-
ciency when composing programs [32]. Even trivial operations, such as entering
algebraic expressions, were found to be frustrating and tedious for developers to
compose over traditional text editing [373]. Finally, developers routinely work in
malformed edit states: in the midst of a function call, for instance, “std(m,” they may
realize that they need an additional helper function, and begin writing this helper
function without first completing the original call [284]. Conventional structured
editors forbid such common workflows [380].
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Lightweight structure editing approaches have found their way into modern
development environments, by relaxing the constraint of maintaining syntactically-
valid source code. Context-sensitive code templates [400], intelligent copying-and-
pasting of code fragments [394], auto-completion [240], and refactoring are examples
of tools whose usage can reduce, but not entirely prevent, the introduction of syntax
errors [130]. But allowing for syntax errors to arise brings us right back to this
dissertation: there remains a need to support comprehensible error messages. And
even theoretically-perfect structure editors do not prevent other categories of errors,
such as semantic errors, that developers introduce in source code.

5.5 Error Messages for Novices
Despite cognitive differences in the way novices and experts problem-solve during
debugging (Section 5.1), examining literature for novices can provide insights into
techniques (Section 5.5.1) and perspectives (Section 5.5.2) on the design of rational
reconstructions for experts.

There is substantial research literature on making error messages more accessi-
ble to novices, spanning many decades, and for many programming languages and
programming environments [24, 70, 87, 113, 117, 125, 158, 169, 198, 267, 365, 403,
404, 419]. In this section, I focus on literature applicable to modern programming
environments as investigated within this dissertation.

5.5.1 Mini-Languages: The Rule of Least Power
In programming language design, the “rule of least power” suggests that one should
choose the least powerful language suitable for a given purpose [33]. Such languages,
Berners-Lee and Mendelsohn [33] argue, are usually easier for both program analy-
sis tools and humans to reason about. One way to apply this rule is by designing a
“mini-language”: taking an expressive programming language (for example, C++),
and adopting only a subset of its language concepts (for example, C++, but disallow-
ing exception handling).
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Disallowing programming concepts can result in more accurate rational recon-
structions, particularly when there would otherwise be multiple plausible explana-
tions for a problem [158]. For example, consider the following invalid if statement
for the integers x and m:

if (x >> m) {
return true;

}

If we interpret x >> m as a signed right-shift operator, then the problem is likely
a type error: the result of this bit-shift is an integer, but if requires a boolean for
the conditional. But if bitwise and bit-shift operators are prohibited within the
language—perhaps because this concept is unlikely to be known to or used by a
novice—then it’s reasonable to assume that the novice actually intended to simply
perform a greater-than operation: x > m. In the latter case, the problem is likely
a syntax error, and the program analysis tool can present the more appropriate
rational reconstruction.

There are several mini-languages that apply the rule of least power to improve
error messages. MiniJava—a teaching-oriented implementation of Java—removes
much of the standard library, eliminates inner classes, prohibits the do-while
statement, and simplifies some other language constructs [324]. Language levels
in DrRacket provide full-fledged languages, staged into multiple sub-languages
that track programming concepts that students have learned in their course [244].
Helium, a variation of Haskell, aims to provide higher-quality error messages
tailored for students [162]. Because Helium removes type classes from the language,
programs written in Helium are not generally compatible with Haskell.

Prohibiting expressive concepts in programming languages is sometimes neces-
sary to do because the resulting error messages are otherwise unusable, even for
experts. For example, the Google Style Guide explicitly prohibits certain language
constructs, instead suggesting alternative and sometimes less expressive implemen-
tations [136]. The guide disallows the use of preprocessor macros entirely, because
program analysis tools are ill-equipped to present adequate error feedback in their
presence: “every error message from the compiler when developers incorrectly use
that interface now must explain how the macros formed the interface” [136]. Simi-
larly, template programming—despite being incredibly useful [1]—is also strongly
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discouraged because it leads to poor compile-time messages, even for simple inter-
faces [136]. Because these language restrictions are a consequence of poor error
messages, the motivation for investing in rational reconstruction is clear: if better
error messages were available, developers could more freely use these expressive
constructs in their code.

5.5.2 Enhancing Compiler Error Messages
Although there are substantive differences between novices and experts in debug-
ging [146, 252, 389], understanding how researchers enhance error messages for
novices could provide avenues for investigating error messages in intermediate-
expert developers. With that said, even experts are at times novices: for exam-
ple, when needing to transfer skills learned in one programming language to an-
other [338, 413], or when contributing to unfamiliar code [209, 301].

Unfortunately, there is little consensus on what helps novices with error mes-
sages, even though researchers typically agree that error messages from industrial
program analysis tools are inadequate for novices [125, 281, 294, 411, 414]. An
extensive literature review by Qian and Lehman [313] offers a defense for this
position, through examining barriers that novices have with syntactic knowledge,
conceptual knowledge, and strategic knowledge. In short, even when a novice and
an expert encounter the same error message, where they get stuck and how they get
stuck are likely to be very different. Moreover, feedback for novices in educational
contexts is intended for learning, whereas feedback for professional developers is
intended to help them productively identify and resolve the issue [352].

Enhanced error messages, then, are the revisions made to existing error mes-
sages in order to make them more appropriate for novices. For example, Denny,
Luxton-Reilly, and Carpenter [93] implemented a feedback system in CodeWrite, a
web-based tool in which students write the body of methods in Java. The enhanced
feedback includes a table showing two code fragments side-by-side: the submitted
version of the code with the error, and a corrected version of the code highlight-
ing the syntax differences. CodeWrite presents an explanation of the error, and
describes how it is corrected.
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However, Denny, Luxton-Reilly, and Carpenter [93] found no significant effects
between the enhanced and baseline error messages. They speculated that the
types of errors they attempted to address may be simple enough to resolve without
needing enhanced messages, or that students did not pay attention to the additional
information in the error message. Pettit, Homer, and Gee [297] conducted a similar
study using an automated assessment tool for C++ called Athene. In addition to
the original compiler error message from GCC, they added explanatory feedback to
the error messages and some hints for what to check. Pettit, Homer, and Gee [297]
found no measurable benefit to students: they also suggested that perhaps students
don’t attentively read the error messages, although students overwhelmingly self-
reported reading them. Nienaltowski, Pedroni, and Meyer [281] also found that
more detailed error messages do not necessarily simplify the understanding of
error messages; instead, it mattered more where the information was placed and
how it was structured. A nicely executed study by Prather, Pettit, McMurry, and
colleagues [309] found that enhanced compiler error messages did not quantitatively
show a substantial increase in learning outcomes over existing error messages,
but qualitative results did show that students were reading the enhanced error
messages and generally making effective changes to their code.

There are several other attempts to improve compiler error messages for students.
These papers have interesting ideas, but their studies have either limited or no
evaluation, yield inconclusive results, or do not offer a principled rationale for how
the error messages were improved [43, 70, 113, 123, 125, 175, 214, 339, 399, 403,
414].

Two notable exceptions are studies by Becker, Glanville, Iwashima, and col-
leagues [27] and Marceau, Fisler, and Krishnamurthi [244]. In contrast to studies
that did not identify any significant improvements with enhanced error messages [93,
297], Becker, Glanville, Iwashima, and colleagues [27] found that their enhanced
error messages did significantly reduce the frequency of overall errors and errors
per student for some types of errors. And Marceau, Fisler, and Krishnamurthi
[244] investigated DrRacket, a novice development environment, to understand
why enhanced messages remained confusing for students. Their results found that
students struggled with the vocabulary of the error messages, and often misinter-
preted the source highlighting. They concluded—despite the considerable effort
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the development team invested into the design of error messages—that the team
lacked a clear model of feedback to systematically guide the error message design
process. They have conducted subsequent studies to develop a rubric for assessing
the performance of error messages [243], and these rubrics have been applied as
formal processes for assessing and evaluating error reports, such as in Pyret [411].

Despite the differences in novices and experts, there are still several lessons we
can draw from the study of novices. First, the study methodologies used to under-
stand difficulties novices have with error messages can be adapted to experiments
for intermediate and expert developers. Second, it seems that ad-hoc approaches to
improving error messages are not all that successful. Even when the error messages
perform better than baseline errors, we gain few insights into why those messages
are better. Consequently, theories such as rational reconstruction—although inves-
tigated for expert developers within this dissertation—could also be applied to help
novice developers comprehend error messages (Section 9.4).

5.6 Conclusions
This chapter presented a mapping review relating rational reconstruction to strongly
connected, neighboring research collections. By forcing this close association, I
demonstrated that the theoretical framework advanced in this dissertation (Sec-
tion 2.4) is often conceptually similar—yet never completely fits—to any another
neighboring collection. In doing so, I defended the novelty of the thesis.

Having established the novelty of the thesis, we can now contribute the necessary
evidence to support it. Accordingly, the following three chapters (Chapters 6 to 8)
present research studies that tackle the claims of the thesis. For convenience, we
reiterate the thesis statement below:

Difficulties interpreting error messages produced by program analysis
tools are a significant predictor of developers’ inabilities to resolve defects:
difficulties interpreting error messages can be explained by framing error
messages as insufficient rational reconstructions in both visual and text
presentations.
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6 | Do Developers Read
Compiler Error Messages?

Don’t blink. Blink and you’re dead.

The Doctor

If we invested significant effort towards improving error messages, would these
investments actually make a difference?1 How do developers use error messages to
comprehend and resolve problems in the code? How difficult is it to read these error
messages? Do developers—whether novices or experts—even read them at all?

In this chapter, we investigate open questions [93, 243, 270, 342] relating to how
developers perceive and comprehend error messages through the various ways in
which they are presented in integrated development environments. To understand
if and how developers read error messages, we conducted an eye tracking study with
56 developers, recruited from undergraduate and graduate software engineering
courses at our university, and observed as they resolved common, yet problematic
error message defects in their IDE. We collected pixel-level coordinates and times
for developers’ sustained eye gazes, called fixations. We then triangulated these
fixations against screen recordings of their interactions in the IDE.

The results of our study provide empirical justification for the need to improve
compiler error messages, and motivate the theoretical framework of rational recon-
struction that drives the research agenda within this dissertation.

Specifically, our study finds that:
1Significant portions of this chapter were previously published as T. Barik, J. Smith, K. Lubick,

and colleagues, “Do developers read compiler error messages?” In International Conference on
Software Engineering (ICSE), 2017, pp. 575–585.
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• Participants read error messages; unfortunately, the difficulty of reading error
messages is comparable to the difficulty of reading source code—a cognitively
demanding task.

• Participant difficulty with reading error messages is a significant predictor
of task correctness (p < .0001), and contributes to the overall difficulty of
resolving a compiler error (R2 = 0.16).

• Across different categories of errors, participants allocate 13%–25% of their fix-
ations to error messages in the IDE, a substantial proportion when considering
the brevity of most compiler error messages compared to source code.

6.1 Motivating Example
Let’s consider how error messages can become costly for developers to resolve,
through precisely observing where and how developers look at information in their
IDE. We’ll do so through a hypothetical developer, Barry. Barry recently joined
a large software company, and needs to implement some missing functionality
within a data structures library. Being relatively new to the library, he messages
his colleague for some help in getting started. He eventually receives a reply from
his colleague with a short code snippet.

Barry copies and pastes this snippet into his source editor, and is surprised
that the IDE produces an error. He focuses his attention, that is, visually fixates, on
the error text in the problems pane at the bottom of his screen:

He silently reads the message about the sublist method, and then double-clicks
the error in the problems pane. This redirects the IDE to the source editor, and
Barry confirms that the error is related to the code that he just added. In the margin
of the source editor, he now notices a light bulb icon, which he hovers over to produce
an error popup:
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Unfortunately, the popup is less helpful than he expected because it repeats
the message he has already seen in the problems pane. Moreover, the error popup
text is obscuring the method signature which is where he believes the problem is
actually located.

Next, he notices the
:::
red

::::::
wavy

::::::::::::
underline, which in Eclipse indicates the presence

of an error. Barry hovers over the underline, releaving a Quick Fix popup. Unlike the
error popup, the Quick Fix popup provides possible “fixes” that change the source
code, in addition to the error message. He spends several seconds attending to both
the error message and evaluating it against the proposed fixes. His gaze momentarily
leaves the popup as his attention is drawn to the @Override annotation in the source
code. He then revisits the popup because the fourth option also references this
annotation:

Barry knows the @Override annotation is used to inform the compiler that the
current method should override a method in a parent class. To see if this is true, he
navigates to the class declaration, and control-clicks on the parent class:

He inspects the outline pane, which summarizes all of the methods in the class,
and confirms that the parent class contains only unrelated methods like writeObject:
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He’s now convinced that his colleague may have inadvertently included the
@Override annotation, which happens to not be applicable to his solution. He returns
to the original class one last time, and applies the “Remove ‘@Override’ annotation”
fix. Eclipse rebuilds the project and he checks the problems pane one last time to
see that the error is no longer present.

If you were Barry, would you have done anything differently? If not, you’re not all
that different from the participants in our own study, where 53 of the 55 participants
adopted a similar comprehension and resolution strategy.

Unfortunately, this fix turns out to be incorrect. The actual problem is that the
sublist method declaration is misspelled and should have been called subList, with
a capitalized L. Barry might have discovered this misspelling had he navigated one
more step up in the class hierarchy, to the grandparent class:

Worse, this scenario is not isolated to Barry. For example, the highest-rated
post on StackOverflow for the @Override annotation error suggests that it commonly
occurs in situations where method names have been misspelled.2

Did Barry simply not pay enough attention to the error message? On close
inspection, the error message does in fact mention supertype methods, though
not explicitly by name. Or could it also be the case that the error message leads
developers to prioritize certain solutions spaces for their code over others?

2http://stackoverflow.com/questions/94361/when-do-you-use-javas-override-annotation-and-
why
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6.2 Methodology

6.2.1 Research Questions
In this study, we investigate the following research questions, and offer our rationale
for each:

RQ1. How effective and efficient are developers at resolving error mes-
sages for different categories of errors? We ask this research question to assess
the representativeness of our experimental tasks with respect to the costly error
messages identified by Seo and colleagues [342], where costly is defined as frequency
of the error times the median resolution time. Additionally, the results of this re-
search question provide descriptive statistics to identify if some categories of defects
are more difficult to resolve than others. Identifying which categories of defects are
more difficult to resolve can help pinpoint where rational reconstructions may be
most beneficial to developers.

RQ2. Do developers read error messages? Although IDEs present error
messages intended to be used by developers, the extent to which developers read
these messages in their resolution process is an open question. Without answering
this question, toolsmiths who are attempting to improve error messages may be
misapplying their efforts. For instance, a developer might use the problems pane
not to actually read the error message, but instead because they know that double-
clicking an error message in the pane is a convenient way to jump to the offending
location in the source code. If this were indeed the case, then providing developers
with rational reconstructions would be unlikely to substantially help developers;
after all, they didn’t even need the existing error message to resolve their problem.

RQ3. Are compiler errors difficult to resolve because of the error mes-
sage? Resolving compiler errors within the IDE requires developers to perform a
combination of activities, such as navigating to files and making edits to source
code. One hypothesis is that certain compiler errors are difficult to resolve not
because the error message itself is cryptic, but because the task requires intricate
code modifications in order to address the defect. Alternatively, it may be the case
that the resolution requires only a simple code change to correct the defect, but a
confusing error message hampers the developer from discovering the required code
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change. Thus, we want to understand the extent to which poor error messages are
harmful to the developer. If the difficulty of resolving compiler errors is attributable
to the error message, then there is strong justification for pursuing research in
rational reconstruction.
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Table 6.1 Participant Compiler Error Tasks

Task Error Message1 Package Category Defect Introduced

T1 The method sublist(int, int) of type LazyList<E> must

override or implement a supertype method

List Semantic Renamed sublist to subList, breaking existing
@Override annotation.

T2 The type CursorableLinkedList<E> must implement the

inherited abstract method List<E>.isEmpty()

The type NodeCachingLinkedList<E> must implement the

inherited abstract method List<E>.isEmpty()

List Semantic Deleted isEmpty method from abstract parent
class.

T3 The import org.apache.commons.collections3 cannot be

resolved ( ... repeated 50 times)

Map Dependency Changed version of collections4 to non-
existent collections3 library in import state-
ments.

T4 The method get() is undefined for the type Queue<E> Queue Dependency Renamed method invocation from element() to
non-existent get().

T5 The method add(E) in the type Collection<E> is not

applicable for the arguments (int, capture#8-of ? extends

E)

Set Type mismatch Added additional argument of 0 to add method
call.

T6 Type mismatch: cannot convert from Set<Map.Entry<K,V>> to

Set<Map.Entry<V,K>>

Type mismatch: cannot convert from Set<Map.Entry<V,K>> to

Set<Map.Entry<K,V>>

Map Type mismatch Swapped key and value in dictionary from
Entry<K,V> to Entry<V,K>.

T7 Unhandled exception type InstantiationException Map Other Changed less specific exception Exception to
IllegalAccessException, which is not thrown
by the code.

T8 Duplicate method next() in type EntrySetMapIterator<K,V>

Duplicate method next() in type EntrySetMapIterator<K,V>

Iterators Other Copied and pasted next method to create dupli-
cate method.

T9 Cannot make a static reference to the non-static type E Queue Semantic Added static modifier to readObject method.

T10 Syntax error on token "default", : expected after this

token

Map Syntax Removed : from default: in switch statement.

1 For each error message, we compile the defective version of the code under Open JDK to replicate the compiler-internal error message key from the Seo
and colleagues study at Google [342]. The Eclipse version of this message is shown to the participants.
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6.2.2 Study Design
Participants. We recruited 56 students from undergraduate and graduate courses
in software engineering courses at our university. Through a post-experiment ques-
tionnaire, participants reported an average of 1.4 years (sd = 1.3) of professional
software engineering experience, that is, experience obtained from working as a
developer within a company.

Siegmund recommends self-estimation questions as a good indicator for judging
programming experience, especially when participants are students [353]. Follow-
ing this guidance, we asked participants about their familiarity with Eclipse and
their knowledge of the Java programming language. Participants self-rated their
familiarity with the Eclipse development environment with a median rating of
“Familiar with Eclipse (3),” using a 4-point Likert-type item scale ranging from
“Not familiar with Eclipse (1)” to “Very familiar with Eclipse (4).” Participants
self-rated their knowledge of the Java programming language with a median rating
of “Knowledgeable about Java (3),” using a 4-point Likert-type item scale ranging
from “Not knowledgeable about Java (1)” to “Very knowledgeable about Java (4).”
Participants also self-reported demographic data. Participants reported a mean
age of 24 years (sd = 6), 46 reported their gender as male, and 10 reported their
gender as female.

All participants conducted the experiment in one of two eye tracking labs on
campus, and both labs contained identical equipment. Participants received extra
credit for participating in the study. The first and third authors of the chapter
conducted the study.

Tasks. We derived tasks in our eye tracking experiment from prior work con-
ducted by Seo and colleagues, where they empirically obtained build failures from
over 26 million builds at Google [342]. From this data, they identified costly error
messages that occurred frequently in practice and were time consuming for de-
velopers to resolve. To constrain the study to under one hour, we selected the top
errors from each category of costly error messages, for a total of ten error messages
(Table 6.1). Through an informal pilot study with two other lab members, we found
that developers resolved each defect in under five minutes.
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However, we did not have access to the actual source code which generated
the errors in the Google study. As a substitute, we used the Apache Commons
Collections3 library and manually injected faults into this library to generate error
messages.

We chose Apache Commons Collections for several complementary reasons. First,
it provides a library of data structures, such as lists, sets, and dictionaries, that
are likely to be familiar to even first or second year students. Using such a library
also allowed us to isolate the effects of developer difficulties in understanding error
messages from that of unfamiliar code. Second, the library is open source, mature,
and moderately-sized in terms of lines of code. Third, the library provides unit tests
that can be used as a ground truth for the expected behavior of the code.

For each error, we introduced the error message into the Apache code through
operations that could reasonably occur in actual development practices. For example,
the @Override misspelling described in the motivating example (Section 6.1) was
applied based on comments on StackOverflow.

Tools and Apparatus. Participants used a Windows 8 machine with a 24-inch
monitor, having a resolution of 1920x1080 pixels. The computer was connected to a
GazePoint GP3 [128] eye tracking instrument, and this instrument was positioned
directly below the monitor. GP3 software and drivers were installed on the computer
to collect both the screen recording of the desktop environment and to synchronize
the time of the recordings with the eye tracking instrument. Participants used an
external keyboard and mouse to interact with the computer. The experimenters also
installed custom scripts on the machine so that they could remotely load participant
tasks.

We choose the Eclipse IDE [105] for this study because its presentation of errors,
for example, through the problems pane and Quick Fix popups, are characteristic
of the way errors are presented in other modern IDEs such as IntelliJ [183] and
Visual Studio [259]. A default Eclipse installation was deployed on the machine,
with minimal customizations. Specifically, we disabled Eclipse themes and turned
off rounded edges on windows to facilitate subsequent detection during the data
cleaning phase of the research.

3http://commons.apache.org/proper/commons-collections/
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6.2.3 Procedure
Onboarding. All participants signed a consent form before participating in the
study.4 Using a script, the experimenter verbally instructed participants with the
details of the study. Participants were informed that they would be identifying and
resolving ten source code defects, to be presented as compiler error messages in
their IDE. Participants were given five minutes per task. If the participants finished
early, they were asked to alert the experimenter and proceed to the next task. After
two minutes, participants were also provided the option to discontinue the task.

We asked participants to provide a reasonable solution for the defect that they
felt best captured the intention of the code. For example, although deleting all the
files in the project might remove the compiler defect, it would be highly unlikely
that this is an intended resolution. We told participants they were not expected to
successfully fix all the defects, and that some defects might be more difficult than
others.

Because of limitations with the eye tracking equipment, we asked participants
to leave the Eclipse window full-screen. We also asked them to not use any resources
(such as a web browser) outside of the Eclipse, because doing so would confound
external information with error messages in the IDE. However, we permitted partic-
ipants to use any of the features available within Eclipse, as long as these features
did not change any of the Eclipse preferences or install any new Eclipse packages.

Finally, we provided the participants with an error messages sheet, which de-
tailed all of the locations where error message information could appear in the
IDE.

Calibration. The eye tracker must be calibrated for each participant. To avoid
repeating the calibration, we requested participants to adjust their seating to a
position that would feel comfortable for the duration of the study. We conducted
a 9-point calibration using the software provided by the eye tracker, in which
participants must fixate on circles that appear at different locations on the screen.
To confirm that the calibration had successful applied, we conducted a stimuli task

4North Carolina State University IRB 5372, “Evaluating text and visual notifications in integrated
development environments during debugging tasks.”
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in the Eclipse environment. For this task, we asked the participant to navigate to
the About dialog box within the Help menu, and read the version number of Eclipse.
We also asked them to read a provided warning message in the problems pane of
the IDE. Together, these tasks established a baseline for calibration.

Experiment. To control for learning effects, participants sequentially received
one of ten tasks in randomized order. Participant were not allowed to revisit previous
tasks, nor were they allowed to ask questions to the experimenter. Participants
received no feedback on the correctness of their solution. On average our participants
took approximately 45 minutes to complete the study. Following the experiment,
participants completed a post-questionnaire about basic demographic information
and experience.

6.2.4 Data Collection and Cleaning
Data collection. For each participant and task, we collected screen recordings in
video format (at 10 frames per second) and a time-indexed data file containing all
eye movements recorded by the eye tracking instrument.

Data cleaning of titles. We used the OpenCV computer vision library [285] to
process videos on a frame-by-frame basis. To obtain the currently opened source
file, we used the Tesseract OCR engine to identify the titlebar for each frame [361].
Due to errors in OCR translation, we performed two data cleaning steps on the title.
First, we cropped each frame to only the title bar and scaled it by a factor of three
to artificially increase the font size. Second, we modified Tesseract to recognize only
alphanumeric characters, dash (-), period (.), and forward slash (/).

After Tesseract processing, several OCR errors remained. Thus, we applied a
Gestalt pattern matching algorithm [318] to match the OCR’d title against the
known set of all Java files in the Apache Commons Collection library.5 We manually
added the strings, Java - Eclipse, which appears in the title when no file is open,
as well as several classes from the java.util package to this processing step. The
output of this step a list of the title associated with each frame.

5In Python, this algorithm is available as get_closest_match.
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Data cleaning of areas of interest. Areas of interest (AOIs) are labeled, two-
dimensional rectangular regions of the screen that represent a logical component
within the interface. In our experiment, we first characterized four areas of interest
that are typically always present on the screen: 1) the explorer pane, which appears
on the left-side of the screen and allows the developer to navigate the project files, 2)
the outline pane, which appears on the right-hand side of the screen and contains
a list of methods for the current class, 3) the problems pane, at the bottom of the
screen and contains a list of the identified errors and warnings in the project, and 4)
the source editor, which appears in the center of the screen and contains the source
code.

We characterized two additional areas of interest that transiently displayed error
messages: 1) the error popup, which appears when the developer hovers over the
icon in the margin of the source editor, and 2) the Quick Fix popup, which appears
when the developer hovers over the red wavy underline on program elements in the
source code, or when they activate the Quick Fix feature explicitly.

To support automatic detection of each of the six areas of interest, we imple-
mented several techniques. For fixed-sized AOIs, such as the popups, we extracted
isolated screen captures of each popup and saved them as templates. For dynamically-
sized AOIs, we extracted the boundaries of the essential features of the elements,
and then performed a calculation to dynamically compute its bounding rectangle.
For example, to identify the source editor, we internally match against three sub-
templates: the top-left tab, the top-right minimize button, and a thin horizontal line
that delimits the source code from any panes below it.

At this point, we have computationally usable templates that represent mean-
ingful areas of interest, and we need to identify where these templates occur within
video frames. To do this, we used a template matching algorithm provided by
OpenCV. This algorithm essentially takes a given template, and slides it over the
entire frame. For every overlap, the algorithm computes a normalized score be-
tween 0.0 and 1.0, where 0.0 represents the least likely match, and 1.0 represents
a perfect match. Through trial-and-error, we found that a threshold of 0.95 yields
accurate detection of AOIs. Because this is a computationally demanding operation,
we down-sampled both the templates and the video frames to 50% of their original
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size to reduce the number of pixels needing to be processed at each frame. We then
up-scaled the identified pixel locations to map them to the original video locations.
The output of this procedure is a data file containing the identified AOIs for each
video frame and the bounding box of that AOI.

Data cleaning of fixations. The eye tracking instrument internally has a
proprietary algorithm for differentiating fixations, or sustained eye gazes, from other
types of rapid eye movement that naturally occurs as people process information.
However, the instrument has systematic measurement error in that the fixations
locations are misaligned by a constant factor. Thus, for each of the participants’
tasks, we used the stimuli task as a baseline to determine the initial horizontal and
vertical offset. For the remaining tasks, we adjusted the baseline as necessary.

After performing offset adjustment, we used the GazePoint software to extract a
list of fixations. For each record in the list, the record contains the time it began, its
duration, and its coordinates.6

6.3 Analysis

6.3.1 RQ1: How effective and efficient are developers at
resolving error messages for different categories of
errors?

We calculated the effectiveness for each task by using correctness as a proxy for
effectiveness. For us to consider a solution to be correct, the solution must pass all
of the unit tests in the Apache Commons Collections library after removal of the
compiler error. Otherwise, the solution is considered incorrect. Next, we cataloged
and binned the incorrect solutions observed for each task, with the intuition that if
unsuccessful participants make the same types of mistakes, there is some common
underlying cause.

6In the GazePoint software, this corresponds to the FPOGS, FPOD, FPOGX and FPOGY columns.
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We calculated efficiency from two time-derived metrics: time to complete task,
and participant effort. For time to complete task, we extracted the start and end
times from the videos using the icon in the problems pane label as a trigger, using
transitions of the icon from errors to no errors to indicate task boundaries. Tasks
for which no end transition was found were marked as a timeout. Participants who
declined to continue the task and did not resolve the defect were also assumed to
timeout.

For participant effort, we calculated a metric called response time effort [407].
Intuitively, if incorrect solutions are achieved in significantly less time than correct
solutions, then it would suggest that participants are not expending sufficient effort
to reasonably resolve a compiler error message. That is, the participant may simply
be careless, irrespective of the quality of the compiler error message or the difficulty
of the task. We performed a two-tailed t-test between task times, excluding timeouts,
under correct and incorrect solution conditions to gauge response time effort.

6.3.2 RQ2: Do developers read error messages?
Determining if developers are reading error messages through overt experimental
designs is surprisingly tricky. For example, asking participants to think aloud as
they resolve error message tasks adds a cognitive burden that has been found to
negatively impact task performance [149]. Directly questioning the participant at
the end of each task can introduce social-desirability and prime the participants’
behavior for subsequent tasks [402], thus causing them to read error messages
more carefully than they otherwise would have. Moreover, visual attention is a
largely subconscious process; participants in visual attention tasks, such as reading,
only have a rudimentary awareness of how they allocate their attention [155].
The use of eye tracking to answer this research question mitigates these issues,
but introduces one of its own: eye tracking data is noisy. For example, routine,
involuntary movements such as rubbing eyes and adjusting hair can block the eye
tracking camera, introducing spurious data points. Our analysis techniques are
constrained to those that are robust in the presence of noise.
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Previous eye tracking work by Rayner modeled “reading” as distribution times
of fixations under a variety of visual stimuli [319]. Rayner characterized the distri-
bution times of fixations under different reading conditions, such as silent and oral
reading. Through a meta-analysis, Rayner found that the mean fixation time of a
distribution increases with the difficulty of the text.

For fixations within the source code and error message AOIs, we replicated this
analysis, postulating that developers must read at least the source code in order to
resolve a compiler error message as a baseline.

We then characterized the distribution of source code, error messages, and
silent reading (provided by Rayner [319]) through a symmetric Kullback-Leibler
(KL) divergence, for each of pair of distributions. Essentially, KL divergence is
an information-based measure of disparity: the larger the value of the divergence
between two distributions, the more information is “lost” when one distribution is
used to model the second distribution [196].

Finally, to understand how developers allocate their attention to error messages
against other areas of interest, for each task, we computed across participants the
percentage of fixations for the areas of interest in the task.

6.3.3 RQ3: Are compiler errors difficult to resolve because
of the error message?

Although Seo and colleagues identified a distribution of costly error messages [342],
this does not automatically imply that the reason the error message is costly to
resolve is due to the error message itself. For example, an error message about a
mismatched brace may be easy to comprehend for the developer, yet costly to resolve
because the developer must spend most of their effort in the source code editor to
identify where to add or remove a brace. In answering this research question, our
goal is specifically to understand the extent to which difficulties with reading error
messages can be attributed to task performance difficulties.
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To understand if compiler errors are difficult to resolve because of the error
message, we used the eye tracking measure of revisits, that is, leaving an area of
interest and then subsequently returning to it, as a measure of reading difficulty.
In prior work, Jacobson and Dodwell identified the relationship that increasing
fixation revisits to an area of text is a measure of increased reading difficulty for
that area [179].

To answer this question, we computed a nominal logistic model between cor-
rectness and revisits to error messages. The output of the model is a probability of
correctness against the number of visits, over a distribution of tasks.

To evaluate the model, we computed the Nagelkerke’s coefficient of determination,
R2 [272]. Of course, there are many variables that influence whether or not a
developer will be successful at resolving a compiler error, such as previous knowledge,
experience, and familiarity with the code [189]. Consequently, we expect that the
coefficient of determination will be low, because reading difficulty is only a second-
order variable for these other factors. Fortunately, reading difficulty latently encodes
many of these variables: if a developer has little experience with a particular error
message, this lack of experience should manifest itself through how they read the
error message.

We also evaluated the model using a likelihood-ratio Chi-square test (G2) com-
puted between a full model, using the number of revisits as a predictor variable,
against a reduced or intercept-only model, fit without any predictor variables. If
the addition of a predictor variable is identified by the test as significant (α < 0.05),
then the predictor variable significantly improves the fit of the model.
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Table 6.2 Overview of Task Performance

Correct Incorrect Timeout
Task n % n % nbins

1 n %
T1 2 4% 47 85% 2 6 11%
T2 1 2% 49 91% 1 4 7%
T3 30 55% 0 0% 0 25 45%
T4 36 65% 10 18% 3 9 16%
T5 49 89% 5 9% 2 1 2%
T6 55 100% 0 0% 0 0 0%
T7 22 40% 23 42% 1 10 18%
T8 48 87% 5 9% 1 2 4%
T9 28 51% 2 4% 2 25 45%
T10 50 91% 5 9% 3 0 0%

1 nbins indicates the number of observed incorrect so-
lution types for each task, that is, the cardinality of
the incorrect solution set.

6.4 Results

6.4.1 RQ1: How effective and efficient are developers at
resolving error messages for different categories of
errors?

Table 6.2 summarizes the solution the developer makes based on our correctness
criteria. For every task, at least one participant made a code change congruent with
the correct solution, which indicates that it is at least possible to make a correct
fix for every task given the information in the error messages. The distribution
of correct and incorrect solutions are clearly skewed for many of the tasks. For
example, only two participants generated correct solutions for T1, and only one
participant generated a correct solution for T2. And for tasks T5, T6, T8, and T10,
nearly all or all participants arrived at the correct solution.
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Figure 6.1 The time required for developer to commit to a solution that is correct or
incorrect. Nearly all tasks (exceptions, T8 and T10) have high variance in resolution time to
arrive, irrespective of correctness.

The nbins columns in Table 6.2 indicates, for every incorrect solution, the types of
solutions provided by the participants. For example, consider T1, the problem Barry
faced in our motivating example (Section 6.1). Recall that the correct solution to
this problem is to rename the sublist method to subList. Participants provided two
incorrect solutions to this problem. They either removed the @Override annotation,
which suppresses the error but does not resolve the defect, or they created a stub
sublist method in the parent class, without recognizing the existing similarly-
named method. Across all tasks, participants converged to a small set of incorrect
solutions.

Figure 6.1 illustrates a violin plot of the time required for developers to apply
a resolution for both correct and incorrect solutions. The dashed lines indicate
quartile boundaries for each task. For incorrect solutions, timeouts are excluded
from the plot. Like Seo and colleagues, we also found large variation in the time
required to arrive at a solution for nearly all tasks [342]. For some tasks, however,
such as T8 and T10, most participants were able to correctly resolve the defect, and
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Figure 6.2 Comparison of fixation time distributions for silent reading of English
passages, reading source in the editor, and reading of error messages.

with relatively tight variation in time to resolution. As Seo and colleagues defined
costly in terms of both frequency of occurrence and median time to resolution [342],
it is likely these errors are costly because they are arise frequently as a nuisance
for developers, not because they are particularly difficult to resolve.

For response time effort, a t-test identified a significant difference in resolution
time between correct and incorrect solutions (t(20.24) = 2.86, p = 0.0045), with
incorrect solutions requiring an additional mean time of 20 seconds (sd = 7) over the
correct solution. The results of this test provide support that participants provided
sufficient effort in attempting to solve the task, and rejects the hypothesis that
participants chose an incorrect solution because it most quickly resolved the defect.

6.4.2 RQ2: Do developers read error messages?
Figure 6.2 illustrates the distribution of known silent reading durations against the
distribution of fixation times for error message areas of interest in our tasks. For
visualization purposes, the distributions are normalized as a probability density
function. That is, the probability of a random fixation to fall within a particular
region is the area under the curve for that region.
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The mean fixation time for reading in the source code editor is 394ms (sd = 240,
nfix = 81098). In comparison, previous work found that silent reading of English
passages of text yield mean fixation times of 275ms (sd = 75), and that for reading
and typing English passages yield a mean fixation time of 400ms (sd not provided
in original study by Rayner) [319]. Thus, reading source code is much more difficult
than reading a general English passage, and marginally less difficult than the
activity of typing while reading.

We compute the KL divergence between the source editor distribution and
error message distribution (DKL = 0.059), source editor distribution and silent
reading distribution (DKL = 3.38), and error message distribution and silent reading
distribution (DKL = 2.37). From the relatively small KL divergence between the
source editor distribution and the error message distribution, we conclude that
error message reading is comparable to source code reading (u = 419ms, sd = 270,
nfix = 18573), and unlikely to be a different activity than reading.

Another perspective on understanding whether developers read error messages is
to examine how they allocate their fixations across different areas of interest during
the task (Table 6.3). Across tasks, we found that participants spent 65%–80% of
their fixations in the source editor, with 13%–25% of their fixations on error message
areas of interest. Most participants use the error message information in either the
problems pane and Quick Fix popup; the error popup is rarely used.

Both the KL divergence analysis and the allocation of fixations to the task
support that developers are reading messages.

6.4.3 RQ3: Are compiler errors difficult to resolve because
of the error message?

A Chi-squared test reveals a statistically significant difference between the number
of revisits and the outcome of correctness over a distribution of tasks (df = 1, G2 =

60.9, p < .0001). This suggests that the number of revisits, a proxy measure for
reading difficulty [179], is a significant predictor variable for the task difficulty.
However, Nagelkerke’s coefficient of determination for the logistic fit is low (R2 =

0.16), which implies that reading difficulty is only one of many factors that contribute
to the overall difficulty of a task.
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Table 6.3 Participant Fixations to Areas of Interest

Task
Area of Interest T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Source editor

66% 66% 74% 79% 68% 65% 78% 68% 80% 65%

Error areas
23% 23% 15% 14% 23% 25% 15% 17% 13% 20%

Navigation areas
10% 11% 11% 6% 9% 11% 7% 15% 7% 15%

Error Areas Breakdown1

Error popup
1% 0.5% – 0.4% 0.7% 2% 0.5% 1% 1% 2%

Problems pane
12% 19% 15% 11% 16% 17% 9% 14% 11% 16%

Quick Fix popup
10% 3% – 3% 6% 5% 6% 1% 1% 2%

Navigation Breakdown
Explorer pane

10% 8% 10% 5% 8% 11% 6% 12% 5% 14%

Outline pane
1% 3% 1% 1% 1% 1% 1% 3% 1% 1%

1 To understand reading, the error areas breakdown aggregates
areas of interest to those that provide the text of the error
message.

Figure 6.3 presents this statistical result more intuitively. From Figure 6.3a, we
can see that as the number of revisits increases, the distribution of correct solutions
rapidly diminishes. We also see a long-tail of incorrect solutions. Figure 6.3b plots
a nominal logistic model for the number of revisits to error messages against the
probability of the developer applying a correct solution for the task. The probability
of a correct solution also diminishes as revisits increase. Thus, task difficulty is
attributable to the reading difficulty of error messages.
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Figure 6.3 In (a), histogram of correct and incorrect task solutions by number of revisits on
error message areas of interest. In (b), nominal logistic model of the probability of applying
a correct solution number by revisits on error message areas of interest. As revisits to error
messages increase, the probability of successfully resolving a compiler error decreases.

6.5 Discussion
From the results of our research questions, we identify—using eye tracking—three
problem areas in current development environments. These problems, if addressed,
could improve rational reconstructions.
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Error messages are not situationally-aware (RQ1). Although our tasks
covered the distribution of costly errors, the way in which the defects themselves can
manifest is situationally-dependent. For example, consider T2, in which through a
merge the method isEmpty() has inadvertently been deleted from the parent class,
AbstractLinkedList<E>. The children of this class are CursorableLinkedList<E> and
NodeCachingLinkedList<E>.

This causes the compiler to emit two error messages:
The type CursorableLinkedList<E> must implement the

inherited abstract method List<E>.isEmpty()

The type NodeCachingLinkedList<E> must implement the

inherited abstract method List<E>.isEmpty()

For this message, it is not surprising that developers would be led to believe that
they should implement the isEmpty() method in both classes. Indeed, all participants
except for one came to this incorrect conclusion (Table 6.1, nbin = 1).

Instead, consider if the compiler had presented the following alternative message:
The type AbstractLinkedList<E> must implement the

inherited abstract method List<E>.isEmpty()

Given the fact that our participants took cue from the error messages in the first
error message set, it is plausible that participants would have arrived at the correct
solution, adding the missing method to the AbstractLinkedList<E> class, if they had
instead been presented with the second error message. Unfortunately, it’s difficult
for the compiler to know which of these messages would be more appropriate to
present to developer without having situational information, such as recent edit
history.

Toolsmiths may want to consider incorporating situational awareness into their
choice of presentation to aid developers in more accurately identifying and resolving
the root cause of a defect.

Error messages appear to take the form of natural language, yet are as
difficult to read as source code (RQ2). Although we expected error message
mean fixations to be somewhat higher than silent reading due to more technical
language, we were surprised to find that error messages were not only significantly
more difficult to read than the silent reading of natural language, they were also
slightly more difficult to read than even the source code.
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Figure 6.4 Emerging error reporting systems like LLVM scan-build provide stark contrast
to those of conventional IDEs. Here, scan-build presents error messages for a potential
memory leak as a sequence of steps alongside the source code to which the error applies.

To postulate why this might be, let’s return to Table 6.1. Consider an error
message as in T4, which reads:
The method get() is undefined for the type Queue<E>

Even for relatively short error messages like this one, participants spent 14% of
their time in the total task with fixations across essentially nine “words.” Prior
research in language cognition for bilingual sentence reading has found that switch-
ing languages is associated with a cognitive processing cost [263]. Similarly, one
explanation for the apparent difficulty of reading error messages is that error mes-
sages consist of both natural language (“is undefined for”) and code (“Queue<E>”),
but are not entirely either. Consequently, developers must context-switch between
two different modalities of reading to fully capture the information presented in an
error message, leading to increased reading difficulty.

A second explanation for why error messages are comparable in difficulty to
reading source code is because reading error messages requires the developer to
also switch between the error message and the source code in order to understand
the full context of the task. For example, a developer might read “The method get()”
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and then suspend their reading of the error message to determine in the source
editor the calling context of this method and figure out why and whether it should
be called. In this case, error presentation approaches such as those found in LLVM
scan-build [234] may prove beneficial to developers (Figure 6.4). Unlike conventional
error messages, which decouple the error message from the code context, scan-build
presents the error as a sequence of steps that the developer can follow alongside in
the context of the code to which the error message applies.

Tools fail developers in the presence of compiler errors (RQ3). While
difficult error messages are a significant predictor of correctness, the low R2 from
RQ3 suggests that other factors exist which affect the difficulty of a resolution task.
For example, in addition to reading error messages, participants in our study also
had fixations within navigation areas of interest for 6%–15% of the total task.

In observing the participant videos for these tasks, we found several instances
where participants attempted to use tools that fail in the presence of a compiler
error message during navigation-related tasks. As one example, a participant in T8
attempted to navigate to the appropriate method through a usage of that method.
Although the Eclipse IDE would reveal both locations, it makes no special effort to
distinguish the two methods, leading to potential visual disorientation within their
IDE [8]:

In T8, yet another participant was aware of a tool within the IDE to facilitate
comparison between two methods, but they could not recall how to invoke it. This
example illustrates how tools that support understanding of a defect may be just as
important as tools that provide a resolution. But unlike Quick Fix popups, which
appear automatically, comprehension tools such as Compare With must be invoked
manually by the developer. Analogous to Quick Fix popups, perhaps toolsmiths
should offer “Quick Understanding” popups, which recommend appropriate tools,
such as Compare With, that are known to be helpful in understanding a particular
compiler error. Our own work in defect resolutions provides a starting point for auto-
matically bringing relevant tools to the developer to help with comprehension [18].
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6.6 Limitations
Although we derived our errors based on frequency and difficulty of resolution from
a prior Google study [342], we could not ensure that we used the similar phrasing
in our replication of error messages. Google uses a proprietary version of OpenJDK
with custom messages not available to the general public. We also do not have access
to the source code that generated these errors. As a result, the messages we use in
Eclipse are not identical to those previously studied. Instead, in our study design,
we seeded errors that approximate the scenario described by the original message.

We only investigated ten error messages with our participants. However, research
by Seo and colleagues found that improving even the 25 of the top errors would
cover over 90% of all the errors ever encountered at Google. A similar result has
since been replicated for novice developers in Java [310]. Furthermore, we sampled
error messages across multiple categories of defects to increase generalizability.

One construct validity issue is the accuracy of the eye tracker. We used a com-
modity eye tracking instrument which has a lower sample rate than professional
eye tracking equipment. For example, our eye tracker did not perform well with
participants with glasses, and was also sensitive to lighting conditions. The com-
modity eye tracker also limited our analysis to larger areas of interest; we were
unable to perform line or word level analysis, which would be useful for further
understanding parts of the text developers actually read. We had to discard 51 tasks
due to equipment malfunction during participant sessions. An additional 79 tasks
were dropped because reasonable eye tracking data was not obtainable from the
participant data, even after manual offset correction.

A threat to external validity is that we used student developers in place of full-
time professional developers. Although many of our participants had professional
experience, these participants may not fully represent industry developers in all
situations [336]. For example, it is possible that senior developers with extensive
experience of their own code base would arrive at a correct solution for some tasks
irrespective of the information in the message (RQ1). Although our participants
rarely used error popups in their IDE (RQ2), we might expect that senior developers,
again having familiarity with their code base, would utilize these on-demand infor-
mation sources more frequently than the always-available problems pane. Developer
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effectiveness for a task and its relationship to error message revisit frequency may
be less pronounced when participants have a broader range of developer experience
than those in our own study (RQ3). Thus, we should be careful in generalizing our
findings to all developers.

Lastly, our analysis is also limited to insights that can be obtained through
eye tracking measures. A future study in which participants perform a gaze-cued,
retrospective think-aloud on their own recordings could yield additional insights on
participant behavior [72, 111].

6.7 Related Work in Eye Tracking
To our knowledge, this study is the first to use eye tracking to explain how devel-
opers make use of error message information to resolve defects within the IDE. In
this section, we discuss related work from eye tracking studies in debugging and
defect understanding. Rodeghero, McMillan, McBurney, and colleagues [326] used
eye tracking to understand how developers summarize code; the results of their
experiment were then used to improve automatic code summarization. Romero, Cox,
Boulay, and colleagues [328] used eye tracking to understand how developers found
defects in source code under different representations of the source code, such as
diagrams. Uwano, Nakamura, Monden, and colleagues [385] asked developers to
perform code review tasks, during which participants had to locate defects in the
code. The authors identified common scan patterns in subjects’ eye movements. In a
partial replication of Uwano’s study, Sharif, Falcone, and Maletic [345] found differ-
ences between experts’ and novices’ scan patterns while locating defects. Bednarik
and Tukiainen [28] found that repetitive patterns of visual attention were associated
with lower performance. In our study, we also found that revisits to error message
information is statistically significant with respect to the probability of correctness.
Like other research attempting to find patterns in debugging activities, Hejmady
and Narayanan [163] found visual pattern differences based on programming ex-
perience and familiarity with the IDE. Busjahn, Bednarik, Begel, and colleagues
[52] were interested in how novices read source code; from eye tracking, they found
that experts read code less linearly than novices. To justify investments in rational
reconstruction, we are interested in when and how developers read error messages.
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6.8 Conclusions
In this chapter, we conducted a study using eye tracking as a means to investigate
if developers read error messages within the Eclipse IDE. Through distribution
comparisons between source code, error messages, and prior work on silent reading,
we not only found support that developers are reading error messages, but also
found that the difficulty of reading error messages is comparable to reading source
code—a cognitively demanding task. By examining developer fixations, we found
that developers spend a substantial amount of time on error message areas of
interest, despite the fact that most tasks had only a single error message present. An
analysis of revisit counts as a proxy for reading difficulty suggests that difficulties
in solving a task can be attributed to difficulties in reading the error message.
Thus, the evidence in this chapter supports the first claim in my thesis: difficulties
interpreting error messages produced by program analysis tools are a significant
predictor of developers’ inabilities to resolve defects (Chapter 1).

If we further postulate that error messages as rational reconstructions are useful
for developers, then could it be the case that developers have difficulties interpreting
error messages because they are insufficient rational reconstructions? And would
addressing these deficiencies make error messages more useful and comprehensible
to developers?

In the next two chapters, we tackle these questions. In Chapter 7, we consider a
visual form of rational reconstruction, called trace-explanation, and demonstrate
how existing visual presentations in contemporary program analysis are insufficient
rational reconstructions. In Chapter 8, we consider a text form of rational recon-
struction, called justification-explanation, to demonstrate that contemporary text
presentations are also insufficient rational reconstructions. Considering both trace-
explanation and justification-explanation provide full coverage over the theoretical
framework of rational reconstruction (Section 2.4).
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7 | How Do Developers Visualize
Compiler Error Messages?

Never ignore coincidence. Unless, of
course, you’re busy. In which case,
always ignore coincidence.

The Doctor

Integrated development environments such as Eclipse, IntelliJ, and Visual
Studio offer a number of visualizations to assist developers in more effectively
identifying and comprehending program analysis error messages (Section 3.3).1

For example, in addition to the text description of the error found in a console
output or dedicated error window, these messages may include an indicator in
one or more margins along with a

::::
red

::::::
wavy

::::::::::::
underline overlaid on the source text;

such visualizations diagrammatically indicate a relevant location of an error. En-
couragingly, Ainsworth and Loizou [5] found that the use of diagrams promote the
self-explanation effect significantly more than text alone.

Despite the visual affordances in contemporary IDEs, we postulate one of the
reasons visual error messages remain confusing for developers is because they
are insufficient rational reconstructions. Specifically, these visualizations do not
support developers during self-explanation—essentially, the cognitive process by

1Significant portions of this chapter were previously published as T. Barik, K. Lubick, S. Christie,
and colleagues, “How developers visualize compiler messages: A foundational approach to notification
construction,” in IEEE Working Conference on Software Visualization (VISSOFT), 2014, pp. 87–96.
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which humans self-generate explanations to themselves and to others in order to
understand a situation [291]. Failures during the self-explanation process can result
in a substantial loss of productivity because humans are imperfect and bounded in
knowledge, attention, and expertise [205].

In this chapter, we argue that developers stand to significantly benefit when
program analysis exposes its automated reasoning through trace-explanations (de-
scribed in the theoretical framework in Section 2.4), a form of rational reconstruction
in which error messages chain backwards to establish a line-of-reasoning to the
causes of the error. We contend that program analysis tools can leverage these
trace-explanation structures to generate expressive, explanatory visualizations that
align with the way developers self-explain error messages. Our contributions in
this chapter are:

• A foundational set of composable visual annotations that aid developers in
better comprehending error messages.

• An explanation task evaluation, using a set of paper mockups, which demon-
strates that our explanatory visualizations yield more correct self-explanations
than the baseline visualizations used in IDEs today.

• A recall task evaluation, in which developers write programs in a minimalistic
programming environment to intentionally generate compiler errors, which
demonstrates that better self-explanations enable developers to construct
better mental models of error messages.

7.1 Motivating Example
Yoonki is an experienced C++ developer who has recently transitioned to a project
that is being developed in the Java programming language. While programming,
he encounters a wavy red underline visualization as shown in Figure 7.1a, which
indicates an error. The problem seems to be related to final int i, which Yoonki
recognizes as being roughly similar to the concept of a const variable in C++. Yoonki
investigates further and notices the full text of the error in the bottom pane of his
IDE (Figure 7.1c).
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1 class Melon {
2

::::::
final

:::::
int

::
i;

3
4 Melon(boolean b) {
5 if (b)
6 i = 3;
7 }
8 }

(a) Baseline visualization

1 class Melon {
2 final int i;
3
4 Melon(boolean b) {
5 if (b)
6 i = 3;
7 }
8 }

1 2

i = 3 i = ?

b = true b = false

(b) Explanatory visualization

Melon.java:7: error:

variable i might not have been initialized

}

^

1 error

(c) Error message text

Figure 7.1 A comparison of a potentially uninitialized variable compiler error through (a)
baseline visualizations, the dominant paradigm as found in IDEs today, (b) our explanatory
visualizations, and (c) the text error message.

However, Yoonki is now a bit puzzled. The error message indicates the variable
might not be initialized at Line 7. He decides this error message is incorrect and
ignores it because Line 7 contains only a curly brace, which seems to have nothing to
do with his problem. He is comfortable in doing so because in C++, he often received
unhelpful error messages.
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Yoonki explains to himself that the problem is that final variables in Java,
like const variables in C++, must be assigned at their point of declaration, or in
a constructor initializer list. Satisfied with his explanation, he rewrites Line 2 to
read final int i = 3; but this immediately results in a downstream error, as Line
6 now displays cannot assign a value to final variable i. Yoonki realizes that
a constant cannot be re-assigned, so he deletes the entire conditional statement.
Even though the program now compiles, the fix happens to be an incorrect one.

The problem here is that Yoonki has learned a reasonable heuristic for how
constant variables work in programming languages, but his heuristic fails in this
case. Like C++, Yoonki is correct in that Java final variables can only be assigned
once. But unlike C++, final variables in Java can be assigned at a point other
than the declaration. Yoonki has experienced what we could call a knowledge break-
down [205]. In this case, Yoonki has a confirmation bias about how the system is
supposed to work, and this false hypothesis has worked reasonably well for him
until now.

This false hypothesis remains uncorrected by the IDE. In his IDE, the red wavy
underline visualization can only indicate a single location related to the error. The
IDE is unable to convey that the problem is dependent on several program elements.
For example, the error text and the indicated location is accurate in that after this
line the variable might be uninitialized, but the IDE does not have an effective way
to indicate how that location relates to the final variable.

In contrast, consider our approach, shown in Figure 7.1b. Here, Yoonki may
not experience the same knowledge breakdown, because the IDE provides a visual
explanation of the problem within his source code. Though Yoonki might once
again incorrectly assume final variables must be assigned at declaration, the
visualization implies that the problem is actually related to control flow. Specifically,
the explanatory visualization is showing Yoonki there is a code path in which i is
assigned a value (when b = true), and another code path where it is not (when b =

false). This time, Yoonki correctly fixes the defect by adding an else statement to
the condition, initializing it with an appropriate value in the case when b = false.
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Table 7.1 Frequency of Visual Annotations in Pilot

Annotation Frequency Description
Point 49 A particular token or set of tokens has been marked.

Examples include underlining or circles the to-
ken(s).

Text 45 Natural language text. For example, “assign a value
to the variable” or “dead code”.

Association 33 An association between two or more program el-
ements, which is accomplished by drawing a con-
necting line between the elements, with or without
arrow heads.

Symbol 20 Symbols include visual annotation such as ? or x, or
numbered circles, to name a few.

Code 14 Explanatory code that is written in order to explain
the error message, for example, if (b == false) or
m(1.0, 2). This does not have to be correct Java
code, but should be interpretable as pseudocode.

Strikethrough 5 The strikethrough is separated from the point anno-
tation because this annotation is provided by IDEs
today, and has pre-established semantics.

Multicolor - The use of more than a single color to explain a
concept. For example, green may be used to indicate
lines that are okay, and red to indicate lines that
are problematic. This option was not available to
students in the pilot study.

This hypothetical scenario illustrates why the dominant visualization paradigm
is not sufficient in supporting the process of self-explanation. As we argue in this
chapter, this scenario is illustrative of a more general problem with the output
of program analysis tools: these tools present only the end-result of the complex
reasoning process. As insufficient rational reconstructions, the output does not
adequately support the developer during self-explanation.
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7.2 Pilot Study
We conducted a pilot study from undergraduate lab sessions in Software Engineering
to address a prerequisite research question:

RQ0 What annotations do developers use when they explain error messages to
each other?

We hypothesized that if participants preferred certain types of annotations when
explaining error messages to each other, they could also benefit when the same
annotations were used to explain error messages to them through their IDE.

Thus, before generating our annotations, we conducted an informal lab activity
with third-year Software Engineering students. Each student was given a sheet of
paper with a source code listing and the corresponding compiler error message. The
source code listings were unadorned and lacked any visual annotations.

Students were paired for an explainer-listener exercise. This is an exercise in
which one student, the explainer, is asked to verbally explain the error message
to the other student while visually annotating the source code listing during their
explanation. Access to external materials was not allowed. After two minutes of
explanation, roles were swapped and the second explainer annotated the second
error message.

We randomly assigned one of four source code listings to each student, pulled
verbatim from the OpenJDK 7 unit tests for compiler diagnostics framework. These
examples, among others used in subsequent studies, are found in Table 7.3. No
students within a pair received the same source code listings. In total, we collected
73 samples: 17 from T1 (23%), 12 from T2 (16%), 20 from T3 (27%), and 24 from T6
(33%). Students did not receive tasks T4 or T5, because they had not been created
at the time of the pilot study.

From these annotations we performed two passes over the student responses. In
the first pass, we created a taxonomy of visual annotations based on our observations.
In the second pass, we classified the student responses using this taxonomy. The
aggregated results are shown in Table 7.1.
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Table 7.2 Visual Annotation Legend

Symbol Description

code The starting location of the error.

code Indicates issues related to the error.

Arrows can be followed. They indicate the next relevant location to
check.

1
Enumerations are used to number items of potential interest, especially
when the information doesn’t fit within the source code.

? The compiler expected an associated item, but cannot find it.

Conflict between items.

code
Explanatory code or code generated internally by the compiler. The
code is not in the original source.

Indicates code coverage. Green lines indicate successfully executed code.
Red lines indicate failed or skipped lines.

The pilot study informed our explanatory visualizations, which we implement
through annotations such as points, associations, symbols and explanatory code.
Since students used these types of annotations without any a priori prompting,
we postulate that they find these types of annotations intuitive to use during
explanation.
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7.3 Explanatory Visualizations of Error Messages
We propose a set of eight visual annotations, which are summarized in Table 7.2.
We now concretely describe these annotations using the motivational example from
Figure 7.1b. The starting point for visual explanation in the source code listing is
indicated using code (a green rectangle with rounded corners that surrounds a
program element). In our visualization mockups, we choose the starting point to
be the same as the source of the error identified by IntelliJ (Figure 7.1a). In the
example, this is final int i.

Continuing our example, the starting point is associated with a second point,
int i, because this is where the potential assignment to the variable occurs. We
indicate the starting point with code (red rectangle with rounded corners), and
the association is indicated by (a directional arrow).

A second association leads the developer to an explanatory code block that
contains a copy of the statement. Explanatory code is represented by code (dashed
gray rectangle), which indicates the surrounded elements are explanatory and not
part of the original source code of the program. This explanatory code block is part
of a larger composite annotation describing the control flow scenario under which
the statement is executed.

This composite annotation demonstrates that several basic annotations can be
combined to create a new annotation for expressing a more complex concept. One of
these components is the code coverage annotation. This annotation uses (green
line) and (red line) to indicate whether or not a line is covered. In addition, the
enumerations 1 and 2 provide the developer with convenient labels for referring to
the branches (for example, “It looks like it works fine in branch 1, but not in branch
2”). The final component is another explanatory code block indicating one possible
condition under which the branch would be executed.

Thus, the composite annotation indicates that i = 3, and all statements within
branch 1 will be executed when b = true. This composite annotation is then used to
show the developer a counterexample in which i would be uninitialized. A simple
text explanation stating that i is uninitialized when b = false would have pro-
vided the same conclusion, but we hypothesize that the intermediate steps in the
explanation are important for developer comprehension.
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There are two visual annotations that do not appear in the motivating example
that warrant explanation. These are (red cross), which indicates that a conflict
exists between blocks, such as when the developer accidentally specifies repeated
modifiers:

class Apple {

public public String toString () {
return "Red";

}
}

Finally, the ? is used to indicate that the program element should be associated
with another element, but that the connecting element is not found. This can occur
when a catch statement is unreachable either because the exception can never be
thrown, or because it is always caught by a prior catch clause:

Screen Listing for Trumpet.java

1 import java.io.*;
2
3 class Trumpet {
4
5 void play() {
6 try {

7 if (true) {
8 throw new FileNotFoundException ();
9 }

10 else {
11 throw new EOFException ();
12 }
13 }

14 catch(FileNotFoundException fnf) { }

15 catch(EOFException eof) { }

16 catch(IOException ex) { }
17 }
18 } ?

Compiler Output

Trumpet.java :16: warning: unreachable catch clause
catch(IOException ex) { }
ˆ

thrown types FileNotFoundException ,EOFException have already been caught
1 warning

7.4 Methodology
We conducted a second, formal study, which we discuss for the remainder of this
chapter.

7.4.1 Research Questions
We assigned participants randomly to two groups: a control group, having access to
the baseline visualization (red wavy underline) in their source code, and a treatment
group, having access to our explanatory visualizations. We designed our experiment
to elicit answers for four research questions:

RQ1 Do explanatory visualizations result in more correct self-explanations by
developers?

RQ2 Do developers adopt conventions from our visual annotations in their own
self-explanations?
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RQ3 What aspects differentiate explanatory visualizations from baseline visual-
izations?

RQ4 Do better self-explanations enable developers to construct better mental
models of error messages?

Unlike baseline visualizations, explanatory visualizations are rational recon-
structions designed to expose the reasoning process of the compiler in a way that
aligns with a developers’ own self-explanation process.

For RQ1, we hypothesized that exposing this reasoning process would result
in significantly more correct explanations by developers. If this hypothesis was
not supported, it would imply that the explanatory visualizations might confuse
developers and differ from the way they model error messages.

For RQ2, we hypothesized that both the control group and treatment group would
adopt similar annotations when developers explained error messages, because our
visualizations are based on conventions that developers would find intuitive for
self-explanation.

For RQ3, we wanted to identify the traits of the explanatory visualizations
beneficial to developers in comprehending error messages. Significant differences
in traits between the baseline visualization and explanatory visualizations would
give us insight into the design of explanatory visualizations in general.

For RQ4, we hypothesized that better explanations result in better mental
models, and that developers with explanatory visualizations would tend to have
better mental models than the control group.

7.4.2 Participants
We recruited 28 participants (n = 28) from a third-year undergraduate course in
Software Engineering because they were readily available and because we wanted
to reserve our more limited industry participants for a full implementation. We
offered participants extra credit on their final exam for participating in the study.
Participants self-reported demographic data. 23 of the participants were male (82%),
and five of the participants were female (18%). The mean age of the participants
was 22 (s = 3.6). Participants reported a mean of 9 months (s = 12) of industry
programmer experience.
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26 participants reported using the Eclipse IDE as their primary Java program-
ming environment; two participants reported IntelliJ. On a 4-point Likert-type item
scale of Novice—Expert, 13 participants reported their overall programming ability
as Intermediate (46%), 14 as Advanced (50%), and 1 as Expert (4%). No participants
ranked themselves as Novice. On a 4-point scale Not knowledgeable—Very knowl-
edgeable, 19 participants indicated they were knowledgeable about Java (68%), and
the remaining 9 participants indicated they were very knowledgeable about Java
(32%).

7.4.3 Selection Criteria for Mockups
Because our university requires students to have knowledge of Java, we selected
examples in this language to mockup our visualizations.

Pragmatically, we wanted to keep the entire study under an hour, so we could
only present six novel visualizations to participants. We admit that the selection
of these visualizations was not random, and offer our justification for this decision
here.

We selected our compiler error examples from the OpenJDK diagnostics frame-
work.2 This framework contains a collection of 382 Java code examples, each of
which is designed to generate one or more error messages when compiled.

Since some error messages may be more conceptually sophisticated than others
(for example, “illegal escape character” is not particularly suited to an explanatory
visualization), we hand-selected a set of examples that we believed could benefit
most from visual annotations. If no significant results could be identified even from
this hand-selected set, then it would suggest that this visualization system is not
worth pursuing for a full implementation.

Furthermore, our visualization system is not intended to teach new concepts;
rather, it is intended to aid the developer in understanding how a particular instance
of an error message applies to a specific source file. Consequently, we selected
examples based on concepts that students were expected to already know from their
coursework, such as constants and variables, exceptions, and classes.

2The framework contains a sample source code listing for almost every compiler error within
Java. The source files may be downloaded at http://hg.openjdk.java.net/jdk7/tl/langtools/, and
then by browsing to test/tools/javac/diags/examples/.
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Ultimately, we selected messages that we believed could effectively demonstrate
the rich explanatory potential of visualizations, while considering the capability
of the participants. The selected messages are summarized in Table 7.3 on the
following page.
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Table 7.3 Participant Explanation and Recall Tasks

Task Order Task Name OpenJDK File Error Message
T1 Melon VarMightNotHaveBeenInitialized.java variable i might not have been initialized

T2 Kite UnreportedExceptionDefaultConstructor.java unreported exception Exception in default

constructor

T3 Brick RefAmbiguous.java reference to m is ambiguous, both

method m(int,double) in Brick and method

m(double,int) in Brick match

T4 Zebra InferredDoNotConformToBounds.java cannot infer type arguments for

BlackStripe<>;

reason: inferred type does not conform to

declared bound(s)

inferred: String

bound(s): Number

T5 Apple RepeatedModifier.java repeated modifier

T6 Trumpet UnreachableCatch1.java unreachable catch clause

thrown types FileNotFoundException,

EOFException have already been caught
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7.4.4 Mockup Construction Procedure
Using the six selected error messages, we constructed a total of 12 mockups—six for
the control group and six for the treatment group. We designed the paper mockups
to resemble how the visualization would appear within the text editor of the IDE,
with one mockup per page. Each page contained a listing of the source code with
the appropriate visualizations and line numbers. The code listing was followed by
the text of the compiler error message.

The control group mockups were designed by directly copying the red wavy
underline visualizations provided by the IntelliJ IDE for the Java code examples.
IntelliJ also provides interactive tooltips for each error, which are shown when the
developer hovers over an annotated substring. However, we did not consider these
interactive features since we are specifically interested in the contribution of the
explanatory capability of the non-interactive visualizations. We chose IntelliJ over
the Eclipse IDE because it uses the same text error messages as the command-line
OpenJDK compiler, which is important to our experimental design.

The treatment group mockups were informed by a pilot study through which
we elicited an initial taxonomy of visual annotations that appeared to be useful to
developers when they explained concepts to other developers (see Section 7.2). We
used the annotations from this pilot experiment as a foundation for manually draw-
ing visual annotations for six of the error messages. We used our own experiences
with compiler technologies such as Roslyn3 to render visualizations that we think
are plausible for compilers to render if they expose the appropriate data structures
to a visualization system.

7.4.5 Investigator Training
The first and second authors conducted the experiments. To increase consistency
between the authors, the first author conducted a practice session with the second
author acting as a participant. The roles were then reversed, and the study was
repeated. Through this process, we developed a formal protocol script for conducting
the sessions.

3http://msdn.microsoft.com/en-us/library/roslyn.aspx
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7.4.6 Experimental Procedure

7.4.6.1 Assignment

We randomly assigned participants to one of two groups—control or treatment,
such that each group had an equal number of participants. This resulted in 14
participants per group. The only difference between the treatment and control
groups was the type of visualizations that they used during the experiment.

7.4.6.2 Recording

Participants filled out an informed consent form and indicated whether or not they
wanted their audio (used in Phase 1 and 2) and screens (used in Phase 2) to be
recorded. For participants who agreed to be recorded (n = 26), we used desktop
recorder software to record both the audio of the explanations as well as screen
interactions during the experiment.

7.4.6.3 Phase 1: Self-Explanation Phase

The purpose of this phase was to evaluate whether our explanatory visualizations
resulted in more correct self-explanations by developers than with baseline visual-
izations (RQ1), and to identify the extent to which developers adopt conventions
from our visual annotations in their own explanations (RQ2).

We sequentially provided participants with six error messages, presented as
paper mockups that resembled an IDE. For the mockup, the source code of the
OpenJDK file was minimally modified using a random-noun generator to make
the class and method names more pronounceable. These tasks are summarized in
Table 7.3, and we presented the tasks to the participants alphabetically by Task
Name.

In the control group, participants received paper mockups. containing the base-
line red wavy underline visualization, such as in Figure 7.1a. The treatment group
received paper mockups containing our explanatory visualization as in Figure 7.1b.
Below the source code listing, all participants received the full error message text
(Figure 7.1c). In the treatment group, we provided participants with a visual an-
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notation legend (Table 7.2), since these participants did not have prior familiarity
with our visualizations. Finally, we provided participants with colored pencils and
an unadorned mockup of the IDE having the source code and error message text,
but no annotations.

For each task, we provided participants with 30 seconds to individually examine
the paper mockup. Then, we instructed participants to think-aloud and verbally
explain the cause of the error. During their self-explanation, we encouraged par-
ticipants to visually annotate the unadorned mockup. We gave participants two
minutes for the think-aloud explanation, but allowed them to finish earlier if they
were satisfied with their explanation for the task. The investigators were not allowed
to correct the participants when they gave incorrect explanations, nor give any hints
about the error message. However, we permitted the investigators to ask clarifying
questions (e.g., “Could you explain that in more detail?” or “I didn’t hear you. Could
you repeat that?”). At the end of each explanation, participants indicated whether
or not they had previously encountered this error message, which they categorized
as Yes, No, or Unsure.

7.4.6.4 Cognitive Dimensions Survey

To evaluate aspects of visualizations that developers find useful in self-explanation
(RQ3), participants completed a Cognitive Dimensions of Notations questionnaire
(CD) [142], which we simplified for error messages. We chose this evaluation in-
strument over other usability instruments because the analysis is usable by non-
specialists in HCI (in contrast with Nielson and Molich’s heuristic evaluation [280]).
The instrument is also quick to apply, and can be used in an early design phase.

The full CD defines 14 dimensions, but not all of these are applicable to our
design. Since our visualizations are currently non-interactive, we eliminated all
dimensions that assessed interactivity or were otherwise immaterial to our study,
among them, viscosity, premature commitment, and progressive evaluation. This
left four dimensions:

Consistency similar semantics are expressed in similar syntactic forms

Hidden dependencies important links between entities are not visible

Hard mental operations high demand on cognitive resources
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(a) Command prompt. (b) Minimal text editor.

Figure 7.2 We presented participants with a command prompt in which they had the
compile command available to them. The limited interaction modality forces participants to
rely solely on their own memory to successfully complete the task.

Role expressiveness the purpose of a component is readily inferred

A description of each dimension was presented to the participants, along with a
5-point interval scale indicating the degree to which their visualizations satisfied the
dimension, which we worded so that higher scores are better. We gave participants
5 minutes to complete the questionnaire.

7.4.6.5 Break

We gave participants a 5 minute break between the first and second phases. We did
this partly because of the long duration of the study, but also to minimize short-term
memory interference between the two parts of the experiment.

7.4.6.6 Phase 2: Recall Phase

The purpose of this phase was to determine whether better self-explanations enable
developers to construct better mental models of error messages (RQ4). To evaluate
this hypothesis, we asked participants to write source code listings on a computer
from scratch in order to generate a provided compiler error.

Participants did so through the interface shown in Figure 7.2. We gave the
participants a command prompt (Figure 7.2a) supporting a single command, compile.
This command printed to the console the expected error for the task, as well as the
error that their source file produced. In addition, participants entered their source
code into a minimal text editor (Figure 7.2b). We chose a minimal text editor to
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force all participants to recall code entirely from memory, without assistive features
like auto-completion. For example, in Figure 7.2, the participant has been asked
to write a source listing that generates the error variable i might not have been

initialized. However, the source listing as currently written compiles without error.
Participants used this interface to complete a total of six tasks, all of which

they had previously explained during the Self-Explanation Phase of the experiment.
The tasks from this phase are also from Table 7.3, but to avoid serial recall we
presented the tasks in Task Order, rather than alphabetically by Task Name. Thus,
participants had to successfully recall their explanations from the Self-Explanation
Phase of the experiment and apply their understanding to this phase of the experi-
ment. We allowed participants an unlimited number of compilation attempts, but
restricted the time for each task to 5 minutes. Participants moved on to the next
task either when they had successfully replicated the error message, which we term
recall correctness, or when their time had expired.

The unusual experimental technique in this phase is not without theoretical
justification. In 1977, Shneiderman conducted an experiment in which he used
memorization/recall tasks as a basis for judging programmer comprehension [347].
Specifically, one component of his experiment involved non-programmers and pro-
grammers memorizing a proper FORTRAN program printed on paper through a line
printer. He also printed a second program with shuffled lines. He found that non-
programmers had similar performance in recall with both the proper and shuffled
versions of the program, but that programmers had significantly better recall on
the proper version of the program. Through the development of his cognitive syntan-
tic/semantic model, he suggests that “performance on a recall task would be a good
measure of program comprehension” because such a task cannot be accomplished
by rote memorization, and instead requires “recognizing meaningful program struc-
tures enabling them to recode the syntax of the program into a higher level internal
semantic structure” [347].

Thus, participants had to construct a correct mental model of the error message
through self-explanation in order to successfully complete the task in this phase of
the experiment.
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Figure 7.3 Explanation rating by group. The treatment group (T) provided significantly
higher rated explanations than the control group (C).

7.5 Results

7.5.1 RQ1: Do explanatory visualizations result in more
correct self-explanations by developers?

Our hypothesis was that having visual explanations for compiler error messages
would result in more correct self-explanations by participants. To validate this
hypothesis, we conducted an inter-rater reliability exercise in which the first and
second authors independently rated the participants’ explanations, without consid-
eration of group. The first author assigned ratings using both the recorded verbal
explanations of the participant as well as their paper markings. The second author
assigned ratings using only the paper markings. This was a deliberate design deci-
sion to ascertain the extent to which visual markings alone can be used to infer the
correctness of an explanation.

We assigned ratings to each of the 168 tasks on a Likert-type scale from 1–4,
labeled Fail, Poor, Good, and Excellent, respectively. For each task, we developed a
rubric for what constituted a correct explanation and noted common misconceptions.
Cohen’s Kappa (squared weights), found moderate agreement between the raters
(n = 168, κ = 0.58, 95% CI: [0.46, 0.68]). Furthermore, a paired Wilcoxon Signed-Rank
Test did not identify the differences between the two raters as being significant
(n1 = n2 = 168, S = 200, p = .21), Thus, the data suggest that visual annotations
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Figure 7.4 Annotations by group, filled with usage across tasks. The distribution of
annotations used by the control (C) and treatment groups (T) were not identified as being
significantly different, but the treatment group used annotations significantly more often.

capture the correctness of the full explanation adequately. No attempts were made
to reconcile disagreement. In subsequent analysis, we use the explanation ratings
from the rater using both verbal and written explanations. Because this rater had
access to more information from which to assign a rating, these ratings are likely
to be more accurate than ratings assigned from written markings alone.

The distribution between the two groups, binned by rating, is shown in Figure 7.3.
Between the control and treatment groups, a Wilcoxon Rank-Sum Test confirms
that participants gave significantly better explanations in the treatment group
(n1 = n2 = 84, Z = 2.23, p = .026). A potential confound is that participants are
simply providing better explanations in the treatment group because more of them
had previously encountered the error messages, but a Pearson Chi-squared Test did
not identify a significant difference between the groups (n = 168, df = 2, χ2 = 3.37,
p = .19).

7.5.2 RQ2: Do developers adopt conventions from our visual
annotations in their own self-explanations?

Our hypothesis was that both the control group and treatment group would adopt
similar annotations when developers explained error messages, if these annotations
were grounded in conventions that developers found intuitive.
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Table 7.4 Number of Features by Task and Group

Number of Features
Control Treatment

Task Median Dist Median Dist
T1 2 3
T2 2 2
T3 2 2
T4 2 3
T5 1 2
T6 3 3

Consider for a moment the visualizations drawn by two participants in our
study, shown in Figure 7.5. In Figure 7.5a, the control group participant receives a
score of Fail, because he incorrectly self-explains that the problem must be due to
not initializing the variable at its point of declaration. He then either ignores the
conditional statement in which the constant value is re-assigned, or fails to notice
that the variable is declared as final. In Figure 7.5b, the participant, aided by the
explanatory visualization, correctly self-explains that the problem is actually in
the conditional statement, and provides explanatory code to demonstrate a case in
which the variable remains uninitialized. In addition, the treatment participant
uses more annotations, such as colors, points, and associations, in his explanation
than the control group participant.

Table 7.4 summarizes the number of annotation types used for each task, par-
titioned into control and treatment groups. Using a Wilcoxon Rank-Sum Test, we
find that the treatment group used significantly more visual annotation types in
their explanations than the control group (n1 = n2 = 84, Z = 2.15, p = .032).

One concern is that participants in the treatment group used these annotations
simply because they were readily available, not because they were useful to their
explanations. Figure 7.4 shows the distribution of the annotations by group. The
bars are filled with the usage of that annotation by task to indicate how a particular
annotation is distributed among the tasks. A Pearson Chi-squared Test was unable
to identify any significant differences in the distribution of these annotation types
between groups (n = 389, χ2 = 4.20, df = 5, p = .65), suggesting that these anno-
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(a) (b)

Figure 7.5 A contrast between visual explanations offered by (a) control group participant
with explanation rating of Fail, and (b) treatment group participant with explanation
rating of Excellent.

tations are intuitive even without priming the participants. Although Figure 7.4
shows that the control group used the point annotation more than the treatment
group, this difference was not found to be significant (n = 168, df = 1, χ2 = 1.53,
p = .22).

In addition, none of the participants in the treatment group used our invented
code coverage annotation, nor did this annotation appear directly in our pilot study.
This suggests that participants are using these annotations only when they find
them to be useful in self-explanation.

Thus, participants in both groups used and applied the annotations found in our
explanatory visualizations, despite the fact that we did not expose the control group
to our visualizations. This indicates that these annotations are intuitive and useful
for participants. Moreover, the presence of explanatory visualizations promotes
their usage during self-explanation by participants.
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Table 7.5 Cognitive Dimensions Questionnaire Responses

Control Treatment
Dimension Median Dist Median Dist p

Hidden Dependencies* 3 4 .008
Consistency 4 4 .979
Hard Mental Operations 3 2.5 .821
Role Expressiveness 4 4 .130

7.5.3 RQ3: What aspects differentiate explanatory
visualizations from baseline visualizations?

We wanted to know which factors participants considered to be significant improve-
ments over the baseline visualization. We had no explicit hypothesis for this research
question.

Table 7.5 summarizes the results from our Cognitive Dimensions questionnaire.
Median results for the hidden dimensions for control and treatment groups were
3 and 4, respectively. The distribution of responses in the two groups were signif-
icantly different (n1 = n2 = 14, Z = −2.64, p = .008). The result suggests that our
explanatory visualizations reveal more of the hidden dependencies, that is, the
internal reasoning process of the compiler, than the baseline visualizations.

We were unable to identify any statistically significant differences from the
remaining dimensions in the questionnaire.

7.5.4 RQ4: Do better self-explanations enable developers to
construct better mental models of error messages?

Figure 7.6 illustrates the explanation rating for each task, the frequency of the
explanation for each rating within the task, and the recall correctness. Remember
from Section 7.5.1 that the treatment group had higher explanation ratings than
the control group. Our expectation was that these higher rated explanations would
translate to better correctness scores during the recall phase of the experiment.
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Figure 7.6 Task by explanation rating. Each of the six tasks are broken by explanation
rating (1 = Fail, 2 = Poor, 3 = Good, 4 = Excellent) from the first phase of the experiment.
For each explanation rating, the frequency of correct and incorrect recall tasks from the
second phase of the experiment is indicated by filling in the bars. Higher rated
explanations lead to significantly better recall correctness.

A Kruskal-Wallis Test revealed a significant difference between performance on
explanation correctness and performance on recall correctness (χ2 = 29.39, df = 3,
p < .001), and the mean ranks indicate that recall correctness generally increases
with explanation correctness (u1 = 51.8, u2 = 69.8, u3 = 69.3, u4 = 102.8). This
confirms that explanation is valuable for improving correctness in the recall task,
but two potentially problematic issues arise.

In Figure 7.6, we observe that task T5 (repeated modifier) has both perfect
recall correctness and uniformly excellent explanation rating, which we postulate
is attributable to this being trivial problem. Our first concern is that this task is
artificially inflating the influence of the explanation correctness to recall correct-
ness. As a contradictory example, we visually identify that T4 (cannot infer type
arguments) has some participants who have poor performance during recall despite
excellent explanation correctness. We found that even without T5, the difference
is still significant (χ2 = 12.33, df = 3, p = 0.006), and the general trend remains
(u1 = 49.0, u2 = 64.0, u3 = 63.6, u4 = 84.0).
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However, a second issue remains—if the treatment group gives higher rated
explanations, then we would expect that they have greater correctness in recall.
Unfortunately, we were unable to identify this as being significant (n1 = n2 = 84,
Z = 1.09, p = 0.27).

We conclude that better explanations yield improved recall correctness, though
with some reservations.

7.6 Threats to Validity
In real code bases, developers have to explain error messages in functional code
intertwined with erroneous code, and across multiple source files. Our tasks con-
tained only the code directly pertinent to generating the error, and within a single
source file. We don’t yet know if explanatory visualizations will be equally beneficial
or scale to more realistic contexts.

We applied a set of visualizations to only six hand-selected tasks that could
fit on a single screen. As such, it remains to be seen whether visual annotations
can be effectively applied to the broader set of error messages, including those in
languages other than Java. Thus, we cannot and do not claim that these annotations
are comprehensive.

We think there exists a construct validity problem in that explanation ratings
were significantly better in the treatment group, but this performance did not
translate to better recall correctness. We postulate that this situation occurred
because it was possible for developers to successfully explain the task, yet still have
gaps in their mental model that prevent them from successfully completing the task.
In addition, we observed that some participants had significant difficulties with
syntax, and in some cases even introduced secondary compiler errors not related to
the recall task during the process.

Furthermore, the act of performing a think-aloud can enhance self-explanation,
and in turn, the construction of mental models for error messages. This process was
necessary in order to evaluate participant explanations, but in doing so, we may
have unintentionally enhanced the performance of the control group in their recall
tasks. Another issue is that participants were already familiar with the baseline
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visualizations, but had no prior experience or any training with our explanatory
visualizations. This may explain why we found no statistical difference in hard
mental operations: the potential cognitive benefit of our visual annotations was
counterbalanced by the difficulty of understanding an unfamiliar visualization.

7.7 Conclusions
The experiments in this chapter demonstrate how explanatory visualizations—that
is, trace-explanation forms of rational reconstruction—facilitate developer self-
explanation. Through the errors messages in this study, we found that when such
visualizations align with developer expectations, developers better comprehend
error messages, use these visualizations more often in their own self-explanations,
and construct better mental models of error messages. Crucially, we found that
baseline visualizations fail to explicate causal relations that are necessary for
trace-explanations. In contrast, our enhanced explanatory visualizations supported
developers by revealing these relations through box-and-arrow representations
overlaid on the source code—as well as through the occasional use of explanatory text
and concrete examples. Thus, the evidence in this chapter supports the second claim
in my thesis: difficulties interpreting error messages can be explained by framing
error messages as insufficient rational reconstructions in visual presentations
(Chapter 1).

In the next chapter, we consider rational reconstructions for text error messages.
We investigate these text error messages through Toulmin’s model of argument—an
informal justification-explanation model used in everyday discourse.
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8 | How Should Compilers
Explain Problems to
Developers?

Go forward in all of your beliefs, and
prove to me that I am not mistaken
in mine.

The Doctor

In this chapter, we apply a justification-explanation form of rational reconstruc-
tion, Toulmin’s model of argument (Section 8.2), to the design and evaluation of
compiler error messages.1 We define error messages that properly implement Toul-
min’s model in structure and content as explanatory error messages, and we consider
error messages that do not properly implement this model to be insufficient rational
reconstructions.

To understand if developers find explanatory error messages helpful, we con-
ducted a comparative evaluation between two compilers for the same programming
language, and had experienced developers within Microsoft indicate which message
they would prefer in their compiler. Then, to understand why some error messages
produced by compilers are less helpful than others, we conducted an empirical study
through a popular question-and-answer site, Stack Overflow.2 From Stack Over-
flow, we extracted 210 question-answer pairs posted by developers about compiler

1Significant portions of this chapter were previously published as T. Barik, D. Ford, E. Murphy-
Hill, and colleagues, “How should compilers explain problems to developers?” In Foundations of
Software Engineering (ESEC/FSE), 2018.

2https://www.stackoverflow.com
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error messages, across seven different programming languages. For every question-
answer pair, we qualitatively coded the compiler error message found within the
question, and the human-authored answer, through Toulmin’s model of argument.
We characterized these question-answer pairs both in terms of the structure and
content of their explanation.

The results of our studies provide support for presenting compiler error messages
to developers as explanations, and inform their design. We find that:

• Developers prefer error messages with proper argument structures over defi-
cient arguments, but will prefer deficient arguments if they provide a resolution
to the problem (Section 8.5.1).

• Human-authored explanations converge to argument structures that offer
a simple resolution, or to structures with proper arguments (Section 8.5.2).
They do so using a catalog of content within the structure (Section 8.5.3).

8.1 Motivating Example
It isn’t difficult to come up with instances of poor error message explanations, even
for routine problems. Consider the following Java code snippet:
2 void m() {
3 final int x;
4 while (true) {
5 x = read();
6 }
7 }

and the resulting error message from the OpenJDK compiler:
F.java:5: error: variable x might be assigned in loop

x = read();
^

1 error

Although the location of the message is reasonable, intuitively, this is a poor
explanation. The problem isn’t just that the variable x is being assigned in a loop;
this particular variable also happens to be marked final (Line 3). A final variable
can only be assigned once. What if we had received the following error message
instead?
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Grounds Claim

Resolution

Warrant
(a) Simple argument layout
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Resolution

Warrant

Backing
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Figure 8.1 A prototypical Toulmin’s model of argument for (a) simple argument layout,
and (b) extended argument layout. The possible need for auxiliary steps to convince the
other party yields the extended argument layout.

F.java:5: error: The blank final variable "x" cannot
be assigned within the body of a loop that may execute
more than once.

x = read();
^

This second message gives a better explanation, and developers in our study
preferred it significantly over the first (Section 8.5.1). Specifically, the second mes-
sage not only indicates that there is a problem (the blank variable "x" cannot be

assigned"), but also supports this claim by offering evidence, or grounds, that clar-
ify why this is a problem—because "x" cannot be assigned within the body of a

loop that may execute more than once. That is to say, the second message has a
better explanatory structure than the first. This message also delivers more specific
content. In contrast to the relatively vague variable x in the first message, it is
immediately apparent in the second message that x is a blank final, without being
too verbose.

8.2 Background on Explanations
Arguments are a form of justification-explanation, in which reasons are used as
evidence to support a conclusion [395]. Argumentation theory provides a lens
through which we can evaluate the effectiveness of arguments [109, 300]. Within
argumentation theory, Toulmin’s model of argument is one such informal reasoning
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model. The model characterizes everyday arguments, or how arguments occur in
practice through ordinary human dialogue [379]. Specifically, Toulmin’s model of
argument is a macrostructure model. Macrostructure examines how components
combine to support the larger argument; in contrast, microstructure examines the
phrasing and composition of the “sentence-level” statements. For clarity, we will
refer to macrostructure simply as structure and microstructure as content.

In the simple argument layout (Figure 8.1a on the previous page), the first
component is a claim—the assertion, view or judgment to be justified; resolutions
are also a form of claim, though resolutions are optional in an argument layout.
The second component, grounds, are data that provide evidence for this claim. The
third component is a justification or warrant, which acts as a bridge between the
grounds and the claim (for example, “[claim] because [ground]”). Together, the
claim, the grounds, and the warrant provide a simple argument layout. The simple
argument layout is the minimal proper argument structure. Arguments that do
not have at least these three components are considered to be deficient. Specific
to error messages are claim-resolution: the first claim states the problem, and the
second claim states the resolution or fix. Although these are not proper argument
structures, they are nevertheless useful.

Toulmin also devised an extended model of argument, to acknowledge the pos-
sibility of needing to infuse additional components to the simple argument layout
(Figure 8.1b on the preceding page). In addition to the simple argument layout com-
ponents, the extended argument layout offers a rebuttal when an exception has to be
inserted into the argument. The claim may also not be absolute: in this case, a qual-
ifier component can temper the claim. Finally, a warrant may not be immediately
accepted by the other party, in which case additional backing is needed to support
the warrant. If any of these additional components are used in the argument, the
argument is an extended argument structure. An example of how a compiler error
message is mapped to an argument structure is illustrated in Figure 8.2 on the
next page; in this example, the error message is an extended argument because it
has a backing.
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Error:(31, 58) java: incompatible types(C):

bad return type in lambda expression(bc W, G)

java.lang.String cannot be converted to void(B)

Figure 8.2 A compiler error message from Java, annotated with argumentation theory
components. This particular message contains all of the basic argument components to
satisfy Toulmin’s model: (C) = Claim, (bc W) = implied “because” Warrant, (G) = Grounds.
It also includes an extended construct, (B) = Backing.

8.3 Methodology

8.3.1 Research Questions
In this study, we investigate the following research questions and offer the motivation
for each:

RQ1: Are compiler errors presented as explanations helpful to devel-
opers? If explanatory compiler error messages are useful to developers, then they
should prefer them over error messages that are less explanatory in their presenta-
tion. If this is not confirmed, then developers prefer error message presentations
based on other factors, such as the verbosity of the error message.

RQ2: How is the structure of explanations in Stack Overflow different
from compiler error messages? If compiler error messages and Stack Overflow
accepted answers use significantly different argument layout components, this
would suggest that structure differences in argument play an important role in the
confusion developers face with compiler errors. While some approaches to improving
compiler error messages focus on the content (for example, “confusing wording” in
the messages [190, 281]), structure differences emphasize how components combine
to support the larger argument rather than the statements themselves. Content
improvements may be ineffectual without a supporting structure layout.
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Further, the answer to this question helps us understand the types of argument
layouts that are used in accepted answers. In other words, toolsmiths can use the
design space of argument layout to model and structure automated compiler error
messages for developers. Importantly, the argument layout space can also be used
as a means to evaluate existing error messages, and to identify potential gaps in
argument components for these messages.

RQ3: How is the content of explanations in Stack Overflow different
from compiler error messages? Once the structure argument layouts are iden-
tified, learning how the components within these layouts are instantiated provide
content details for what information developers find useful within each component.
For example, one way to instantiate backing for a warrant might be to provide a
link to external documentation—and if we find that accepted answers do so, tool-
smiths may also consider incorporating such information in the presentation of
their compiler error messages.

8.3.2 Phase I: Study Design for Comparative Evaluation
To answer RQ1, we asked professional software developers to indicate their pref-
erence between corresponding compiler error messages that explained the same
problem, but were produced by different compilers.

Compiler selection rationale. We needed to compare two compilers which
produced different error messages for the same problem in the code, preferably
where one compiler produced error messages with better explanatory structure than
the other. We selected the Jikes and OpenJDK compilers for this purpose. Jikes is a
Java compiler created by IBM for professional use, with a primary design goal of
high-quality explanations produced by the compiler [60]. Though now discontinued,
Jikes has been lauded by the developer community for giving “better error messages
than the JDK compiler” [85].

Task selection. To select candidate error messages, we examined error mes-
sages produced by Jikes and identified those which contained argument structure.
To determine if an error message contained any elements of argument structure,
we tagged each message using labels from Toulmin’s model of argument: claim (and
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resolution), grounds, warrant, qualifier, rebuttal, and backing. From this analysis,
we found 30 error messages which used at least a simple argument in Jikes. We then
examined the corresponding OpenJDK messages and found only 7 error messages
used simple arguments.

To keep the study brief, we selected 5 OpenJDK and Jikes compiler error mes-
sages (Table 8.1 on page 144) that address the same problem, but differ in argument
structure. For each pair of error messages, we formed a hypothesis on how dif-
ferences in argument structure would influence our expected results before the
study.

E1 Deficient argument vs. simple argument. Both OpenJDK and Jikes make a claim
that the variable might be assigned in a loop. But Jikes completes a simple
argument by presenting a ground for why this problem is actually a problem:
if the loop executes more than once.

E2 Deficient argument vs. extended argument. Again, OpenJDK only presents
a claim. Jikes presents a ground (there is an accessible field "varname"),
which is qualified through a rebuttal (However).

E3 Claim-resolution vs. extended argument The should in the OpenJDK message
would suggest that this is an extended argument, but the error message has
no ground. Thus, it is a claim-resolution structure, which is not formally
considered an argument. The Jikes message is an extended argument because
of discouraged, but Jikes does not offer a resolution for how to address the
problem.

E4 Different claim, same extended argument. Both messages provide an extended
argument, but for different claims. OpenJDK assumes that the developer is
trying to recursively call the current method, remove(). Jikes assumes that
the developer wants to a call a class method, remove(int x), from the method
remove(). Since the developer does not know which fix is actually intended,
their judgment about which message is correct should be determined by the
content of the claim, and not the argument structure.
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E5 Same claim, same simple argument. Both OpenJDK and Jikes present the same
argument (but is enclosed in an inner class, "B" is simply the long-form
of A.B in the OpenJDK version). The content of both messages are essentially
the same, with minor variations in wording: final versus constant.

Participants. We recruited developers at Microsoft to participate in this study.
As we were primarily interested in professional software development, we selected
our population from full-time software developers—excluding interns or roles such
as testers or project managers. We invited 300 developers to participate in our study
and received 68 respondents. The average reported experience of our participants
was 6.3 years.

Procedure. We designed a questionnaire which could be distributed and an-
swered electronically. In the questionnaire, we asked demographic questions, includ-
ing years of programming experience and proficiency in programming languages.

To measure preference for compiler messages, we presented participants with
a required binary response for either the Jikes or OpenJDK version of the error
message, as well as the source code listing that produced the two error messages.
We randomized error message order. On average, participants took seven minutes
to complete our study.

8.3.3 Phase II: Study Design for Stack Overflow
Research context. Previous research on Stack Overflow by Treude, Barzilay, and
Storey [382] identified questions regarding error messages as being one of the
top categories, and other research supports that Stack Overflow today is a pri-
mary resource for software engineering problems [241]. Nasehi, Sillito, Maurer,
and colleagues [274] inspected Stack Overflow questions-answer pairs to identify
attributes of good code examples; in this study, we adopt a similar methodology.
Stack Overflow provides an open-access API, Stack Exchange Data Explorer,3 that
allows researchers to mine their database. An initial query against this dataset
confirmed that questions about compiler error messages exist in Stack Overflow
across a diversity of programming languages and platforms.

3http://data.stackexchange.com/
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Table 8.1 OpenJDK and Jikes Error Message Descriptions

Tag Compiler Error Message
E1 OpenJDK Variable x might be assigned in loop.

Jikes The blank final variable "x" cannot be assigned within

the body of a loop that may execute more than once.

E2 OpenJDK cannot find symbol

symbol: variable varnam

location: class Foo

Jikes No field named "varnam" was found in type "Foo".

However, there is an accessible field "varname" whose

name closely matches the name "varnam".

E3 OpenJDK static method should be qualified by type name, Foo,

instead of by an expression.

Jikes Invoking the class method "f" via an instance is

discouraged because the method invoked will be the one

in the variable's declared type, not the instance's

dynamic type.

E4 OpenJDK method remove in class A.B cannot be applied to given

types

required: no arguments

found: int

reason: actual and formal argument lists differ in

length

Jikes The method "void remove(int x);" contained in the

enclosing type "A" is a perfect match for this method

call. However, it is not visible in this nested class

because a method with the same name in an intervening

class is hiding it.

E5 OpenJDK Illegal static declaration in inner class A.B.

Modifier 'static' is only allowed in constant variable

declarations.

Jikes This static variable declaration is invalid, because it

is not final, but is enclosed in an inner class, "B".

144



Table 8.2 Compiler Errors and Warnings Count by Tag

Question Count2

Tag1 Errors3 Warnings4 Total % Accepted5

C++ 3508 421 3929 63%
Java 2078 170 2248 55%
C 1179 286 1465 61%
C# 783 122 905 69%
Objective-C 270 109 379 65%
Swift 246 17 263 56%
Python 211 4 215 53%
Totals 8275 1129 9404 61%
1 Programming languages are indicated in bold.
2 Questions may be counted more than once if they have multiple

tags, for example, C and C++.
3 Questions tagged as compiler-errors.
4 Questions tagged with compiler-warnings, but not compiler-

errors.
5 Percentage of questions tagged as compiler-errors or compiler-

warnings that have accepted answers.

Data collection. We extracted all posts of type question or answer, tagged as
“compiler-errors” or “compiler-warnings.” Some systems allow the developer to flag
warnings as errors, and thus we included these warnings in our set. We extracted
a total of 13289 questions; 7741 of which have accepted answers. Including co-
occurring tags, we identified 1690 “compiler-warnings” and 11736 “compiler errors”.

A subset of these questions links to an associated accepted answer, which in this
chapter we term question-answer pairs. An accepted answer is an answer marked
by the original questioner as being satisfactory in resolving or addressing their
original question. Although a question may have multiple answers, only one may
be marked as accepted. We used accepted answers as a proxy to identify helpful
answers.
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For each question, we extracted the compiler error message from the question.
If the question did not contain a compiler error message, the question-answer pair
was dropped from analysis.4

Sampling strategy. To obtain diversity across programming languages, we
used stratified sampling across the top languages on Stack Overflow for compiler
errors, until we covered over 95% of all of the messages. This threshold was exceeded
at Python (Table 8.2). Within each stratum, we used simple random sampling for
selecting question-answer pairs to analyze, in which each question-answer pair
has an equal probability of being selected. As we sampled, we discarded questions
that: did not refer to or display a specific error message, were incorrectly tagged
(for example, not relating to an error message), were related to issues in not being
able to invoke the compiler in the first place (for example, “g++ not found”), or were
unambiguously “trolling,” [153] such as through deliberately bogus questions.5 The
time required to manually categorize question-answer pairs has high variance, from
5-15 minutes, depending on the complexity of the pair. Thus, to balance breadth
of languages and depth of error messages in each language—while still keeping
categorization tractable—we continued this process until we obtained 30 question-
answer pairs for each of the top seven languages, for a total of 210 question-answer
pairs.

Qualitative closed coding. The first and second authors performed closed
coding, that is, coding over pre-defined labels, for each compiler error message
extracted from the Stack Overflow question and over the complete Stack Overflow
accepted answer for that question. We tagged these using labels from Toulmin’s
model of argument: claim (and resolutions as claim), grounds, warrant, qualifier,
rebuttal, and backing. Thus, we had a total of seven labels, and a compiler error
message or Stack Overflow accepted answer may be assigned more than one label.

4Quotations to Stack Overflow questions and answers are indicated as Q:id or A:id, and can be
directly accessed through https://www.stackoverflow.com/questions/:id.

5For example, the post “Why is this program erroneously rejected by three C++ compilers?”
attempts to compile a hand-written C++ program scanned as an image, through three different
compilers. The offered answers are equally sardonic. (http://stackoverflow.com/questions/550811
0/)
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During the coding process, we employed the technique of negotiated agreement
as a means to address the reliability of coding [54]. Using this technique, the first
and second authors collaboratively code to achieve agreement and to clarify the
definitions of the codes; thus, measures such as inter-rater agreement are not
applicable.

Validity of negotiated agreement. Though negotiated agreement is estab-
lished in other disciplines, this qualitative coding technique has only recently been
applied to software engineering research (notably, by Hilton, Nelson, Dig, and col-
leagues [166]). Thus, to assess the validity of negotiated agreement, we recruited
two independent evaluators (IEV1/IEV2) to classify 20 random question-answer
pairs (that is, 40 messages, or approximately 10% of the pairs). Evaluators were
provided with the definitions of argument layout components (Table 8.4) as well as
a diagram of proper and deficient argument layouts (Figure 8.3).

Evaluators classified messages in the question-answer pairs as either claim-
only, claim-resolution, simple argument, or extended argument. We then calculated
Cohen’s Kappa between the evaluators and against our own negotiated agreement
classifications: κ between IEV1 and IEV2 (κ = 0.96), IEV1 and negotiated agreement
(κ = 0.78), and IEV2 and negotiated agreement (κ = 0.71). Cohen’s κ supports the
validity of negotiated agreement (κ > 0.70 is considered “substantial agreement”
by Landis and Koch [212] , “good” by Bland and Altman [39], and “fair–good” by
Fleiss, Levin, and Paik [121]). Follow-up revealed that evaluators were hesitant
to apply the tag “backing” due to inexperience with Toulmin’s model of argument.
Therefore, cases of disagreement between independent evaluators can be explained
by evaluators shifting their assessment of extended arguments to simple arguments.
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8.4 Analysis

8.4.1 RQ1: Are compiler errors presented as explanations
helpful to developers?

For the analysis of RQ1, we performed a Chi-squared test on each of the five error
messages (E1–E5, Table 8.1), using the developer responses as the observed values
for OpenJDK and Jikes. If we use a null hypothesis where both messages are equally
acceptable, then the expected values would be split such that OpenJDK and Jikes
receive roughly half of the counts. In effect, this situation is essentially analogous
to a coin toss problem, where heads is, say, OpenJDK, and tails is Jikes. The null
hypothesis is rejected (α = 0.05) if the observed values are significantly different
from the expected values.

8.4.2 RQ2: How is the structure of explanations in Stack
Overflow different from compiler error messages?

As the first step towards answering this research, we wanted to quantify whether the
argument structure between compiler error messages and Stack Overflow answers
are significantly different. To do so, we applied a statistical, permutation testing
approach by Simpson, Lyday, Hayasaka, and colleagues [358] that allows comparison
across two groups when each observation in the group is an ordered set. If we think
of the question-answer pairs from Stack Overflow as tuples, then the first group
is the set of error messages from the compiler (such as OpenJDK or LLVM) found
in the Stack Overflow question. The second group consists of the corresponding
accepted, human-authored answer. Essentially, the goal of this analysis is to identify
if these two groups are statistically different.

However, since error messages aren’t numbers, they must be first represented
in an approximated form for statistical analysis. Thus, an error message, whether
it is a compiler error message extracted from a Stack Overflow question or a Stack
Overflow accepted answer, is represented as an ordered set in terms of argument
components, E:

148



E = 〈a1, a2, . . . , an, r〉 (8.1)

where a1, a2, . . . , an are the labels for the argument components, such as grounds,
warrants, and backing, and r is an extended resolution component. For each com-
ponent, a binary true or false indicates the presence or absence of the component
within the argument.

Then, given any two error messages, E1 and E2, we now need a metric that repre-
sents the similarity between two sets: this is the Jaccard index, and intuitively the
Jaccard index is the intersection over the union of the sets [358]. Next, we perform
a permutation testing calculation, fully described in Simpson, Lyday, Hayasaka,
and colleagues [358]. The explanation of this algorithm is fairly intricate, but the
essential result of this computation is a Jaccard ratio and an empirically-obtained
p-value.

To characterize what types of argument structures are found in accepted answers,
we used quasi-statistics—essentially, a process of transforming qualitative data to
simple counts—to aid in the interpretation of the Stack Overflow data [247]. We
once again used the error messages as ordered sets to perform this task. First, we
removed negligible components in the set—those components with few counts—and
ignored them in any subsequent operations. Second, we grouped identical sets—that
is, sets with the same ordered values, and counted them. In practice, because there
are only a finite number of reasonable ways to present explanations, we expect there
to be few variations in argument structure from Toulmin’s prototypical structures
(Section 8.2).

8.4.3 RQ3: How is the content of explanations in Stack
Overflow different from compiler error messages?

To identify the content of arguments, that is, the techniques developers use within
the argument components, we performed a second qualitative coding exercise over
the first closed coding. For this analysis, we performed descriptive coding to label the
types of evidence provided within the accepted answers [334]. As a concrete example,
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Table 8.3 OpenJDK and Jikes Error Message Preferences

OpenJDK Jikes
Tag p1 n % n %
E1 .001* 2 3% 66 97%
E2 .014* 20 29% 48 71%
E3 .037* 46 68% 22 32%
E4 .014* 20 29% 48 71%
E5 .732 36 53% 32 47%
1 * Indicates a statistically significant result.

the argument component of backing can be provided by pointing to a location or
program element in the code (blame), through a code example that provides evidence
for the problem, or through external resources, such as programming language
specifications.

In addition to random sampling, we performed purposive sampling, or non-
probabilistic sampling, on question-answer pairs to compose memos [37]. We wrote
these memos to capture interesting exchanges or properties of the question-answer
pairs, to promote depth and credibility, and to frame the posters’ information needs
and responses through their reported experiences. That is, the memos provide a
thick description to contextualize the findings [305].

8.5 Results

8.5.1 RQ1: Are compiler errors presented as explanations
helpful to developers?

From Table 8.3, developers significantly preferred Jikes over OpenJDK for E1, E2,
and E4; they preferred OpenJDK over Jikes for E3. Green bars indicate the greater
preference of error tags with a significant difference. We did not identify significant
differences in E5.
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E1 Deficient argument vs. simple argument. As we expected, developers signifi-
cantly preferred the simple argument from Jikes to the deficient argument in
OpenJDK.

E2 Deficient argument vs. extended argument. As we expected, developers signifi-
cantly preferred the extended argument from Jikes to the deficient argument
in OpenJDK.

E3 Claim-resolution vs. extended argument We did not know if developers would
prefer a claim-resolution structure or an extended argument, given that the
extended argument did not provide a resolution. Developers significantly
preferred having a resolution over a more elaborate argument.

E4 Different claim, same extended argument. Given two different claims, we ex-
pected developers to prefer Jikes because the argument is presented in natural
language. In other words, given the same claim, the content of the argument
would influence their preference, not the structure. Developers significantly
preferred the natural language presentation of the content.

E5 Same claim, same simple argument. Given only minor variations in the word-
ing of the content, we expected that the preference would essentially be a
coin flip. Indeed, developers did not significantly prefer OpenJDK or Jikes;
the distribution is also nearly 50%/50%, as we would expect from a random
selection.

8.5.2 RQ2: How is the structure of explanations in Stack
Overflow different from compiler error messages?

The Jaccard ratio of the two groups is Rj = 1.6441, with permutation testing yielding
a significant difference between the two groups (for repeated iterations, p = 0.008±
0.001). Because we have computed a pair-wise statistic, the implication is that
the compiler error messages from the questions and the Stack Overflow accepted
answers are significantly different in terms of argument layout.
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Because the questioner asked a question about the compiler error message,
this indicates some confusion with the error messages they were presented with.
Because the same questioner also marked the Stack Overflow answer as accepted,
we can assume that the answer has resolved whatever confusion they had in the
original question. Since the argument structure between the compiler error message
and the accepted answer is significantly different in terms of argument layout, we
can conclude that differences in the argument layout structure contributed to the
acceptance of the Stack Overflow answer.

The resulting argument structures are found in Figures 8.3 and 8.4 on the
following page, for compiler error messages and for Stack Overflow accepted an-
swers, respectively. For each group, the argument layouts are ordered from most
frequently observed to least frequently observed. In this quasi-statistical reporting,
it becomes clear why the argument layout for compiler errors and Stack Overflow
accepted answers were found to be significantly different: compiler error messages
predominantly present a claim with no additional information, and occasionally
present a resolution (that is, a fix) to resolve the claim. In contrast, Stack Overflow
accepted answers are somewhat inverted in argument layout frequency: the most
frequent argument layout extends simple argument layout with backing, followed
by claim-resolution and simple argument in roughly balanced frequencies. In our in-
vestigation, we did not find any instances in which Stack Overflow accepted answers
solely rephrased the compiler error message (that is, the claim-only layout).

Thus, not only do Stack Overflow accepted answers more closely align with
Toulmin’s model of argument, these answers satisfactorily resolved the confusion of
the developer when the original compiler error message did not.

8.5.3 RQ3: How is the content of explanations in Stack
Overflow different from compiler error messages?

In this section, we describe the content of the components of argument structure.
An overview of the argument structure is presented in Table 8.4 on page 154.
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Claim
(a) Claim-only
(191)

Claim

Resolution

(b) Claim-resolution
(10)

Grounds Claim

Resolution

Warrant
(c) Simple argument layout (8)

Grounds Claim

Resolution

Warrant

Backing
(d) With backing (1)

Figure 8.3 Identified argument layouts for compiler error messages (as found in Stack
Overflow questions). Counts are indicated in parentheses.

Grounds Claim

Resolution

Warrant

Backing
(a) With backing (102)

Claim

Resolution

(b) Claim-resolution
(59)

Grounds Claim

Resolution

Warrant
(c) Simple argument layout (49)

Figure 8.4 Identified argument layouts for Stack Overflow accepted answers. Counts are
indicated in parentheses.
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Table 8.4 Argument Layout Components for Error Messages

Attribute Description
Simple Argument Components
Claim
(Section 8.5.3.1)

The claim is the concluding assertion or judgment about a
problem in the code.

Resolution
(Section 8.5.3.2)

Resolutions suggest concrete actions to the source code to re-
mediate the problem.

Grounds
(Section 8.5.3.3)

Facts, rules, and evidence to support the claim.

Warrant
(Section 8.5.3.4)

Bridging statements that connect the grounds to the claim.
Provides justification for using the grounds to support the claim.

Extended Argument Components
Backing
(Section 8.5.3.5)

Additional evidence to support the warrant, if the warrant is
not accepted.

Qualifier
(Section 8.5.3.6)

This is the degree of belief for a claim, used to weaken the claim.

Rebuttal
(Section 8.5.3.7)

Exceptions to the claim or other components of the argument.

8.5.3.1 Claim

Because of the layout of Stack Overflow, accepted answers assume that the developer
has read the error message in the question, and will refer to the claim without
explicit antecedent. For instance, the answer may say “This problem” (A1225726) or
“This issue” (A32831677) or immediately chain from the question to connect their
ground and warrant (A28880386). We did, however, encounter instances where
developers explained error messages by first rephrasing it, such as “it means that”
(A16686282) and “is saying” (A20858493)—usually for the purpose of simplifying
the jargon in the message or making an obtuse message more conversational. For
example, the compiler error message:

foreach statement cannot operate on variables of type 'E' because 'E'
does not contain a public definition for 'GetEnumerator'}↪→
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is rephrased by the accepted answer as “It means that you cannot do foreach on
your desired object, since it does not expose a GetEnumerator method.”

8.5.3.2 Resolution

One way in which error messages can convince developers of an argument is to offer a
solution to the argument that resolves their issue; this type of resolution is a second
form of claim. Typically, Stack Overflow accepted answers provide these resolutions
in a style similar to “Quick Fixes” in IDEs—they briefly describe what will be
changed, show the resulting code after applying the change, and demonstrate that
the compiler defect will be removed as a result of applying the change. A prototypical
example of how answers provide resolutions is found in A8783019. Here, the answer
notes, “You’re missing an & in the definition.” The answer then proceeds to show
the original code:

float computeDotProduct3(Vector3f& vec_a,

Vector3f vec_b) {

against the suggested fix:

float computeDotProduct3(Vector3f& vec_a,

Vector3f& vec_b) {

8.5.3.3 Grounds

Grounds are an essential building block for convincing arguments; they are the
substrate of declarative facts—which, bridged by the warrant—support the claim,
that is, the compiler error message. For example, “the variable is a non-static private
field” (A4114006), “clone() returns an Object” (A3941850), “foo<T> is a base class
of bar<T>” (A27412912), “[t]he only supertype of Int and Point is Any” (A2871344),
and “local variables cannot have external linkage” (A5185833) all refer to grounds
about the state of the program or rules about what the compiler will accept.

Consider the use of gets() in a C program, in which the GCC compiler generates
the message:

test.c:27:2: warning: ‘gets’ is deprecated
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(declared at /usr/include/stdio.h:638)

[-Wdeprecated-declarations]

gets(temp);

^

The poster of the compiler error wants to suppress this warning (Q26192934), but
the accepted answer explains the grounds for this warning (A26192934): “gets is
deprecated because it’s dangerous, it may cause a buffer overflow.”

8.5.3.4 Warrant

In argumentation theory, warrants are bridge terms, such as “since” or “because”
that connect the ground to the claim. Often, the warrant is not explicitly expressed,
and the connection between the ground and the claim must be implicitly identi-
fied [109]. During our analysis, we would insert implicit “since” or “because” phrases
during reading of the error message on Stack Overflow answers to identify implicit
warrants.

In some compilers, messages can bridge grounds with warrants through explicit
concatenations, such as with the “reason:” error template in Java:

Test.java:6: error: method b in class Test cannot

be applied to given types;

b(newList(type));

^

required: List<T>

found: CAP#1

reason:

inference variable L has incompatible bounds

equality constraints: CAP#2

upper bounds: List<CAP#3>,List<?>

where T,L are type-variables:

T extends Object declared in method <T>b(List<T>)

...
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Unfortunately, the grounds for this warrant are particularly dense in itself. However,
warrants need not always be this obtuse, as the following C++ message from OpenCV
indicates:

OpenCV Error: Image step is wrong

(The matrix is not continuous,

thus its number of rows can not be changed).

Here, the warrant is bridged through the use of the parenthetical statement.

8.5.3.5 Backing

A backing may be required in an argument if the warrant is not accepted; in this
case, the backing is additional evidence needed to support the warrant. In practice,
one should selectively support warrants; otherwise, the argument structure grows
recursively and quickly becomes intractable [109]. For presenting error messages,
we found that while grounds were typically additional statements, backing was
provided through the use of resources. These resources include code examples or code
snippets (A2640738, A1811168), references to programming language specifications
(A5005384), and occasionally, bug reports (A37830382) or tutorials (A2640738).

8.5.3.6 Qualifiers

Despite the usefulness of static analysis techniques for reporting compiler error
messages to developers, many classes of analysis feedback are undecidable or com-
putationally hard, which necessitate the use of unsound simplifications [211]. Qual-
ifiers include statements like “should” (A29189727), “likely” (A17980236), “try”
(A7316513), and “probably” (A2841647, A7328052, A7942837). Although we found
such usages throughout Stack Overflow, it was difficult for us to determine if these
usages were simply used as casual linguistic constructs (essentially, fillers) or if
the answers actually intended to convey a judgment about belief. We did, however,
find several examples when developers were confused because the wording of the
compiler error made the developer believe that their own judgment was in error
(Q5013194, Q36476599).
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8.5.3.7 Rebuttal

We found few instances of rebuttals within Stack Overflow accepted answers, and
one of the reasons we believe rebuttals to be relatively infrequent is that any
disagreements between participants are primarily relegated to meta-discussions
attached to the accepted answer in order to reach consensus, rather than being
incorporated within the answer itself. Thus, we interpreted rebuttals liberally as
statements in which an answer would retract some ground or resolution due to
some constraint—for example, due to a bug in the compiler (A2858799, A1167204).
Another means of rebuttal occurs when the accepted answer provides reasons for
ignoring a claim, as in A11180068. Here, the accepted answer suggests downgrading
a ReSharper warning from a warning to a hint in order to not get “desensitized to
their warnings, which are usually useful.”

8.6 Limitations
The selection of error messages in our comparative study, along with the qualitative
research approaches used in the Stack Overflow study, introduces trade-offs in the
design and reporting of our study.

Comparative evaluation with Jikes and OpenJDK. In order to keep the
study brief, we were not able to evaluate all combinations of the argument design
space. In particular, we did not evaluate whether developers prefer simple argu-
ments against extended arguments. Although our results—where expected—were
statistically significant, the error messages we asked participants to evaluate are
not necessarily representative in terms of either difficulty or type of error mes-
sage. Because the authors selected the explanations to present, we may have also
unintentionally introduced a bias in the selection process, favoring certain argu-
ment structures over others. The subsequent Stack Overflow study to some extent
mitigates this threat, but does not eliminate it entirely.

Identifying argument content. The design space of argument content is
constrained to available affordances in Stack Overflow. For example, answers in
Stack Overflow must use mostly text notation, although past research has found that
developers sometimes place diagrammatic annotations on their code to help with
comprehension [20]. Similarly, Flanagan, Flatt, Krishnamurthi, and colleagues [120]
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use a diagrammatic representation on the source code to help developers understand
code flow for an error. Other tools like Path Projection [200] and Theseus [227] use
visual overlays on the source code, which are not expressible within Stack Overflow
except through rudimentary methods like adding comments to the source. Thus,
the design space of attributes is biased towards linear, text-based representations
of compiler error messages.

Generalizability. As a qualitative approach, our findings do not offer external
validity in the traditional sense of nomothetic, sample-to-population, or statistical
generalization. For example, we cannot claim that the differences in design space
usage between error messages and Stack Overflow accepted answers generalize to
those outside the ones we observed within our study. That is, our findings are em-
bedded within Stack Overflow and contextualized to a particular aspect of developer
experiences as developers comprehend and resolve compiler error messages within
these question-answer pairs. As one example, the argument layout for compiler error
messages is likely to significantly underrepresent claim-resolution layouts, as resolu-
tions in integrated development environments appear in a different location—such
as Quick Fixes in the editor margin—than the compiler error message.

In place of statistical generalization, our qualitative findings support an id-
iographic means of satisfying external validity: analytic generalization [303]. In
analytic generalization, we generalize from individual statements within question-
answer pairs to broader concepts or higher-order abstractions through the applica-
tion of argumentation theory.

8.7 Conclusions
In this chapter, we conducted studies on error messages using Toulmin’s model of
argument, a justification-explanation form of rational reconstruction. We investi-
gated error messages and classified them as either proper or deficient argument
structures. The results of our comparative evaluation found that developers prefer
error messages with proper argument structures over deficient arguments, but will
prefer deficient arguments if they provide a resolution to the problem. Intuitively,
this makes sense: having a quick fix that would correctly solve the problem can
essentially short-circuit the need for rational reconstruction. But when there is no
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obvious fix available, developers rely on proper arguments to facilitate understand-
ing of the problem. Similarly, the results of our Stack Overflow investigation found
that human-authored explanations converge to argument structures that offer a
simple resolution, or to structures with proper arguments. Notably, although many
compiler error messages consist of insufficient, claim-only arguments—we don’t
find deficient arguments in the corresponding human-authored, accepted answers.
Thus, the evidence in this chapter supports the third and final claim in my thesis:
difficulties interpreting error messages can be explained by framing error messages
as insufficient rational reconstructions in text presentations (Chapter 1).

In the next chapter, we revisit the key contributions of the dissertation, framed
in terms of the thesis. We explicate design guidelines resulting from our research
studies and operationalize them through a prototype compiler implemented in
TypeScript. Opportunities for future work are discussed.
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9 | Conclusions

I’ll be a story in your head. That’s
okay. We’re all stories, in the end.

The Doctor

9.1 Thesis Revisited
The thesis statement of this dissertation is:

Difficulties interpreting error messages produced by program analysis
tools are a significant predictor of developers’ inabilities to resolve defects:
difficulties interpreting error messages can be explained by framing error
messages as insufficient rational reconstructions in both visual and text
presentations.

I defended the claims of the thesis statement through three studies. In the first study
(Chapter 6), I investigated how developers used the Eclipse IDE to comprehend
and resolve Java compiler error messages. I found that difficulties interpreting
error messages produced by program analysis tools are a significant predictor of
developers’ inabilities to resolve defects. In the second study (Chapter 7), I conducted
a participatory design activity through which developers constructed diagrammatic
representations of error messages, overlaid on source code listings. The results of the
second study identified how error messages are insufficiently aligned with developer
expectations, particularly with respect to revealing relationships among relevant
program elements. In the third study, I analyzed Stack Overflow questions and
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answers relating to error messages using argumentation theory, a form of rational
reconstruction. The third study (Chapter 8) found that human-authored error
messages incorporate complementary argument layout structures, and that these
layout structures are significantly different from how error messages present errors
to developers. Moreover, developers indicated significant preference for structures
that either provided a simple resolution, or employed a proper simple or extended
argument structure. Together, the results of these studies advance our scientific
understanding for how developers comprehend error messages.

In the remainder of this chapter, I address some residual topics to situate the
research in this dissertation in terms of its broader impacts. First, I synthesize the
results of this research as design guidelines (Section 9.2). The design guidelines
allow us to generalize the findings of this work to environments and programming
languages beyond those studied in this dissertation. Second, I implement a proof-
of-concept compiler in TypeScript that enables the presentation of error messages
as rational reconstructions (Section 9.3). The proof-of-concept demonstrates that
it is feasible to present rational reconstructions when appropriate introspective
capabilities are present in the compiler infrastructure. Third, I discuss future work
(Section 9.4). This discussion provides a landscape for what I believe are impactful
directions within the discipline of error message comprehension.

9.2 Design Guidelines
To generalize the studies in this dissertation to other programming languages and
environments—and to make our findings accessible and actionable to practition-
ers [164, 282]—I synthesize five design guidelines derived from our studies.

My design guidelines extend the chronology of design guidelines from Section 3.5,
and are closest conceptually to Horning [172] and Dean [89]. In particular, Horning
[172] frames interactions with program analysis as a dialogue or conversation, and
Dean [89] applies an assortment of ideas from human psychology to error messages.
Like Horning [172], my design guidelines are also inspired by human dialogue, but
formalized through theory rather than observation. In contrast to the sampling of
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psychology theories by Dean [89], my design guidelines offer a unified lens for the
construction and design of error messages. Other existing guidelines are similarly
atheoretical [50, 267, 269, 270, 346, 349, 381].

Guideline I—Implement rational reconstructions for humans, not tools.
This is in some ways less of a guideline and more of a philosophy about how to
think about the design of error messages (Section 2.4). The studies in this disserta-
tion demonstrate that developers reason about error messages differently than the
underlying mechanism by which program analysis algorithms typically identify a
problem in the source. As such, simply exposing internal program analysis processes
to developers isn’t generally useful (Chapters 6 to 8). Consequently, this guideline
suggests that human-centered expressions of error messages should be rational
reconstructions as a routine part of error message design.

Guideline II—Use code as the medium through which to situate error mes-
sages. The study in Chapter 6 applied revisits to error messages as a signal of
comprehension difficulty. But revisits can also be applied as a usability heuristic to
identify problems in the arrangement of information [119, 311]. As an example, we
found that when error messages are presented as tooltips, they often occlude the
corresponding source code that developers are trying to investigate.

This guideline suggests that toolsmiths should provide context for error mes-
sages framed through the primary artifact within which developers work—source
code. In text environments, consider using affordances to display error message
information in proximity to or even interleaved with the source code (Chapter 6). In
visual environments, consider diagrammatic elements and other graphical affor-
dances overlaid on the source code to explicate relationships. However, be wary of
introducing unfamiliar notation: stick with basic diagrammatic techniques, such as
lines, boxes, and arrows (Chapter 7).

Guideline III—Present rational reconstructions as coherent narratives of
causes to symptoms. As with good explanations, error messages are easier to
comprehend if there is a coherent narrative of causes to symptoms that logically
explains why or how a problem has occurred. In terms of rational reconstruction,
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these coherent narratives manifest through either trace-explanations (Chapter 7)
or justification-explanations (Chapter 8). The sequence of explanation need not be
elaborate: in text, a straightforward ground that connects to the claim—or visually,
an arrow that reveals why certain program elements are connected—can be enough
to help developers better comprehend an error message.

Guideline IV—Distinguish fixes from explanations. Fixes are immensely use-
ful to developers, and so it isn’t surprising that many of the existing guidelines
recommend them when presenting error messages (Section 3.5). Nevertheless, fixes
aren’t actually rational reconstructions (Chapter 8), nor are they always appropriate.
In Chapter 6 (see also studies by Barik, Song, Johnson, and colleagues [18]), we
found that difficult error messages also tend to have context-sensitive resolutions.
In such cases, generic fixes may remove the error message, but not actually resolve
the root cause of the problem. Even when automatic fixes are ultimately satisfactory,
the developer may still want to know why the suggested fix is appropriate to apply.

Guideline V—Give developers autonomy over error message presentation.
Depending on their familiarity with the code and their expertise, developers may
need more or less help in comprehending the problem. For example, Dean [89]
notes that “different people want different amounts of information, and the same
people want different amounts at different times.” Feedback from our own study in
Section 9.3 also suggests that developers will desire different amounts of feedback,
even for the same underlying problem. Thus, consider supporting mechanisms to
progressively elaborate error messages, and provide configuration options to allow
developers to tailor the verbosity and type of information presented in the error
message.
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9.3 Toward Engineering a Compiler

9.3.1 Approach
To apply our theory into practice, I operationalized our design guidelines from the
previous section into a production compiler. Specifically, I modified the Microsoft
TypeScript compiler [258] to generate rational reconstructions for TS2393, a duplicate
function implemention error. I assessed this prototype, called Rational TypeScript,
through a formative solution validation—conducted through a focus group. The
prototype demonstrates the feasibility of engineering a compiler to support rational
reconstruction, as well as its potential utility if incorporated into industry program
analysis tools.

I selected the TypeScript compiler for modification for several, mostly practical
reasons. Namely, the compiler is engineered with modern compiler design principles,
such as offering compiler toolsmiths an API-as-a-service. This makes it easy to
introspect and to extend the compiler. The TypeScript source code builds relatively
quickly, on the order of seconds, and this rapid turnaround facilitates rapid iteration
when developing the prototype. Additionally, the TypeScript compiler is itself written
using TypeScript, which means that the tools for developing the compiler and
the tools for testing rational reconstructions are unified. These properties make
TypeScript a convenient target for error message research.

Similarly, the decision to support a duplicate function implementation as the
vehicle to investigate rational reconstruction was also not entirely arbitrary, and
required balancing several design constraints. I wanted an error message that
would highlight relationships between multiple program elements; this eliminated
classes of errors, such as syntax errors, whose reporting would only involve a single
element. I wanted an error message that would require introspecting the compiler
during the creation of the rational reconstruction, yet at the same time would
not require extraordinary effort to surface the underlying compiler structures. To
support a potential study, I also wanted an error message that used concepts likely
to be familiar to even occasional TypeScript developers. The duplicate function
implementation error satisfies all of these considerations. Moreover, variations of
the error message were used in previous studies: T8 in Chapter 6, and Brick in
Chapter 7.
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Essentially, there are two approaches to implementing rational reconstruction
within the TypeScript architecture. For the first approach, we could modify the
TypeScript compiler itself to construct rational reconstructions during the compila-
tion process. This turned out to be impractical, because it required knowing what
information the compiler should collect before we knew when (or if) we would even
encounter an error. The second approach is retrospective: we let the compiler run its
course as it would normally do. When the compiler identifies an error message, we
suppress the baseline error message. Instead, we interrogate the compiler through
introspection and request additional details. The information requested during in-
trospection is then used to construct a rational reconstruction. The implementation
details for how this process works is found in Appendix E.

9.3.2 Example: Duplicate Function Implementation Error
In this section, let’s see how TypeScript and Rational TypeScript present a duplicate
function implementation error (TS2393) to a developer. The following TypeScript file
induces this error because of the function foo:

1 function baz() { }
2

3 function foo(a: boolean) {
4 }
5

6 function bar(): void { return; }
7

8 function foo(b: boolean, c: boolean) {
9 }

Unlike Java, TypeScript does not support multiple function implementations
with the same name.1 Consequently, the above source listing results in the following
TypeScript error message:

file.ts(3,10): error TS2393: Duplicate function implementation.
file.ts(8,10): error TS2393: Duplicate function implementation.

1If a developer wants to overload a function, they must use an alternative implementation that
involves supplying function types to a single implementation. This single implementation then
explicitly performs runtime type checks to guide the behavior of the function.

166



This error message is an insufficient rational reconstruction for a developer,
in several ways. First, the presentation of the error message does not explicitly
acknowledge that the duplicate function implementation errors are in fact related to
each other; the error message for Line 3 is a reciprocal of the error message on Line
8. Second, the error message does not indicate why this is a problem—though such
an explanation might not be needed for an expert who routinely encounters this
type of message. Third, other than line number and location, there is no contextual
beacon from which the developer can relate the error message back to their source
code. Finally, even if the brief error message is suitable for some circumstances,
there is no way for the developer to request a more elaborate explanation of the
problem.

In Rational TypeScript, the error message is emitted as:

error[TS2393]: duplicate implementation of function `foo`
--> file.ts:8:10
|

3 × function foo(a: boolean) {
| --- previous implementation of `foo` here

...
8 × function foo(b: boolean, c: boolean) {

| ~~~ `foo` reimplemented here
|
= hint: `foo` must be implemented only once within the same namespace
= hint: To overload a function, see

https://www.typescriptlang.org/docs/handbook/functions.html

This error message has several appealing properties over the baseline TypeScript
message. The key difference from the baseline TypeScript message is that Rational
TypeScript collects the duplicate function implementations and presents them
diagrammatically (using ASCII characters such as ‘-->’) as a single, related error.
Furthermore, the error message informs the developer of how the problem manifests,
using the context of their source code in the reconstruction. Through hints, the error
message provides warrants for why the problem is a problem. The error message
provides a pointer to supplemental documentation from the TypeScript handbook,
for the use case in which the developer is intending to perform function overloading.
Additionally, the error message uses colorized output to visually partition the
different components of the error messages, such as the source code and explanatory
text. For other presentation choices, such as placement of the error code, we adopted
existing conventions from Rust UX guidelines for error messages [330].

167



Table 9.1 Participants in Focus Group

ID Title Organization Primary Language
E1 Principal Software Engineer Machine Learning C#
E2 Principal Software Engineer Machine Learning TypeScript
E3 Senior Software Engineer Machine Learning C#
E4 Senior Software Engineer Office Online TypeScript
E5 Software Engineer Machine Learning TypeScript

Participants attended a 30-minute focus group session. During the session, they
evaluated baseline TypeScript error messages and rational reconstructions for
a duplicate function implementation error.

9.3.3 Formative Evaluation
Method. I conducted a 30-minute formative evaluation of Rational TypeScript, focus-
ing on the presentation of the error message. Participants. I recruited participants
(E1-E5) within Microsoft, across various levels of seniority (Table 9.1). Participants
worked primarily in either TypeScript or C#, but occasionally had to contribute
code to their secondary language, for example, when adding features or resolving
bugs that spanned both front-end and back-end development. Due to the nature
of the build system, all participants used Visual Studio Code or Visual Studio to
write the software, but compiled code using a command-line console. Study protocol.
Participants were shown a demo of the duplicate function implementation error,
along with baseline and rational reconstruction versions of the error message in
TypeScript. Participants were asked for their feedback about the error messages,
and when they would prefer one or the other. Both versions of the error messages
were made available for the duration of the discussion. Analysis. Feedback was
collected from the session, and qualitatively summarized by myself. Limitations.
The focus group was conducted with professional developers; it’s possible that a
heuristic evaluation conducted by HCI experts would produce additional usability
feedback beyond the feedback from the focus group.

Results. Participants reported that Rational TypeScript messages were more
helpful than baseline TypeScript messages, particularly with developers who only
sporadically program with TypeScript (E1, E3). Although full-time TypeScript
developers generally preferred the brevity of baseline error messages for routine
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errors (E2, E4), they nevertheless indicated that rational reconstructions would be
useful as a presentation option for error messages when working with unfamiliar
code (E2, E4, E5). The results of the formative evaluation, though limited, encourage
us to pursue rational reconstruction in the design and implementation of practical
program analysis tools.

9.4 Future Work
There are many fruitful avenues of research that are worthwhile to pursue but
beyond the scope of this dissertation. Here are just a few directions for rational
reconstruction in program analysis tools:

• Benefits of wrong error messages. This dissertation investigated the pre-
sentation of error messages, with the assumption that all reported errors
are true positives. But most program analysis is an approximation of the
actual behavior of the program. As such, it is possible that the rational recon-
struction generated by the program analysis tool is actually wrong! Would
incorrect rational reconstructions still be useful to developers? Would such
reconstructions, for example, allow developers to confidently assess that the
error diagnostic is a false positive and dismiss it? Or should we only present ra-
tional reconstructions to developers when we have a high degree of confidence
that the diagnostic is accurate?

• Supporting developer diversity. A limitation of our studies is that we
primarily studied entry-level software developers, and only those with expe-
rience in Java and the Eclipse IDE. Our formative evaluation with Rational
TypeScript, using principal and senior software developers as participants, re-
vealed that rational reconstructions may not always be the appropriate form of
error message presentation. For example, experts in a programming language
would likely be able to easily repair syntax errors in the program without
an elaborate error message. How do we construct rational reconstructions to
support the spectrum of developers?
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• Error message telemetry and longitudinal research. One difficulty with
assessing whether error messages help developers is that the effect size of
any particular instance of an improved error message against a baseline error
message is small. Thus, the impact of better error messages is likely to only
be noticeable over time. Unfortunately, today we have limited telemetry and
longitudinal data on error message distributions. For example, our studies
relied solely on the Google error distribution from Seo, Sadowski, Elbaum, and
colleagues [342] to inform our research designs, and Google has proprietary
build processes that are not necessarily representative of other organizations.
From what other sources might we obtain telemetry on program analysis error
messages?

• Conversational program analysis tools. The interaction model for our
study was linear and one-way: given a problem in the source code, the pro-
gram analysis tool could report and present the problem to the developer.
However, there is no mechanism for the developer to subsequently interact
with the program analysis tool to ask questions about the error message. How
could program analysis tools be made to be conversational agents? And would
conversational program analysis tools actually help developers?

• Interviews with authors of program analysis tools. Presumably, authors
of program analysis tools aren’t intentionally going out of their way to design
inscrutable error messages—at least I would hope not! And some programming
language communities, such as LLVM, Rust and Elm, have made commitments
to improving the quality of their error reporting for developers. So how do poor
error messages arise in practice? Are there tools or techniques that we can
develop to reduce the authorial burden of writing good error messages? What
are the perceptions of toolsmiths on the quality of their own messages? Do
toolsmiths have realistic assumptions about the developers who use their tools?
Understanding the process through which toolsmiths construct error messages
can help pinpoint where the problem really is, whether social, technological,
or both.
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• Computational generation of rational reconstructions. The rational
reconstructions in this study were manually constructed. Although construct-
ing these error messages is possible to do—and it’s what program analysis
toolsmiths currently do—the authorial burden of constructing a good error
message is high. Would it be possible to build intelligent program analysis
tools that automatically explain their own diagnostics to developers? One
avenue for pursuing this line of thinking might be to draw inspiration from
early ideas in expert systems.

9.5 Epilogue
Curiously, implementing the design guidelines in a medley of program analysis
tools—and evaluating their usefulness and effectiveness—seems just the right
amount of material for a second dissertation.

IJKL

# and if the sun comes up tomorrow,

# let her be

> python

>>> from __future__ import braces

File "<stdin>", line 1

SyntaxError: not a chance

>>> import antigravity
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A | Study Materials for “Do
Developers Read Compiler
Error Messages?” (Chapter 6)

A.1 Interview Protocol

A.1.1 Outline
1. Pre-participant steps.

2. Initial steps (namely, calibration).

3. Tasks (5 minutes x 10 tasks = 50 minutes).

4. Post-questionnaire.

A.1.2 Pre-arrival Steps
1. Open both GazeControl and GazeAnalysis. Make sure the screen is on the

proper one (GazeControl). Make a new project for each participant with name
PXXX (which you obtain from the init script). You will pause in between tasks.

2. Open Eclipse and reset to defaults.

3. Note if the participant has glasses.

A.1.3 Arrival Steps
1. Have participant sign consent form.
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Figure A.1 Error messages sheet provided to participants to familiarize them with all
notification sources in the Eclipse IDE.

2. Have participant sit in chair and get comfy. Hand them training picture and
tell them these are all the places an error message would appear. Ask them
not to move too much.

3. Adjust eye tracker. Calibrate eye tracker (in GazeControl) using 9 point align-
ment. If any lines are outside the blue area, redo those points. Also check 9 of
9, each area should have a red and green point/line. If there are way too many
(n>3), try entire recalibration. If still bad after 3 attempts, dismiss participant.

4. Sanity Check: In Gaze Analysis, you should see eyes on screen and the right
desktop. The camera will also be live. Pull up Eclipse (with okay code).

5. Secondary offset: Find what version of Eclipse is running (Go to help, about
Eclipse)). Then have them read the one warning aloud.

A.1.4 Instructions for Participant
In this experiment, we are interested in how developers identify and resolve compiler
defects.
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In this experiment, you will be identifying and resolving 10 compiler defects,
which are presented as compiler error messages. You’ll get five minutes for each
task. If you finish early, you may indicate this me and we can move to the next
task. After two minutes, if you feel that you will not be able to complete this task,
regardless of any additional time, you may also ask me to move on to the next task.

You should attempt to provide a reasonable solution for the defect that you
feel best captures the intention of the code (for example, deleting all the files in
the project might remove the compiler defect, but that is highly unlikely to be an
acceptable resolution). Note that you are not expected to successfully fix all the
defects, and that some defects may be more difficult than others.

As a limitation of the eye tracking equipment, please leave the Eclipse window
full-screen, and do not use any resources (such as a web browser) outside of the
Eclipse IDE. You may use any of the features available within Eclipse to help you
with troubleshooting, but do not change any of the Eclipse preferences or install
any new Eclipse packages.

[Show error messages sheet to user] (Figure A.1)

Do you have any questions at this time?

A.1.5 Post-study Questionnaire
Give participant the questionnaire after they have completed the tasks.

A.1.6 Closing
You just took a study on how people understand and resolve compile error messages.
At this time, you can also decline to participant in the study. Otherwise, do you
have any questions?

A.2 Tasks
Faults are injected into Apache Commons 4.4.0. We present each fault using a
unified diff format.1

1http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
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A.2.1 Task 1: SUBLIST

A.2.1.1 Source Listings

@@ -134,5 +134,5 @@

@Override
- public List<E> subList(final int fromIndex, final int toIndex) {
+ public List<E> sublist(final int fromIndex, final int toIndex) {

final List<E> sub = decorated().subList(fromIndex, toIndex);
return new LazyList<E>(sub, factory);

Listing A.1 Injected fault in LazyList.java.

135 @Override
136 public List<E>

:::::::::::::::
sublist(final

:::::
int

:::::::::::::
fromIndex,

:::::::
final

:::::
int

::::::::::
toIndex) {

137 final List<E> sub = decorated().subList(fromIndex, toIndex);
138 return new LazyList<E>(sub, factory);
139 }

Listing A.2 Partial source listing for LazyList.java (IDE).

A.2.1.2 Error Message

Description. The method sublist(int, int) of type LazyList<E> must override

or implement a supertype method

Resource. LazyList.java

Path. /org/apache/commons/collections4/list

Location. line 136

Type. Java Problem
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A.2.2 Task 2: NODECACHE

A.2.2.1 Source Listings

@@ -107,4 +106,0 @@
- public boolean isEmpty() {
- return size() == 0;
- }
-

Listing A.3 Injected fault in AbstractLinkedList.java.

58 public class
:::::::::::::::::::::::
CursorableLinkedList<E> extends AbstractLinkedList<E>

implements Serializable {↪→

59

60 /** Ensure serialization compatibility */
61 private static final long serialVersionUID = 8836393098519411393L;
62

63 /** A list of the cursor currently open on this list */
64 private transient List<WeakReference<Cursor<E>>> cursors;

Listing A.4 Partial source listing for CursorableLinkedList.java (IDE).

42 public class
:::::::::::::::::::::::::
NodeCachingLinkedList<E> extends AbstractLinkedList<E>

implements Serializable {↪→

43

44 /** Serialization version */
45 private static final long serialVersionUID = 6897789178562232073L;
46

47 /**
48 * The default value for {@link #maximumCacheSize}.
49 */
50 private static final int DEFAULT_MAXIMUM_CACHE_SIZE = 20;

Listing A.5 Partial source listing for NodeCachingLinkedList.java (IDE).

A.2.2.2 Error Messages (2 Items)

Description. The type CursorableLinkedList<E> must implement the inherited

abstract method List<E>.isEmpty()

Resource. CursorableLinkedList.java

Path. /org/apache/commons/collections4/list

Location. line 58

Type. Java Problem
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Description. The type NodeCachingLinkedList<E> must implement the inherited

abstract method List<E>.isEmpty()

Resource. NodeCachingLinkedList.java

Path. /org/apache/commons/collections4/list

Location. line 42

Type. Java Problem
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A.2.3 Task 3: IMPORT

A.2.3.1 Source Listings

@@ -21,12 +21,12 @@
import java.util.Map;
import java.util.NoSuchElementException;

-import org.apache.commons.collections4.OrderedIterator;
-import org.apache.commons.collections4.OrderedMap;
-import org.apache.commons.collections4.OrderedMapIterator;
-import org.apache.commons.collections4.ResettableIterator;
-import org.apache.commons.collections4.iterators.EmptyOrderedIterator;
-import org.apache.commons.collections4.iterators.EmptyOrderedMapIterator;
+import org.apache.commons.collections3.OrderedIterator;
+import org.apache.commons.collections3.OrderedMap;
+import org.apache.commons.collections3.OrderedMapIterator;
+import org.apache.commons.collections3.ResettableIterator;
+import org.apache.commons.collections3.iterators.EmptyOrderedIterator;
+import org.apache.commons.collections3.iterators.EmptyOrderedMapIterator;

/**
* An abstract implementation of a hash-based map that links entries to

create an↪→

Listing A.6 Injected fault in AbstractLinkedMap.java.

22 import java.util.NoSuchElementException;
23

24 import
:::::::::::::::::::::::::::::::::::::
org.apache.commons.collections3.OrderedIterator;

25 import
:::::::::::::::::::::::::::::::::::::
org.apache.commons.collections3.OrderedMap;

26 import
:::::::::::::::::::::::::::::::::::::
org.apache.commons.collections3.OrderedMapIterator;

27 import
:::::::::::::::::::::::::::::::::::::
org.apache.commons.collections3.ResettableIterator;

28 import
:::::::::::::::::::::::::::::::::::::
org.apache.commons.collections3.iterators.EmptyOrderedIterator;

29 import
:::::::::::::::::::::::::::::::::::::
org.apache.commons.collections3.iterators.EmptyOrderedMapIterator;

Listing A.7 Partial source listing for AbstractLinkedMap.java (IDE).

A.2.3.2 Error Messages (48 Items)

Description. The import org.apache.commons.collections3 cannot be resolved

Resource. AbstractLinkedMap.java

Path. /org/apache/commons/collections4/map

Location. line 24

Type. Java Problem

Description. The import org.apache.commons.collections3 cannot be resolved
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Resource. AbstractLinkedMap.java

Path. /org/apache/commons/collections4/map

Location. line 25

Type. Java Problem

Description. The import org.apache.commons.collections3 cannot be resolved

Resource. AbstractLinkedMap.java

Path. /org/apache/commons/collections4/map

Location. line 26

Type. Java Problem

Description. The import org.apache.commons.collections3 cannot be resolved

Resource. AbstractLinkedMap.java

Path. /org/apache/commons/collections4/map

Location. line 27

Type. Java Problem

Description. The import org.apache.commons.collections3 cannot be resolved

Resource. AbstractLinkedMap.java

Path. /org/apache/commons/collections4/map

Location. line 28

Type. Java Problem

Description. The import org.apache.commons.collections3 cannot be resolved

Resource. AbstractLinkedMap.java

Path. /org/apache/commons/collections4/map

Location. line 29

Type. Java Problem

(...42 other secondary errors introduced by missing import statements across

files (.java): AbstractLinkedMap, LRUMap, LRUMapTest, LinkedMap, and

LinkedMapTest.)
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A.2.4 Task 4: QUEUEGET

A.2.4.1 Source Listings

@@ -106,11 +106,11 @@
public E peek() {

return decorated().peek();
}

public E element() {
- return decorated().element();
+ return decorated().get();

}

public E remove() {
return decorated().remove();

}

Listing A.8 Injected fault in PredicatedQueue.java.

110 public E element() {
111 return decorated().

::::
get();

112 }
113

114 public E remove() {
115 return decorated().remove();
116 }

Listing A.9 Partial source listing for PredicatedQueue.java (IDE).

A.2.4.2 Error Message

Description. The method get() is undefined for the type Queue<E>

Resource. PredicatedQueue.java

Path. /org/apache/commons/collections4/queue

Location. line 111

Type. Java Problem
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A.2.5 Task 5: SETADD

A.2.5.1 Source Listing

@@ -82,3 +82,3 @@
for (final E value : values) {

- decorated.decorated().add(transformer.transform(value));
+ decorated.decorated().add(0, transformer.transform(value));

}

Listing A.10 Injected fault in TransformedSet.java.

76 public static <E> Set<E> transformedSet(final Set<E> set, final
Transformer<? super E, ? extends E> transformer) {↪→

77 final TransformedSet<E> decorated = new TransformedSet<E>(set,
transformer);↪→

78 if (transformer != null && set != null && set.size() > 0) {
79 @SuppressWarnings("unchecked") // set is type E
80 final E[] values = (E[]) set.toArray(); // NOPMD - false

positive for generics↪→

81 set.clear();
82 for (final E value : values) {
83 decorated.decorated().

::::
add(0,

transformer.transform(value));↪→

84 }
85 }
86 return decorated;
87 }

Listing A.11 Partial source listing for TransformedSet.java (IDE).

A.2.5.2 Error Message

Description. The method add(E) in the type Collection<E> is not applicable

for the arguments (int, capture#8-of ? extends E)

Resource. TransformedSet.java

Path. /org/apache/commons/collections4/set

Location. line 83

Type. Java Problem
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A.2.6 Task 6: KEYSETKV

A.2.6.1 Source Listing

@@ -144,3 +144,3 @@
public Set<Map.Entry<K, V>> entrySet() {

- final Set<Map.Entry<K, V>> set = map.entrySet();
+ final Set<Map.Entry<V, K>> set = map.entrySet();

// unmodifiable set will still allow modification via Map.Entry
objects↪→

Listing A.12 Injected fault in FixedSizeMap.java.

143 @Override
144 public Set<Map.Entry<K, V>> entrySet() {
145 final Set<Map.Entry<V, K>> set =

::::::::::::::::
map.entrySet();

146 // unmodifiable set will still allow modification via Map.Entry
objects↪→

147 return
:::::::::::::::::::::::::::::::::::::::::::
UnmodifiableSet.unmodifiableSet(set);

148 }

Listing A.13 Partial source listing for FixedSizeMap.java (IDE).

Error Messages (2 Items)

Description. Type mismatch: cannot convert from Set<Map.Entry<K,V>> to

Set<Map.Entry<V,K>>

Resource. FixedSizeMap.java

Path. /org/apache/commons/collections4/map

Location. line 145

Type. Java Problem

Description. Type mismatch: cannot convert from Set<Map.Entry<V,K>> to

Set<Map.Entry<K,V>>

Resource. FixedSizeMap.java

Path. /org/apache/commons/collections4/map

Location. line 147

Type. Java Problem
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A.2.7 Task 7: CLAZZ

A.2.7.1 Source Listing

@@ -550,7 +550,7 @@
public T create() {

try {
return clazz.newInstance();

- } catch (final Exception ex) {
+ } catch (final IllegalAccessException ex) {

throw new FunctorException("Cannot instantiate class: " +
clazz, ex);↪→

}
}

Listing A.14 Injected fault in MultiValueMap.java.

550 public T create() {
551 try {
552 return

:::::::::::::::::::::::
clazz.newInstance();

553 } catch (final IllegalAccessException ex) {
554 throw new FunctorException("Cannot instantiate class: "

+ clazz, ex);↪→

555 }
556 }

Listing A.15 Partial source listing for MultiValueMap.java (IDE).

A.2.7.2 Error Message

Description. Unhandled exception type InstantiationException

Resource. MultiValueMap.java

Path. /org/apache/commons/collections4/map

Location. line 552

Type. Java Problem
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A.2.8 Task 8: NEXT

A.2.8.1 Source Listing

@@ -152,6 +152,18 @@
last = null;
canRemove = false;

}
+
+ /**
+ * Gets the next key from the <code>Map</code>.
+ *
+ * @return the next key in the iteration
+ * @throws java.util.NoSuchElementException
+ */
+ public K next() {
+ last = iterator.next();
+ canRemove = true;
+ return last.getKey();
+ }

/**
* Gets the iterator as a String.

Listing A.16 Injected fault in EntrySetMapIterator.java.

74 public K
::::::::
next() {

75 last = iterator.next();
76 canRemove = true;
77 return last.getKey();
78 }
79

80 //------------------------------------------------------------------
81 /**
82 * Removes the last returned key from the underlying

<code>Map</code>.↪→

162 public K
::::::::
next() {

163 last = iterator.next();
164 canRemove = true;
165 return last.getKey();
166 }
167

168 /**
169 * Gets the iterator as a String.

Listing A.17 Partial source listing for EntrySetMapIterator.java (IDE).
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A.2.8.2 Error Message

Description. Duplicate method next() in type EntrySetMapIterator<K,V>

Resource. EntrySetMapIterator.java

Path. /org/apache/commons/collections4/iterators

Location. line 74

Type. Java Problem

Description. Duplicate method next() in type EntrySetMapIterator<K,V>

Resource. EntrySetMapIterator.java

Path. /org/apache/commons/collections4/iterators

Location. line 162

Type. Java Problem
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A.2.9 Task 9: READOBJSTATIC

A.2.9.1 Source Listing

@@ -94,3 +94,3 @@
@SuppressWarnings("unchecked")

- private void readObject(final ObjectInputStream in)
+ private static void readObject(final ObjectInputStream in)

throws IOException, ClassNotFoundException {

Listing A.18 Injected fault in UnmodifiableQueue.java.

94 @SuppressWarnings("unchecked")
95 private static void readObject(final ObjectInputStream in)
96 throws IOException, ClassNotFoundException {
97 in.defaultReadObject();
98 setCollection((Collection<

::
E>) in.readObject());

99 }

Listing A.19 Partial source listing for UnmodifiableQueue.java (IDE).

A.2.9.2 Error Message

Description. Cannot make a static reference to the non-static type E

Resource. UnmodifiableQueue.java

Path. /org/apache/commons/collections4/queue

Location. line 97

Type. Java Problem
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A.2.10 Task 10: SWITCH

A.2.10.1 Source Listing

@@ -1241,3 +1241,3 @@
// case 0: has already been dealt with

- default:
+ default case 0:

throw new IllegalStateException("Invalid map index: " +
size);↪→

Listing A.20 Injected fault in Flat3Map.java.

1236 case 1:
1237 buf.append(key1 == this ? "(this Map)" : key1);
1238 buf.append('=');
1239 buf.append(value1 == this ? "(this Map)" : value1);
1240 break;
1241 // case 0: has already been dealt with
1242

:::::::::
default case 0:

1243 throw new IllegalStateException("Invalid map index: " +
size);↪→

Listing A.21 Partial source listing for Flat3Map.java (IDE).

A.2.10.2 Error Message

Description. Syntax error on token "default", : expected after this token

Resource. Flat3Map.java

Path. /org/apache/commons/collections4/map

Location. line 1242

Type. Java Problem
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A.3 Post-study Questionnaire
Post-questionnaire

Participant ID: _________

What is your gender?

[] Male [] Female

What is your age? _______

How knowledgeable are you about the Java programming language?

[] Not knowledgeable about Java

[] Somewhat knowledgeable about Java

[] Knowledgeable about Java

[] Very knowledgeable about Java

How familiar are you with Eclipse?

[] Not familiar with Eclipse

[] Somewhat familiar with Eclipse

[] Familiar with Eclipse

[] Very familiar with Eclipse

How many months and years of industry programming experience do you have?

___ years ___ months
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B | Study Materials for “How Do
Developers Visualize
Compiler Error Messages?”
(Chapter 7)

B.1 Interview Protocol

B.1.1 Pre-tasks
1. For this experiment, we will use the following outline: IRB (2 minutes), Ques-

tionnaire (2 minutes), Task 1 (25 minutes), Survey (5 minutes), Task 2 (25
minutes).

2. Give participant IRB Consent Form.

3. Give participant Demographics Questionnaire.

4. Start audio and state: “Participant . You indicated that we may ”
(optional elected for recording). Get confirmation. Write this number down
somewhere.

B.1.2 Task 1
1. Have printout of all tasks, for either control or treatment group.

2. Give them the tasks alphabetically: Apple, Brick, Kite, Melon, Trumpet, Zebra.
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B.1.2.1 Instructions to Participant

For the first task, you will be examining six screens that are representative of an
IDE. On the top of the screen, you will see a source file. Each source file has one or
more errors. Below the source file, you will see the compiler output of the error. The
source file also has visual annotations to assist with the error message. In your IDE,
you will see visualizations as shown in your Legend file (if in treatment). [Take 1
minute to look over this].

You’ll have 30 seconds to just read over the message. You may or may understand
every message, and that’s okay too. Then, to the best of your ability you will explain
what you think the problem is to me. At the same time, I’d like to use the provided
sheet to draw and visually annotate your explanation on top of the source code.
As a guideline, if you find yourself pointing to something that might be worth
annotating in some way. You will have at most 2 minutes to give your explanation.

At the end of each exercise, you will have two short questions on your perceptions
about the problem.

B.1.3 Questionnaire
You will now take a short survey (5 minutes) that evaluates the visual annotations
that you’ve just seen. This survey introduces some new concepts so please read it
carefully. You can use the source code and your notes to help with completing this
evaluation.
[Take materials from participant.] If you need a break, you can have one now.

B.1.4 Task 2
1. In the ActivePresenter recording software, start recording.

2. Turn off the toolbar so the participant can’t accidentally close it.

3. When ready to start, type begin.bat to prepare source code capture. You can
go ahead and do this before giving the instructions.

In this task, you will write 6 programs on a computer. You will have five minutes
for each problem. You will be given an expected compiler error message that you’ve
already seen in Task 1. Unlike before, you will now have to write source code to
generate a particular error message. For this exercise, you will work on your own.
You should generate an error message that is close to the provided error message,
though there may be some small variations in line number. You will not need to
create an additional files to solve this problem.
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[Show them the interface]. Explain the compile command. Do not use any other
commands. Remind them to save.

When you’re done, ask the investigator to check your answer. The rules of this
experiment don’t allow me to provide you with assistance on this problem, but if
something unexpected breaks, feel free to ask.

B.1.5 Wrap-up
You just took a study on how people understand messages. At this time, you can
also decline to participant in the study. Otherwise, do you have any questions?

B.2 Questionnaire
All questions are optional.

What is your gender?

[] Male [] Female

What is your age?

_______

How knowledgeable are you about the Java programming language?

[] Not knowledgeable about Java

[] Somewhat knowledgeable about Java

[] Knowledgeable about Java

[] Very knowledgeable about Java

What Integrated Development Environment (IDE) or text editor do you

primarily use when programming in Java?

________________________________

How many months and years of industry programming experience do you

have?

___ years ___ months

How would you rate your overall programming ability?
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[] Novice

[] Intermediate

[] Advanced

[] Expert

B.3 Visual Markings Cheat Sheet

Symbol Description

code The starting location of the error.

code Indicates issues related to the error.

Arrows can be followed. They indicate the next relevant location to
check.

1
Enumerations are used to number items of potential interest, especially
when the information doesn’t fit within the source code.

? The compiler expected an associated item, but cannot find it.

Conflict between items.

code
Explanatory code or code generated internally by the compiler. The
code is not in the original source.

Indicates code coverage. Green lines indicate successfully executed code.
Red lines indicate failed or skipped lines.

B.4 Dimensions Survey for All Tasks
For all of the questions below, 1 = lowest and 5 = highest (circle one).
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Hidden Dependencies
A hidden dependency is a relationship between two components such that one of
them is dependent on the other, but that dependency is not fully visible. For example,
Excel spreadsheets often contain cells are referenced from other sheets and so you
can’t easily tell if modifying a given cell will or will not have an impact elsewhere
(many hidden dependencies). The LabView programming language (shown below)
makes data flow explicit, and so there are fewer hidden dependencies:

1

3

+

On a scale of 1-5, how prevalent are these dependencies in the annotations you just
evaluated?

1 2 3 4 5

Consistency
Things are consistent when similar semantics are expressed in similar syntactic
forms, that is, things that look similar either behave similarly or mean similar
things. For example, the green triangle that means “play” is a nearly universal
signal, so it is very consistent. The grammar rules for English have lots of exceptions
and irregular words, so they are less consistent.

On a scale of 1-5, how consistent were the annotations you just evaluated?

1 2 3 4 5

Hard Mental Operations
When it feels like you have to juggle many things in your head to keep things straight
or to properly use something, that is an indication of hard mental operations. For
example, if you had to file your taxes without being able to write anything down
except your final amounts, doing taxes would require many hard mental operations.
If you use tax-assistant software that keeps track of the intermediate steps for you
and makes sure the correct boxes are filled, there are fewer hard mental operations.
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On a scale of 1-5, to what extent did the annotations require hard mental operations?

1 2 3 4 5

Role Expressiveness
A system with high role expressiveness has an intuitive design and feel - it is easy
to tell why the respective design decisions were chosen. For example, a well orga-
nized machine shop has all the supplies and tools for a given task in the same
spot - painting supplies on one table, cutting machines near each other, drill bits
next to the drill, etc. The QWERTY keyboard layout has been criticized for having
low role expressiveness because of the scattered keys and a lack of cohesive grouping.

On a scale of 1-5, how was the role expressiveness of the annotations you saw
previously?

1 2 3 4 5

B.5 Tasks
This section presents the six tasks. Participants were provided with a source listing
and the compiler output for that listing. Participants in the control group received
by the baseline version of the task with wavy underline annotations on the source;
participants in the treatment group received explanatory annotations on the source
code.

All participants received an annotation sheet containing the source code and
compiler output. The source code did not have any preexisting annotations, and the
participants were instructed to mark their own annotations using colored pencils.
In addition, the annotation sheets contained the following questionnaire:

1. Have you ever encountered this error message before?

[ ] Yes [ ] No [ ] Unsure

2. How confident are you about the accuracy of your explanation for

this error message?

[ ] Not at all confident

[ ] Somewhat confident

[ ] Moderately confident
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[ ] Highly confident

[ ] Completely confident
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B.5.1 Task: Apple

B.5.1.1 Baseline

1 class Apple {

2
::::::::
public

::::::::
public String toString() {

3 return "Red";

4 }

5 }

B.5.1.2 Explanatory

1 class Apple {

2 public public String toString() {

3 return "Red";

4 }

5 }

B.5.1.3 Compiler Output

Apple.java:2: error: repeated modifier

public public String toString() {

^

1 error
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B.5.2 Task: Brick

B.5.2.1 Baseline

1 class Brick {

2 void m(int i, double d) { }

3 void m(double d, int m) { }

4

5 {

6
:
m
::::
(1,

::::
2);

7 }

8 }

B.5.2.2 Explanatory

1 class Brick {

2 void m(int i, double d) { }

3 void m(double d, int m) { }

4

5 {

6 m(1, 2);

7 }

8 }

1

2

1

2

m((int) 1, (double) 2);

m((double) 1, (int) 2);

B.5.2.3 Compiler Output

Brick.java:6: error: reference to m is ambiguous,

both method m(int,double) in Brick and method m(double,int) in Brick match

m(1, 2);

^

1 error
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B.5.3 Task: Kite

B.5.3.1 Baseline

1 class Toy {

2 Toy() throws Exception { }

3 }

4

5
::::::
class

:::::::
Kite

::::::::::
extends

::::::
Toy {

6 }

B.5.3.2 Explanatory

1 class Toy {

2 Toy() throws Exception {}

3 }

4

5 class Kite extends Toy {

Kite() { super(); }

6 }

?

B.5.3.3 Compiler Output

Kite.java:5: error: unreported exception Exception in default constructor

class Kite extends Toy {

^

1 error
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B.5.4 Task: Melon

B.5.4.1 Baseline

1 class Melon {

2
:::::::
final

:::::
int

::
i;

3

4 Melon(boolean b) {

5 if (b)

6 i = 3;

7 }

8 }

B.5.4.2 Explanatory

1 class Melon {

2 final int i;

3

4 Melon(boolean b) {

5 if (b)

6 i = 3;

7 }

8 }

1 2

i = 3 i = ?

b = true b = false

B.5.4.3 Compiler Output

Melon.java:7: error: variable i might not have been initialized

}

^

1 error
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B.5.5 Task: Trumpet

B.5.5.1 Baseline

1 import java.io.*;

2

3 class Trumpet {

4

5 void play() {

6 try {

7 if (true) {

8 throw new FileNotFoundException();

9 }

10 else {

11 throw new EOFException();

12 }

13 }

14 catch(FileNotFoundException fnf) { }

15 catch(EOFException eof) { }

16
:::::::
catch

:
(
::::::::::::::
IOException

::::
ex

::
) { }

17 }

18 }
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B.5.5.2 Explanatory

1 import java.io.*;

2

3 class Trumpet {

4

5 void play() {

6 try {

7 if (true) {

8 throw new FileNotFoundException();

9 }

10 else {

11 throw new EOFException();

12 }

13 }

14 catch(FileNotFoundException fnf) { }

15 catch(EOFException eof) { }

16 catch(IOException ex) { }

17 }

18 }
?

B.5.5.3 Compiler Output

Trumpet.java:16: warning: unreachable catch clause

catch(IOException ex) { }

^

thrown types FileNotFoundException,EOFException have already been caught

1 warning
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B.5.6 Task: Zebra

B.5.6.1 Baseline

1 class Zebra {

2 static class Stripe<X> {}

3

4 static class BlackStripe<X extends Number> extends Stripe<X> {

5 BlackStripe(X x) {}

6 }

7

8 Stripe<String> sf1 = new BlackStripe<>
:::
("

::::::
Marty

:::
");

9 }

B.5.6.2 Explanatory

1 class Zebra {

2 static class Stripe<X> {}

3

4 static class BlackStripe<X extends Number> extends Stripe<X> {

5 BlackStripe(X x) {}

6 }

7

8 Stripe<String> sf1 = new BlackStripe<>("Marty");

9 }

B.5.6.3 Compiler Output

Zebra.java:8: error: cannot infer type arguments for BlackStripe<>;

Stripe<String> sf1 = new BlackStripe<>("Marty");

^

reason: inferred type does not conform to declared bound(s)

inferred: String

bound(s): Number

1 error
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C | Study Materials for “How
Should Compilers Explain
Problems to Developers?”
(Chapter 8)

We conducted a comparative evaluation through an online survey instrument.

C.1 Survey

C.1.1 Demographic Information
How many years of professional programming experience do you have?

_____

How proficient are you with the following programming languages? (Not proficient,
Somewhat proficient, Proficient, Very proficient)

C

C#

C++

Java

Python

Objective-C

Swift
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The following questions will ask you to compare two error messages for a trivial
code snippet that generates the error. There are five code snippets in total. We’ve
removed the extraneous parts of the error message to allow you focus on the message
text for the error. The error messages are for Java, but it’s okay if you aren’t an
expert on Java programming.

(The errors and options are presented to the developer in randomized order.)

C.1.2 Error Message: E1
Given the following code snippet:

class Foo {
Foo() {

final int x;

for (int i = 0; i < 5; ++i) {
x = i;

}
}

}

Which error message would you prefer to see from your compiler?

1. Variable x might be assigned in loop.
2. The blank final variable "x" cannot be assigned within the body of a

loop that may execute more than once.↪→

C.1.3 Error Message: E2
Given the following code snippet:

class Foo {
char variable;
int varname;

void foo() {
System.out.println(varnam);

}
}

Which error message would you prefer to see from your compiler?

1. cannot find symbol

symbol: variable varnam

location: class Foo
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2. No field named "varnam" was found in type "Foo". However, there is an
accessible field "varname" whose name closely matches the name
"varnam".

↪→

↪→

C.1.4 Error Message: E3
Given the following code snippet:

class Foo {
static void f() {
}

void bar() {
Foo f = new Foo();
f.f();

}
}

Which error message would you prefer to see from your compiler?
1. static method should be qualified by type name, Foo, instead of by an

expression↪→

2. Invoking the class method "f" via an instance is discouraged because
the method invoked will be the one in the variable's declared type,
not the instance's dynamic type.

↪→

↪→

C.1.5 Error Message: E4
Given the following code snippet:

class A {
void remove(int x) { }

class B {
void remove() {

remove(3);
}

}
}

Which error message would you prefer to see from your compiler?
1. method remove in class A.B cannot be applied to given types

required: no arguments

found: int

reason: actual and formal argument lists differ in length

2. The method "void remove(int x);" contained in the enclosing type "A" is
a perfect match for this method call. However, it is not visible in
this nested class because a method with the same name in an
intervening class is hiding it.

↪→

↪→

↪→
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C.1.6 Error Message: E5
Given the following code snippet:

class A {
class B {

static String s;
}

}

Which error message would you prefer to see from your compiler?

1. Illegal static declaration in inner class A.B. Modifier 'static' is
only allowed in constant variable declarations.↪→

2. This static variable declaration is invalid, because it is not final,
but is enclosed in an inner class, "B".↪→

C.1.7 Stack Overflow
Almost done. Just a few questions on how you use Stack Overflow.
How often do you turn to Stack Overflow for help when you encounter a confusing
compiler error message?

( ) Never

( ) Rarely

( ) Sometimes

( ) Often

( ) Always or nearly always

How often do the Stack Overflow answers help you resolve the compiler error
message?

( ) Never

( ) Rarely

( ) Sometimes

( ) Often

( ) Always or nearly always
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D | Guidelines for Designing
Error Messages

Table D.1 Summary of Design Guidelines for Error Messages

Reference Guidelines
Moulton and Muller
(1967)

All errors other than logical errors are to be detected
and described to the programmer

All compilation and execution diagnostic messages
and descriptions of errors are to be in terms of the
source language

The formation of error messages and the analysis of
errors are to be made in such a way that they will
provide the user with as much information as
possible, giving him direct cues aiding the
correction of errors

As many errors as possible are to be detected during
compilation

Provision is to be made for the use of diagnostic
routines for tracing control of execution of a
program and auditing the assignment of values to
variables

Horning (1974) User-directed
Source-oriented
Specific
Localize the problem
Complete
Readable
Restrained and polite
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Reference Guidelines

Dean (1982) Set human goals for messages:
Be tolerant of “user errors”
Help people correct errors as easily as they make

them
Give people control over the messages they

receive
Do not make messages arbitrarily short
Identify messages that people need

Apply psychology in writing messages:
Anticipate people’s expectations
Help people fit the pieces together
Do not force people to re-read
Put people at ease

Write messages for the audience and the situation
Report on the program’s reaction to the input
Report on the program’s assumption about input
Report on a program error or adverse condition
Request for a go-ahead
Request to choose among alternatives
Request for missing information
Request for correction or clarification of input

Edit the messages for appropriate language, using:
good writing, vocabulary that is familiar, standard
conversational language, consistent messages,
and standard punctuation.

Shneiderman (1982) Have a positive tone indicating what must be done
Be specific and address the problem in the user’s

terms
Place the user in control of the situation
Have a neat, consistent, and comprehensible format
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Reference Guidelines

Brown (1983) Exploit the capabilities of the display (e.g., color,
reverse-video) to identify the offending symbol

Print several lines of the source, both before and
after the point of error, to supply a contextual
window

Allow the user the option of increasing the size of
the contextual window

Provide some visual scale to show where in the
program the error occurred

Integrate with an editing facility to correct the
source

Kantorowitz and Laor
(1986)

A message that proposes how to correct an
encountered error is most useful, but should only
be produced when there is a high degree of
certainty for its correctness

For errors that may be corrected in more than one
way no attempt should be made to guess which of
them is the right one

Pieces of code that the compiler cannot analyse
correctly because of an error should be underlined.
The programmer will then know that unreported
errors may exist in these unchecked pieces of code

The error messages should reflect a simple error
handling mechanism that the programmer may
readily understand

Shaw (1989) The nature of the error is stated
The errant data are identified
Corrective action is prescribed

Traver (2010) Clarity & brevity
Specificity
Context-insensitivity
Locality
Proper phrasing:

Positive tone
Constructive guidance
Programmer language
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Reference Guidelines

Murphy-Hill and Black
(2012)

Expressiveness
Locatability
Completeness
Estimability
Relationality
Perceptibility
Distinguishability

Murphy-Hill, Barik, and
Black (2013)

Restraint
Relationality
Partiality
Nondistracting
Estimability
Availability
Unobtrusiveness
Context-sensitivity
Lucidity

249



E | Rational TypeScript

The following source code listing implements the duplicate function implementation
error, TS2393, by extending the TypeScript Compiler API:
1 import ts from "byots";
2 import chalk from "chalk";
3 import minimist from "minimist";
4

5 const log = console.log;
6

7 interface IErrorReconstruction {
8 diagnosticCode: string;
9 fileName: string;

10 name: string;
11 lineAndCharacters: ts.LineAndCharacter[];
12 lengths: number[];
13 snippets: string[];
14 positions: number[];
15 }
16

17 function getUntilNewLine(s: string): string {
18 return s.slice(0, s.indexOf("\n"));
19 }
20

21 function compile(fileNames: string[], options: ts.CompilerOptions,
22 displayType?: string): void {
23 const program = ts.createProgram(fileNames, options);
24 // const emitResult = program.emit();
25

26 const allDiagnostics = ts.getPreEmitDiagnostics(program);
27

28 const duplicateFunctionError: IErrorReconstruction = {
29 diagnosticCode: "TS2393",
30 fileName: "",
31 lengths: [],
32 lineAndCharacters: [],
33 name: "",
34 positions: [],
35 snippets: [],
36 };

250



37

38 allDiagnostics.forEach((diagnostic: ts.Diagnostic) => {
39 // Code 2393 = Duplicate function implementation.
40 if (diagnostic.file && diagnostic.code === 2393) {
41 const token = ts.getTokenAtPosition(diagnostic.file,

diagnostic.start!, true);↪→

42 const functionName = (token as any).escapedText;
43

44 if (duplicateFunctionError.name === "") {
45 duplicateFunctionError.name = functionName;
46 } else if (duplicateFunctionError.name !== functionName) {
47 // There are multiple duplicate function problems.
48 // Skip this one for now.
49 return;
50 }
51

52 const position = diagnostic.start!;
53 const diagnosticStart =
54 diagnostic.file.getLineAndCharacterOfPosition(
55 diagnostic.start!);
56

57 const startLinePosition =
58 ts.getPositionOfLineAndCharacter(
59 diagnostic.file,
60 diagnosticStart.line, 0);
61 const theLine = getUntilNewLine(
62 diagnostic.file.text.slice(startLinePosition));
63

64 duplicateFunctionError.fileName = diagnostic.file.fileName;
65 duplicateFunctionError.lineAndCharacters c

.push(diagnosticStart);↪→

66 duplicateFunctionError.lengths.push(diagnostic.length!);
67 duplicateFunctionError.positions.push(position);
68 duplicateFunctionError.snippets.push(theLine);
69 }
70 });
71

72 if (duplicateFunctionError.name) {
73 displayDiagram(duplicateFunctionError);
74 }
75 }
76

77 function displayDiagram(e: IErrorReconstruction): void {
78 const first = e.lineAndCharacters[0];
79 const second = e.lineAndCharacters[1];
80

81 // Lines are zero-indexed, but presented to user as one-indexed.
82 const firstLineLength = (first.line + 1).toString().length;
83 const secondLineLength = (second.line + 1).toString().length;
84 const linePad = secondLineLength + 1;
85
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86 log(chalk.redBright(`error[${e.diagnosticCode}]`) +
87 chalk.whiteBright(`: duplicate implementation of function

\`${e.name}\``));↪→

88

89 log(`${" ".repeat(linePad - 1)}` +
90 `${chalk.blueBright("--> ")}` + chalk.white() +
91 `${e.fileName}:${second.line + 1}:${second.character + 1}`);
92

93 log(chalk.blueBright(`${" ".repeat(linePad)}|`));
94

95 log(chalk.blueBright(`${first.line + 1}${" ".repeat(linePad -
firstLineLength)}`) +↪→

96 chalk.redBright(`×`) +
97 ` ${e.snippets[0]}`);
98

99 log(chalk.blueBright(`${" ".repeat(linePad)}| ${"
".repeat(first.character)}`)↪→

100 + chalk.redBright(`${"-".repeat(e.lengths[0])} previous
implementation of \`foo\` here`));↪→

101

102 if (second.line === first.line + 1) {

103 log(chalk.blueBright(`${" ".repeat(linePad)}|`));
104 } else if (second.line === first.line + 2) {

105 log(chalk.blueBright(`${" ".repeat(linePad)}|`));
106 } else {
107 log(chalk.blueBright("..."));
108 }
109

110 log(chalk.blueBright(`${second.line + 1} `) + chalk.redBright(`× `) +
`${e.snippets[1]}`);↪→

111

112 log(chalk.blueBright(`${" ".repeat(linePad)}| `) +
113 chalk.redBright(`${"

".repeat(first.character)}${"~".repeat(e.lengths[1])}`) +↪→

114 chalk.redBright(` \`${e.name}\` reimplemented here`));
115

116 log(chalk.blueBright(`${" ".repeat(linePad)}|`));
117 log(chalk.blueBright(`${" ".repeat(linePad)}=`) +
118 chalk.whiteBright(` hint: `) +
119 `\`${e.name}\` must be implemented only once within the same

namespace`);↪→

120

121 log(chalk.blueBright(`${" ".repeat(linePad)}=`) +
122 chalk.whiteBright(` hint: `) +
123 `To overload a function, see https://www.typescriptlang c

.org/docs/handbook/functions.html`);↪→

124 }
125

126 const argv = minimist(process.argv.slice(2), { string: "display" });
127

128 compile(argv._, {
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129 module: ts.ModuleKind.CommonJS,
130 noEmitOnError: true,
131 noImplicitAny: true,
132 target: ts.ScriptTarget.ES5,
133 }, argv.display);

The above implementation indirectly loads the typescript package through
byots [374]. byots is a “Bring your own TypeScript” package for NPM that exposes
many of the normally-internal APIs and makes them available for the toolsmith.
In particular, our implementation relies on the getTokenAtPosition to retrieve the
corresponding AST Node at a specified source code location. However, without byots,
this useful function is not available.

We iterate over the allDiagnostics collection (Line 38) to obtain metadata about
all TS2393 errors. To keep the source code listing to a manageable length, the
implementation silently discards all other errors. The algorithm also makes the
assumption that there are only two duplicate functions, within a single file. There
is some clerical effort in this function to reconstruct the linear positions within
the source code representation and translate them to line and character positions
suitable for the error messages.

The function displayDiagram renders the error message metadata to the console.
Again, most of this implementation is simple clerical effort to correctly align the
duplicate functions, to render the corresponding line numbers, and to position the
explanatory text. The chalk package enables ANSI color support, at the expense of
making the source code a bit more noisy.
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